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A method is presented for completely removing the ambiguities
arising in the reconstruction of the nucleon-nucleon scattering
matrix from data at a given angle and energy due to the bilinear
form of expressions for observable quantities. Our method utilizes
only the amplitudes de6ned by Wolfenstein and Ashkin and is
more direct and computationally simpler than the methods using
unitarity and measurements at all angles or the phase-shift
analyses; thus, it would provide an independent means of arriving
at the correct set of phase-shift solutions. Our method is based on
a knowledge of the polarization transfer tensor X;I„which has a
form complementary to the familiar polarization correlation tensor
6;I,.The X;q tensor may be obtained from triple scattering experi-
ments on the recoil nucleon similar to those used to determine the

familiar depolarization tensor S;y, or from double scattering
measurements on nucleons scattered from a polarized target.

It is also shown that the use of polarized targets would have
many experimental advantages: They would permit (1) determi-
nation of the depolarization tensor X);f, for large scattering angles,
without requiring the measurement of the polarization of a very
slow nucleon; (2) determination of the correlation tensor 6;& by
the measurement of the cross section for the scattering of a
polarized beam by a polarized target, instead of the dificult
simultaneous measurements of the polarizations of both the 6nal
nucleons; (3) determination of the "difficult" components A ' and
E' of the X);q and X;f, tensors by the measurement of the polariza-
tion of an initially unpolarized beam scattered by a polarized
target.

1. INTRODUCTION
' 'N this note we show how ambiguities arising in the
~ - reconstruction of the nucleon-nucleon scattering
matrix from data at a given angle and energy, due to the
bilinear form of expressions for observable quantities,
may be removed completely. This is accomplished with-
out using unitarity and measurements at all angles, or
even a phase-shift analysis, but instead, by using the
more direct and computationally simpler method of
working only with the amplitudes defined by Wolfen-
stein and Ashkin' ' (see Sec. 2); thus, we have a means
for discriminating between the various phase-shift solu-
tions. Our patently unique reconstruction is carried out
(in Sec. 3) by exploiting the complementary relationship
between the familiar polarization correlation tensor 8;y
and the polarization transfer tensor X;A,. The X,A, tensor
determines the polarization of the recoil (scattered)
nucleon in the scattering of a polarized (unpolarized)
beam from an unpolarized (polarized) target.

In addition to their usefulness in determining the X,y

tensor, it is also shown (in Sec. 4) that polarized targets
(which have recently been achieved a,t Saclay) would

simplify the determination of the 6;k tensor and of the
"diAicult" components of the familiar depolarization
tensor 50;I, and remove the need for the usual compli-
cated turning of spins in magnetic fields. They would
also help to extend present measurements over a broader
angular range.

2. NUCLEON-NUCLEON SCATTERING MATRIX

The nucleon-nucleon scattering matrix can be ex-
pressed in terms of certain quantities which are in-

*This work was supported in part by the joint contract of the
Once of Naval Research and the U. S. Atomic Energy Com-
mission.

f National Science Foundation Cooperative Graduate Fellow.
' L. Wolfenstein and J.Ashkin, Phys. Rev. 85, 947 (1952).
2 L. Kolfenstein, Phys. Rev. 96, 1654 (1954}.

variant with respect to space rotations, space rejections,
and time reversal in the familiar form'

~T ~ T+~TIrlnII2n++T (O In+ O 2n) +DT (O In O 2n)

+ETIII2II22+PTIII„II2„, (1)

where 0-~ and a2 are the Pauli matrices of the incident
and target nucleons, respectively, and n, p, and q are 3
mutually perpendicular directions, defined by the vectors
n=k;„)&k.„„p=k;„+k.„„ll=k.„,—k;„. k is the nu-
cleon momentum in the c.m. system, and the subscript
T refers to the total isotopic spin of the system.

In the following we are primarily interested in the
pure nuclear scattering. Coulomb scattering is usually
unimportant, except at small angles, and its effects can
be calculated. However, in spite of the small angular
range in which Coulombic effects are appreciable and
the sizable experimental difhculties in measuring them,
measurements in this small-angle region would still be
extremely valuable. Their value derives mostly from the
interference terms between Coulomb and nuclear scat-
tering which arise when both of these are of the same
order of magnitude. The most interesting point is that
the interference term permits a determination of the
over-all phase of the matrix M. Secondly, this term is
linear in the unknown coefficients A to Ii, and hence
allows a much more direct reconstruction of M than the
pure nuclear scattering which is bilinear in A to Ii.
Finally, the limit of 3f for small angles is directly
significant for the analysis of the scattering of nucleons

by complex nuclei. ' The usefulness of such measure-
ments in the phase-shift analyses has been discussed by
Cromer. 4

3 We follow the notation of H. A. Bethe, Ann. Phys. 3, 190
(1958), and refer the reader to this paper for a more complete list
of references. The basis vectors used here are chosen to agree with
those of Wolfenstein, reference 2, and are slightly different from
those used in some papers.

n A. H. Cromer, thesis, Cornell University, 1960 (unpublished).
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The p-p and tt tt s-ystems are both pure states of 7=1,
whereas the tt-p system is an equal mixture of T=0 and
1. Thus, D&=0 because of the identity of the particles,
and Do ——0 because of the charge symmetry of nuclear
forces.

A, 8, C, E, and Ii are 5 complex functions of the
nucleon energy and scattering angle, for each isotopic
spin state. ' Since the over-all complex phase of 3f re-
mains arbitrary, it can be reconstructed if 9 real quanti-
ties are determined experimentally, the magnitudes of
the 5 coefFicients and their relative phases. However, 9
diferent scattering experiments are rot sufficient to de-

termine these coefficients uniquely. When observable
quantities are calculated in terms of the scattering matrix
coefficients (see Table I below), all the expressions are
bilinear in the 9 unknowns; thus, unless more than 9
experimental results are available, ambiguities will arise
in the reconstruction of 3f from data at a given angle.

At the present time not even 9 experiments have been
done at any given angle. Nevertheless, it has been pos-
sible to perform phase-shift analyses which utilize data
taken over a range of angles to compensate for the lack
of information at the individual points in the range.
More specifically, a phase-shift analysis makes use of

(1)unitarity: the unitarity requirement is automatically
satisfied in the phase-shift approach; (2) the smoothness
of all the observable quantities as a function of angle;
and (3) due to the scarcity of information at small

angles, a reasonable hypothesis concerning the behavior
of the phase shifts for higher 3, e.g. that they may be
approximated by the one-pion exchange contribution
(OPEC). An analysis of the 310-Mev p-p scattering
data along these lines has recently been completed by
MacGregor, 3tIoravcsik, and Stapp'; they have suc-
ceeded in reducing the 5 "best" sets of phase-shift solu-
tions of Stapp, Ypsilantis, and Metropolis to 2 sets,
with more recent analyses of the energy dependence'
favoring Solution 1 over Solution 2.

In spite of the apparent success of the phase-shift
analyses, they are based on the theoretical considera-
tions listed above. Also, all the solutions are obtained by
means of a search through phase-shift space with
random sets of initial phase shifts taken as starting
points. ' ' Thus, in spite of the increasing probabilistic
evidence to the contrary, there is no proof that all regions
of the many-dimensional phase-shift space have been
completely explored. The somewhat unsatisfactory
nature of this situation is well brought out by Smoro-

5 In the following we shall avoid explicit reference to the isotopic
spin variable, whenever this is convenient.

' M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Phys.
Rev. 116, 1248 (1959).

~ H. P. Stap, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, S02 (1957 .

' G. Breit et al. , Phys. Rev. Letters 5, 274 (1960); also contri-
butions by P. Noyes and by G. Sreit to ProceeCings of the Tenth
Annlal Rochester Conference on High-Energy nuclear Physics, 1060
(Interscience Publishers, New York, to be published).

dinsky's recent statement': "It remains somewhat puz-
zling why we have only two sets describing the experi-
mental data within (rather large) experimental errors. "
The uniqueness of the phase-shift solutions can be
proved if one has a "complete set" of experiments.
Puzikov, Ryndin, and Smorodinsky" have shown how
this can be done using unitarity and measurements of 5
suitably chosen quantities at atl angles. In view of the
difFiculty of performing the complete set of experiments
needed for the application of their method, "we will now
show how this same result may be accomplished with
measurements at a single angle and energy.

It is to be noted that our method does not make use of
unitarity and thus is applicable at energies at which
inelastic processes intrude. Phase-shift analyses may be
extended to these higher energies by replacing each e"'
by ae"', where a is a real, positive number less than
unity; in other words, by making each phase-shift
complex. Here 1—a' measures the fraction of particles
of the given /, j going into inelastic channels. However,
the introduction of a doubles the number of quantities
to be determined for each l and j, and remembering the
increased number of partial waves contributing, the
number of parameters soon becomes very large, render-

ing this method very diKcult and inaccurate. In our
method, on the other hand, the number of unknowns
remains the same at all energies.

3. RECONSTRUCTION OF M FROM DATA AT
ONE ENERGY AND ANGLE

Expressions for various observable quantities in terms
of the scattering matrix coeKcients are given in Table I.
In this section we shall show how the scattering matrix
can be unambiguously reconstructed, once certain of
these quantities are known at one energy and angle.
Here we shall merely define the observables and com-
ment brieQy on their significance; the selection of the
easiest experiments for determining them is discussed in
Sec. 4.

9 Ya. Smorodinsky, Report to 1959 International Conference on
Physics of High-Energy Particles, Kiev, July 1959 (unpublished).

"L. Puzikov, R. Ryndin, and Ya. Smorodinsky, J. Exptl.
Theoret. Phys. (U.S.S.R.) 32, 592 (1957) Ltranslation: Soviet
Phys. —JETP 5(32), 489 (1957)j.

"The unitarity of M imposes 5 conditions, relating the imagi-
nary parts of the coeKcients at one angle to integrals of their
products over all angles. '0 Thus the number of necessary experi-
ments can be reduced, provided the measurements are made at all
angles and the nucleon energies are below the meson-production
threshold (about 280 Mev for a beam of protons hitting protons
at rest; however, the experimental data indicate a practical
threshold of about 400 Mev). Five such complete experiments,
measuring I0, P, X), 6„„,and X„„,over the angular interval
0~&8~&m/2 will determine M» at a given energy and scattering
angle; with the n-p system measurements must be made over the
entire interval 0 ~&8~&~. However, in addition to the high-energy
limit imposed by loss of unitarity, the method is limited at lower
laboratory energies (large 8) by the experimental ditliculties of
measuring polarization in the medium energy range between about
20 Mev and 100 Mev. Thus, although experiments are now
underway in various laboratories, a "normal complete set" needed
for the application of unitarity is not likely to be completed soon. g
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TABIE I. Observable quantities in terms of the coeKcients in the
scattering matrix. '

Ip = IA[s+ IB[s+2[cl'+ IEI'+
IOD =ID' = [A[s+[B['+2[C['—[E[s—
X-y =I,n,„=

l
A [s- [B[s- [E['+ [Fl'

x+y=lo&„= IA I'—IBl'+[El'—IF['
Z =Ipse)„,=2 ImC*(A —B)= —Ip&„

=2 ReC*(A yB)
I06r, =2 ImC*(F—L~') = Ip6rr
Ipxrq =2 Imc*(F+L') = Iox,r-
2rIs6 =ReAB~+ [C['—ReEF*
-'Iox» =ReAB*+[C['+ReEF*
2'Ip6» =ReAF*—ReBE,*

—,'IpX» =ReAF*+ReBE*
—,'Ip6« =ReAZ* —ReBF*
—,'IpX q, =ReAE*+ReBF*

(I 1)

l
F l' (I.2)

(I.3)
(I.4)

(I 5)

(I.6)

(I.7)

(Z 8)

(I.9)
(I.10)

(I.11)

(I.12)

(I.13)

(I 14)

'All the tensor components with subscripts containing only one n are
zero.

b In reference 3 it is incorrectly stated that Cpq = Cqp. The correct
relation is given in (I.7).

Is——s Tr(MMt) is the differential cross section, and
P=s Tr(MMto. r„)/Is is the polarization produced (in
the n direction) in the scattering of an unpolarized beam
from an unpolarized target.

e;I, is the familiar polarization correlation tensor and
is defined by

Io6,I,= sr Tr (MMt(rr;(rs(, ) (2)

%Chen an unpolarized beam is scattered from an un-
polarized target, the 8,~ tensor gives the expectation
value of E'~ P2A, ', which is the product of the component
of the polarization of the scattered particle in direction
~, and of that of the recoil particle in direction k.

The correlation tensor also determines the cross
section when a beam polarized in direction i is scattered
from a target polarized in direction k. Then

rr;s Is(1+Pr,P,+——PsI,I'&+6;~'P„PsI), (3)

where 6;z' ——
~ Tr(Mo. &;o.s&M )/Io may be obtained from

6,s by interchanging M and Mt. )In Eq. (3) the summa-
tion convention is not used, though it applies elsewhere
in the paper. ] Since only the imaginary parts change
sign under this transformation, all the components are
the same except that 6„,'= 8, '= —6„,.

X);~ is the familiar depolarization tensor and is defined
by

Is5),g= a Tr(Mo r,Mto. rA). (4)

When a polarized beam is scattered from an unpolarized
target, the polarization of the incident particle in direc-
tion ~, I'~;, is related to the polarization of the scattered
particle in direction k, 8~I,', by means of the X);I, tensor:

Prj,'= (I's+n'd'rr)/(I+P Pr), (5)

where (as above) P=I'ri is the polarization arising (in
the rest system of the scattered nucleon, or in the c.m.

system) when an unpolarized beam is used. The re-
peated index implies summation over all the components
of the initial polarization vector Pr.

The depolarization tensor also determines the polari-
zation of the recosl nucleon, Ps', when an unpolarized
beam is scattered from a target with initial polarization
Ps. Then

I' s&'= (Ps+ &,gP„)/(1+P Ps).

X;~ is what we shall call the polarization transfer
tensor; it is defined by

IsXg, ——ar Tr (Mo.r;Mto. ss).

When a polarized beam is scattered from an unpolarized
target, the polarization of the rt,'coi/ nucleon in direction
k, E'2~', is related to the polarization of the incident
nucleon in direction i through the X;~ tensor:

I'sg' ——(I'L+X,J Pr;)/(1+P. Pr). (8)

The polarization transfer tensor also determines the
polarization of the scattered nucleon, when an un-
polarized beam is scattered from a polarized target.
Then

I'ts' ——(I'I+X,pI'„)/(I+P P,).
It is convenient to adopt a shorthand notation to

refer to the 4 experiments determining the S;I, and X,A,

tensors. We shall use a letter to indicate whether the
beam (8) or target (T) is polarized initially and a
number to indicate whether one measures the polariza-
tion of the scattered (1) or recoil (2) nucleon. Thus, the
X);I, tensor is determined by experiments 81 or T2; the
X,J, tensor is determined by experiments 82 or T1.

We note that Io occurs as a factor in each of the
quantities listed in Table I, and hence may be regarded
as a scale factor which can conveniently be divided out.
This may be an advantage, for example, in the near-
forward direction in p-p scattering where the differential
cross section increases rapidly. But also at other angles,
an accurate determination of the differential cross section
is often dificult, and inaccurate knowledge has some-
times made phase-shift analysis difficult because the use
of unitarity relies heavily on the absolute cross section.

In reference 3 Bethe has discussed the reconstruction
of M from data at one angle and energy, using only the
information provided by the 10 quantities: Io, I', and
the 6;I, and X),~ tensors. He found that these were suK-
cient to determine M except for the ambiguities due to
the bilinear forms. The X;I, tensor, which is very similar
in form to the familiar correlation tensor 6;~, can now be
used to remove these remaining ambiguities. Both
tensors, expressed in terms of the coeKcients 3 to Il, are
exhibited in Table I and are seen to have complementary
forms. ""By measuring both and combining the infor-

"There is a simple and direct scheme for constructing X;I, from
the 6;I, tensor, which clarifies the origin of their complementary
forms: X;&PEq. (2)g may be obtained directly from 6;I, [ Eq. (2)g
by erst writing III such that the term C(0&~+o.2 ) ~ C&0 &~+C2Ir2~,
and then studying the sign changes suffered by each term in 6;I, in
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mation, one 6nds expressions which are more simply
related to the fundamental coefficients A to F,permitting
more straightforward schemes for reconstruction of M
from the data. Moreover, with 14 (bilinear) equations
for 9unknowns the solution is agreeably overdetermined.

The usefulness of the X;~ tensor is apparent as soon as
one tries to solve these equations. A possible scheme is
described in the Appendix. It makes extensive use of the
components X and X„,. Without the knowledge of
these, solution of the equations of Table I is far from
straightforward and probably ambiguous.

There are other tensors beyond those listed in Table I,
with 3 and 4 indices, relating the polarization of one or
both of the initial nucleons to one or both of the final
ones, which would provide additional bilinear relations
among the unknowns. However, these require more
difFicult measurements than the above 2-index tensors,
and are not actually needed for the determination of M.
Lists of the various measurable quantities occurring in
a11 th. possible nucleon-nucleon scattering experiments
have been given by Puzikov et al." and Phillips, " in a
diGerent notation.

4. SELECTION OF THE EASIEST EXPERIMENTS
FOR DETERMINING THE Q;I„Q;I„

AND X;I, TENSORS

Although much attention has previously been given
to the correlation experiments and to polarized beam
experiments of the type 8j.' ' ' """much less atten-
tion has been devoted to polarized beam experiments of
the type 82,' """and the polarized target experiments
have usually been dismissed as unnecessary 2 3 9 I '5 '7

We have shown above that both the S;~ and X;~ tensors
are necessary for the unambiguous reconstruction of 3f
from data at one angle. In this section we shall show
that polarized targets would simplify the determination
of both of these tensors by permitting the replacement
of the difficult A' and E.' measurements, required to
detect the component of polarization along the direction
of motion of the scattered particles when only polarized
beams are used, with measurements of the simpler E.
type which have already been done. It is also shown that
polarized targets would provide another method for
determining these tensors which would be most useful in
supplementing present polarized beam experiments

bringing M to.1; to the form o1;Mt, for each value of i. In the Gnal
expressions, of course, C1=C2= C.

"Use of the variables G=E+Ii and H=E —Ii leads to essen-
tially the same relations; the only difference is in the combinations
of the knomms used to arrive at these relations. The selection of
variables will thus depend upon the feasibility (and accuracy) of
the experiments which we are proposing."R.J. N. Phillips, United Kingdom Atomic Energy Authority
Report, AERE-R3141 (unpublished). The appendix to this report
contains a brief discussion of several of the advantages of polarized
targets.

'PL. Wolfenstein, Annual Review of Nuclear Science (Annual
Reviews, Inc. , Palo Alto, California, 1956), Vol. 6, p. 43. See
references therein."R.Oehme, Phys. Rev. 98, 147, 216 (1955).

"H. Stapp, University of California Radiation T.aboratory Re-
port UCRL-3098 (unpublished).

when these become difficult because they result in a
scattered particle with a laboratory energy at which
polarization measurements are difficult. Corresponding
simplifications which apply to the measurement of the
6;~ tensor are also discussed.

S;I, and X;~ Tensors

The n, p, g coordinate system which we are using is
very convenient when the two particles have equal mass
and are nonrelativistic because, in the laboratory sys-
tem, y is exactly the direction of motion of the scattered
nucleon (1) and (minus) q is exactly the direction of
motion of the recoil nucleon (2), and these two vectors
are perpendicular. Thus q and y are perpendicular to the
direction of motion of nucleons (1) and (2), respectively,
and hence P~,' and P2„' are the easily observable com-
ponents of polarization. From Eqs. (5), (6), (8), and (9)
we then have as the easily observable components of the
S;k and X;& tensors, corresponding to the four types of
experiments

B1: n, qPt; PZPtv+——(X+Y)Ptq]/Ip, (10a)

T2: &,vP2& P(X Y)P2v ZPqq j/I p, (10b)

T1 ~ XjqPqj XvqPsv+XqqPsqi (10c)

82: X,„Pt,= Xv„Pg„+XqvPtq. (10d)

Since the initial directions of polarization, P~ and P2,
can be chosen to our convenience, we have obtained the
result that all of the scattering-plane components of the
5);& and X;& tensors may be obtained from measure-
ments of the easily observable components of polariza-
tion after scattering. '8

This situation is to be contrasted with that occurring
in the measurement of the 5);& tensor entirely through
polarized beam experiments of the type 81. One then
introduces the 4 Wolfenstein coefficients, A, R, A', and
R', which describe the rotation of the polarization vector
in the scattering plane in terms of initial components in
the directions k= k;, and s= n&&k.s s lf the polarization
before scattering has components P~„and P~, in the
n, p, q system, then, using Eq. (5), the polarization after
scattering may also be written in terms of Wolfenstein's
system:

Ptv'= (X—Y)Pt„ZPtq=I p(A'Pts—+R'Pt, ), (11a)

Ptq'=ZPt, +(X+Y)Piq=Ip(APts+RP, .). (11b)

Now P~„' is the difficult-to-observe component of
polarization along the direction of motion, the measure-
ment of which requires a spin-turning magnetic Geld

18 X)„„and X „refer to triple scattering in one plane and are
even easier to measure. X) has been measured at the same
energies and over approximately the same angular range as R
Pdefined in Eq. (11b)j; there are already some measurements of
X„„at635 Mev. ' However, polarized targets would b'e useful in
measuring X) and X„„when polarized beam experiments result
in a scattered particle having a laboratory energy at wMch
polarization measurements are dificult; the solution of this
problem is discussed below.
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after scattering; also, measurement of A and A' requires
that the spin be turned in the direction k; before scat-
tering. Thus, measurement of R requires no magnetic
fields and is easiest; A (or R') requires one spin-turning
before (or after) scattering; and A' requires spin-turning
both before and after scattering.

At small scattering angles the directions s and k are
essentially q and p, respectively, and some simplification
results. In this region, X+Y may be obtained from the
easy R measurement, but Z must be obtained from A or
R', and the difficult A' measurement is required for
X—V. At larger angles this decoupling no longer exists,
and one must measure both R and A and solve the pair of
linear equations

IoR = (X+Y) cos-', 8+Z sin-', 8,

IoA = —(X+Y) sin-', 8+Z cos-', 8,

(12a)

(12b)

IOR'= (X—Y) sin-', 8—Z cos-,'8,

IoA'= (X—Y) cos-,'8+Z sin-,'8,

(12c)

(12d)

and thus the difficult A' measurement is needed for
X—I" only at small scattering angles.

This situation would be improved considerably if the
above 81 experiments were supplemented with T2 ex-
periments in which, as can be seen from Eq. (10b),
X—Y is obtained from a double (not triple) scattering
measurement with the target spins initially aligned in
the y direction; Z may be obtained similarly if the
target spins are first aligned in the q direction. This
decoupling of X—V and Z, a6orded by the polarized
target, persists at all angles. Knowing Z, X+Y may be
obtained from a 81 measurement of R and Eq. (12a).
The T2 measurements involve only double scattering
and hence presumably much better intensity than
triple scattering experiments. All the scattering plane
components of the X);~ tensor could thus be obtained
from two double scattering experiments, and one triple
scattering experiment of the simple R type.

However, the T2 type experiments, like the 82 type,
suffer, for a wide range of interesting angles and
energies, from the fact that nucleon 2, the recoil nucleon,
has an energy between about 20 and 100 Mev, an energy
range in which the polarization is difhcult to measure.
On the other hand, for energies below about 20 34ev, the
measurement of polarization becomes relatively easy
again (by means of a helium analyzer), and these very
small recoil energies would be involved in the determi-
nation of X—Y for small angles (Coulomb interference
region).

An analogous situation prevails with the X;I, tensor.
Reliance entirely upon experiments of the type 82
necessitates R, A, R', and A' measurements on the recoil
particle, whereas, as can be seen from Eq. (10c), availa-

to obtain X+Y and Z. (8 is the c.rn. scattering angle. )
However, knowing Z, X—I' may be obtained from
either of the equations

bility of a polarized target would permit X~,(=—X,„)
and X« to be obtained from R measurements on the
easily observable component of the polarization of the
scattered particle. For the more elusive X» (at small
scattering angles) there will, at least, be a choice be-
tween an A measurement on the recoil particle in a 82
experiment and an R' measurement on the scattered
particle in a T1 experiment, but only one spin-turning
magnetic field will be required. If a sufficient number of
the other observables are known accurately enough, it
may be possible to get along without a measurement
of Xyp.

At the 1960 Rochester Conference it was reported
that a partially polarized hydrogen target has been
achieved at Saclay. Although no experience has as yet
been obtained in applying it to the above measurements,
an examination of the present experimental results re-
veals a strong need for eGorts in this direction: Refer-
ence 9 contains a review of the data through July, 1959,
at which time R had been measured over a broad range
of angles (&~90') at several energies (140, 210, and 315
Mev) whereas A had only been measured at 316 ~vlev

at the 3 c.m. angles 25', 50', and 75', and A' and R' had
not been measured at all. Thus, although we have some
information on X+Y and Z, there is no information
concerning X—V. Also, although there are now some
measurements' of X)„„at 635 Mev between 90' and
126', which is equal to X„between 90' and 54', there
is no information at all concerning the scattering-plane
components of the X;k tensor. There is no evidence that
this situation has improved substantially since then.

e;~ Tensor

The use of polarized targets would also permit the
replacement of the difficult simultaneous measurements
of the final nucleon polarizations, now needed for the
determination of the 6;~ tensor, with simpler measure-
ments of the cross section for the scattering of a
polarized beam by a polarized target, in accordance with

Eq. (3). Because of the difhculties in measuring the
polarization of the lower laboratory energy recoil par-
ticle, the presently used technique is easiest when

8=m/2, and, in fact, measurements have only been com-

pleted of C„and t,„at this one angle. Since the above
problems do not arise in a measurement of the cross
section, polarized targets would be most useful in ex-
tending our knowledge of the 8;I, tensor.

Miscellaneous Experimental Considerations

In applying the above results to the analysis of the
p-p and n psystems, -care must be taken to properly
include the effects of the indistinguishability of the two
protons and the possible consequences of charge inde-
pendence. Thus, once the 5 coefficients in M~ are known
for 0&~8&~ n./2, their behavior for 8)vr/2 is determined

by the Pauli principle. These symmetry considerations
have already received an extensive treatment in the
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literature' ' '~ ' and thus we shall only mention several
points which seem especially relevant here:

A. In the case of 2 indistinguishable protons one de-
fines the scattered particle to be that measured in the
(c.m. ) angular interval 0 &~ 0 &~ a-/2 and the recoil particle
to be that in a./2&~0&~ a.. This has the consequence that
measurement of the components of the X;J, tensor re-
duces to extending the measurement of the components
of the X);q tensor into the angular interval 0)vr/2. It
should be noted, however, that whereas $„„(a.—0)
=X„„(0),the transformation of the scattering plane
components is complicated by the fact that, in the non-
relativistic approximation, the direction parallel to the
scattered particle is perpendicular to the recoil one, and
thus X),~(~—0) =X„(0), 5)„,(z-—0) =X„„(0), and
n„,(a.—0) =X,„(0).

B. Another consequence of this definition of the re-
coil particle is that it always has less energy in the
laboratory system, and in particular, rn.ay happen to be
in that medium-energy range between about 20 Mev
and 100 Mev in which polarization measurements are
difficult. "This difficulty may be avoided, for example,
in polarized beam experiments of type 82 by utilizing
their equivalence with polarized target experiments of
type Ti. ; thus, measurements may be made on the
scattered nucleon, which has more laboratory energy
than the recoil nucleon for the same c.m. energy.

In rr-P scattering the interval of measurement is
doubled to 0~&0&~ x, and thus at, appropriate scattering
angles each scattered particle may have energies such
that its polarization will be difficult to measure. This
situation may likewise be ameliorated if it is possible to
supplement polarized beam experiments with the equiv-
alent polarized target experiments, in which the labora-
tory energy of the nucleon whose polarization is being
measured may fall in a more convenient range. " Of
course, replacing a polarized beam experiment with the
equivalent polarized target experiment also means that
triple scattering experiments can be replaced with
double scattering ones, since an extra scattering is
needed to obtain the polarized beam.

'9 B. M. Golovin, V. P. Djelepov, V. S. Nadezhdin, and V. I.
Satarov, J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 433 (1959)
/translation: Soviet Phys. —JETP 9(36), 302 (1959)].

"We note that, whereas the experimental situation is difficult
in this energy range, there are signs of improvement. J. N.
Palmieri, A. M. Cormack, N. F. Ramsey, and R. Wilson, Ann.
Phys. 5, 299 (1958), have described polarization measurements at
energies as low as 46 Mev."It has been shown" that by using the concept of the charge
independence of nuclear forces, and by performing simultaneous
analysis of the p-p and n-p scattering data, one can reduce the
number of experiments necessary to reconstruct M. This follows
from the fact that 2 experiments measuring the same quantity for
the p-p and n-p systems provide 3 independent combinations of
scattering matrix coefBcients: two corresponding to nucleon
interactions in the states T=O and 1, and one corresponding to
interference between these states. Although this discovery will
undoubtedly be very useful when more data become available on
the n-p system, it is more likely to be useful later in removing the
ambiguities from Mo through knowledge of M~, rather than in
solving the converse problem with which we are presently faced.

5. CONCLUSIONS

1. A unique reconstruction of the nucleon-nucleon
scattering matrix is possible, based on a knowledge of a
sufhcient number of the quantities: Io, I', and the e;J„
S;k, and X;J, tensors, at one energy and angle. Our
method utilizes only the amplitudes defined by Kolfen-
stein and Ashkin" and is more direct and computa-
tionally simpler than either the methods using unitarity
and measurements at all angles or the phase-shift
analyses; thus, it would provide an independent means
of arriving at the correct set of phase-shift solutions.
The method should be particularly useful at high ener-
gies where inelastic processes (pion production) make
phase-shift analysis dificult.

2. Our method is based on a knowledge of the polari-
zation transfer tensor X;~, which has a form comple-
mentary to the familiar correlation tensor 6;&, but may
be obtained from triple scattering experiments on the
recoil particle similar to those already used to determine
the familiar depolarization tensor X),1,.

3. The utilization of polarized targets would simplify
the determination of both the S,& and X;& tensors, by
permitting the replacement of the di%cult A' and R'
(triple scattering with spin-turning magnetic fields)
measurements, required to detect the component of
polarization along the direction of motion of the scat-
tered particles when polarized beams are used, with
double scattering measurements.

4. Polarized targets would also help to extend meas-
urements of the S,J, and X;J, tensors over a broader
angular range: When the laboratory energy of one of the
scattered particles falls into a range in which polariza-
tion measurements are difficult, it would be possible to
utilize the equivalence of polarized beam and polarized
target experiments to transfer measurements to the
other scattered particle, whose laboratory energy can be
quite different for the same c.m. energy.

5. Polarized targets would also permit the replace-
ment of the difficult simultaneous measurements of the
final nucleon polarizations, now needed for the determi-
nation of the 6;I, tensor, with simpler measurements of
the cross section for the scattering of a polarized beam
by a polarized target.
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APPENDIX. SOLUTION OF THE EQUATIONS
OF TABLE I

If a number of experimental quantities in Table I are
measured zvith high accuracy, the coefficients 3 to Ii may
be determined by a straightforward procedure. For
simplicity, we shall assume that C is real —which, in
general, it is not; but as is well known, all coefficients
may be multiplied by a factor t," with arbitrary com-
plex phase n, without changing the observable quanti-
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ties in Table I. Further, we shall assume that al/ equa-
tions in Table I have been divided by 4IO so that we are
really talking about 2AIO ', etc., but we shall still
denote these quantities by A, 8, etc. Further, A „and A;
denote, respectively, the real and imaginary parts of A.
The equations of Table I will be referred to by their
numbers.

With these notations, the erst two equations of
Table I are:

4= I~I +[BI+2[el+ [El+IF
I

(A 1)

4&-= I~ I'+ [BI'+2[el'—IEI'—I"I'

and so on for the others. Subtracting these 0, we have

IEI'+ IF I'=2(1—&-) (A 3)

Similarly, subtracting (I.4) from (I.3) gives

from (A.11) depends not only on the accuracy of the
experiments but also on the question whether II.

I
is

nea~ly eq~~l t»ts upper limit
I EI IF I

or not.
Using C from (A.11), E; and F; are then determined.

Also, 1!„,F„are, except for sign, using (A.S) to (A.8).
But also the relative sign of these two quantities is
determined, from (A.9). Indeed (A.9) gives the product
E„F„by direct substitution. It is, however, useful to
substitute (A.11) back into (A.7) and (A.S); then after
some algebra it turns out that

Sign of E„F„=sign of I L(M
I
E

I

—X
I
F I)'

—MX(IEI I
F

I
—L)']. (A.13)

The signs of E„and 8„individually cannot be determined
with the information thus far used.

Next we determine A and B. Adding (I.1) and (I.2)
gives

IF I' —
I
Ll'=2(&..—&„), (A 4) I~ I~+ IB[2=2(1yn„„—c2). (A.14)

so that [E[ and
f Fl are given explicitly by

IE I'=1—n..—x&„„yn„,
IF I'=1—&-+&n.—&-.

(A.5)

(A.6)

Adding (I.3) and (I.4),

I~ I' —IBI'=2(&-+&-). (A.15)

Since C is known from (A.11), this yields I
A

I
and

I
B

I
.

Further, adding (I.10) and (I.11)
Assuming for the moment that C is known, (I.7) and

(I.S) give
ReAB*=6„„+X„„—C'. (A.16)

E'= (Xne —~u~)/C= &/C-
F;= (X~,+8„)/C=M/C. —

(A.j)
(A.S)

We could proceed to solve for A and 8; however, it is
in this case more convenient to use

ReEF*=E„F,+E;F,=—X —8 —=I-. (A.9)

Note the abbreviations M and X introduced in (A.7)
and (A.S).

Now subtracting (I.9) from (I.10) gives

U=k(~+B) V=2(~ —B)

Prom (A.14) and (A.16) we obtain immediately

2[ Ul =1+~„.+~„„+x„,—c',

2[ V['=1+n..—e..—x...

(A.17)

(A.18)

(A.19)
Clearly we must have

ILI = [ReEF*I &~ IEI IF I (A.10)
and from (A.15)

Re UV~ = U„V„+U;V, =-,' (S~„+X)„). (A.20)
which, with (A.S) and (A.6), gives an inequality which

the experimental quantities have to ful611. Inserting in
(A.9) E; and F; from (A.7) and (A.S), and E„and F,
from (A.S) to (A.S) yields an equation for C which,
after some algebra, reduces to

Further, (I.S) and (I.6) now give, respectively,

U, =F/C,

V;= S„,/C.

(A.21)

(A.22)

I
E[2M2+

I
FI'X' 2LM1V-

C2 (A.11)

(fE fM —IF f~)2 2M~
Q2 (A.12)

[EIIF[+L[Ef2 IF [2—I2

which puts the positive definite nature of C2 directly in
evidence. Whether C can be determined accurately

Due to the inequality (A.10), both numerator and
denominator of (A.11) are positive so that C' is positive
as it must be. For some purposes it may be useful to
rewrite (A.11) in the form

Except for sign, U; and V„can be obtained by combining
(A.18) with (A.21), and (A.19) with (A.22). Then
(A.20) provides in addition a linear relation between U;
and V„.If the experimental data are accurate, there will

in general only be one solution for the signs of U; and
V„. In addition, a check on all quantities will be
provided.

Thus, with accurate data, U and V, hence A and 8,
will be completely determined, while in the determi-
nation of E, F above one sign remained ambiguous. The
difference is due to the fact that (A.21) and (A.22) give
the real part of U and the imaginary part of V, while

(A.7) and (A.S) give the imaginary parts of both
quantities, 8 and Ji. The remaining ambiguity in sign
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of E„,F„can now be resolved by using uey of the last
four equations (I.11) to (I.14). In addition, valuable
checks of the correctness of the obtained solution can be
deduced from the last 4 quantities.

Our primary solution relies on the 6rst ten quantities
of Table I which on the whole include the easier types of

experiments. As discussed in Sec. 4, experiment 14 tends
to be somewhat easier than 11 to 13.

We have not investigated the problem of solving the
set of equations (I.1) to (I.14) when the experiments are
rather inaccurate, as in practice they tend to be. In this
case, the use of all 14 experiments is probably desirable.
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The single virtual boson exchange interaction model is applied to high-energy inelastic nucleon-nucleon
collisions over an energy range of several orders of magnitude. The phase space is discussed simply in
terms of three "natural" phase-space variables, and a simple, exact formula is given for the "upper" bound-
ary of these variables. The probability for a particular Gnal-state con6guration is then discussed in terms
of the available phase space, the magnitude of the phase-space factor, and the magnitude of the average
total "cross-section" factors that occur in this model. Qua}itative features of experimental data for incident
nucleon laboratory energies of 10, 10, and 10' Bev can be understood on the basis of this model.

'

~' XPERIMENTAL evidence that many high-energy
~ inelastic nucleon-nucleon collisions occur with

large impact parameters' ' suggests the importance of
single x-meson exchange graphs. '' A recently given
field-theoretical description of general binary collisions
dominated by single-boson exchange graphs' is applied
in this note to high-energy nucleon-nucleon collisions. 7 '
This model leads naturally to the two "independent"
groups of final-state particles that are observed. It is
shown that if the plausible assumption is made that
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FIG. 1. A general inelastic collision in which nucleons E and E',
with four-momenta p; and p, interact by the exchange of a
single m-meson m, with four-momentum 6;, leading to two groups
of 6nal state particles, C, with total four-momentum I', and C',
with total four-momentum E'. Each group contains at least one
m meson.

the "scattering" cross sections of the exchanged
"almost real" pion with the incident nucleons are
close to the real cross sections at high energies, then
this model leads to qualitative understanding of certain
features observed in inelastic nucleon-nucleon scattering
all the way from incident nucleon laboratory energy,
E;I, 10 Bev, up to and including ultrarelativistic
energies.

The pertinent graph is shown in Fig. 1. Nucleons Ã
and X', with four-momenta p; and p,

' exchange a sr

meson with four-momentum 6;, leading to two groups
of particles, C and C', with total four-momenta P and
P'. The nucleon rest mass is M, and the metric is
chosen so that pp= p,"=—M'. The "rest masses" W
and 8"' of C and C' are defined by P'= —8" and
I'"=—W". The rest (barycentric) system of the group
of particles C is denoted by (W) and that of the group
C' by (W'). For the case considered (at least one pion
in each group C, C'), the minimum value of W, and of
W', is rN, +M. The over-all barycentric system is


