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Gamma-Ray Correlation Function in the Adiabatic Approximation*f
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The gamma-ray correlation function following inelastic excitation of an even-A nucleus by a spinless

projectile has been analyzed employing only the adiabatic approximation and theorems relevant to elastic
scattering. The direction making equal angles with the incident and scattered directions in the scattering
plane, the adiabatic recoil direction, is a convenient axis for quantization. In particular, the intermediate
(excited) nucleus is populated with only even-M states, from which follows that the gamma distribution
is unchanged by a rotation of z about this axis. For a 0+—2+—0+ excitation de-excitation, the gamma
distribution in the scattering plane reduces to the form sin L2 (e~—eb) g, where eb is the adiabatic recoil axis.
Comparison is made to the similar predictions of plane-wave Born approximation theories (in which the
recoil direction for 6nite energy transfer is the symmetry axis) and to distorted-wave Born approximation
calculations (for which, in general, there is no simple expression for the symmetry axis). Analysis of experi-
ments verify the general features of the model, but further data obtained from forward scattering would

be desirable to distinguish between the predictions of the adiabatic and Born approximations. Brief com-

ments are made regarding gamma-ray polarization.

l. INTRODUCTION

' 'N the process in which a medium-energy nuclear
~ ~ particle is inelastically scattered and excites a low-

lying nuclear state, the angular correlation of the
succeeding gamma ray with the inelastically scattered
particle frequently has been found to lie close to the
predictions of rather simple direct-interaction theories,
such as plane-wave Born approximation (with no finite
range exchange term in the perturbing potential)' or
inelastic diffraction scattering models. ' ' In particular,
both models predict that the angular correlation pattern
in the scattering plane for a 0+—2+—0+ excitation
de-excitation is proportional to sin 20~, where 0~ is
measured from an appropriate recoil axis.

It is paradoxical that such an angular correlation
pattern has been observed even in cases where the
angular distribution of the inelastically scattered parti-
cles deviate markedly from the results of the simple
direct theories. It is the primary purpose of this note to
point out that gamma-ray correlation patterns very
similar or equivalent to the above predictions follow

from the single, less sweeping assumption that the
inelastic scattering amplitude may be calculated in the
adiabatic approximation for the relevant nuclear
coordinates.

Somewhat analogous conclusions recently have been
obtained independently by Satchler4 using the adiabatic
approximation plus the further assumptions that the
scattered amplitude may be calculated in the distorted-
wave Born approximation and that the perturbing
potential be local. Correlation functions have been
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computed by Banerjee and Levinson' in the distorted-
wave Born approximation (without use of the adiabatic
approximation); the predictions of such arduous calcu-
lations for the symmetry angle of the correlation
functions in the scattering plane are close to those
resulting from the use of the adiabatic approximation
in their best cases, but for some parameters, significant
deviations from the adiabatic approximation (and
experiment) are obtained.

The theory is developed in the next section while

application to experiment will be made in the third
section. Particular attention will be given in the third
section to the differences between the predictions which
follow from the plane-wave Born approximation and
our results based on the adiabatic approximation.

2. THEORY

We consider the scattering of a spinless projectile
with coordinate r from a nucleus whose relevant
coordinates are represented by (the set) (x and take for
the Hamiltonian of this system

IX= Ib.+V (r,o()+II(ob),

where E is the kinetic energy of the projectile, V(r, (r)
is the (complex) interaction potential, and II(ob) is the
Hamiltonian for the nuclear coordinates. The formal
solution for the scattered amplitude' from initial state,
a, to 6nal state, b, is

1
(biris)=(b r+v v a); (b)

E IC V II(o()+ie———
' M. K. Banerjee and C. A. Levinson, Ann. Phys. 2, 499 (1957).' The scattered amplitude we employ, (fb

~
T((b), is more properly

termed the "T matrix" and is related to the differential cross
section by do b /dQ = (2br/f'bv, ) [ib ~

r
~
u)

~

'pb, where v, and pb are the
incident flux and energy density of final states, respectively.
Thus, for the elastic scattering problem with fixed a the more
customary scattered amplitude, f(kb, k,o.) is related to our
scattered amplitude by f(kb, k„n)= —(p/2+4')t(kb, k„o.), where
p, is the reduced mass of the projectile target system.
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here ~a) and ~b) are the eigenfunctions for the free
Hamiltonian, Ho=K+H(n), so tllat

~

a) = exp (sk. r)C.(n)
—=

~

k.) ~
C.(n) ).

The adiabatic approximation neglects nuclear motion
during the period of collision Lwhich is equivalent to
setting H(n)=O in the denominator of Eq. (2)$ and
disregards the difference between the initial and final
kinetic energies of the particle, i.e., sets k =k~ ——k.
Ke then may write

To, (adiab)=(C&(n) ~t(ko, k„n) ~4', (n)), (3)

where t(ko, k„n) is the exact scattered amplitude' for
the elastic scattering problem with static n,

Vk.). (4)t(kk ,), .,(k=s V+V
E K V+ie— —

In principle, the coordinates n could refer to any
nuclear coordinates; the usual criteria for the validity
of the adiabatic approximation' ' suggest, however,
that the approximation is most relevant when these
coordinates have a collective character.

The importance of the adiabatic approximation is
that theorems and results pertaining to purely elastic
scattering may now be employed in discussions of
inelastic scattering. (Indeed, the adiabatic approxima-
tion enables one to understand the many qualitative
similarities between elastic and inelastic scattering. ) Of
particular importance is the reversibility (reciprocity)
theorem, as stated by Glauber, '

t(ko, k.,n) =t(-k., -ko, n); (3)

i.e., the elastic scattered amplitude from the incident
direction k, into the final direction kb is the same as
the scattered amplitude from —ko into —k, . The
reversibility theorem (5) is satisfied by a large class of
physical potentials, both real and complex. The
property of the potential required for spinless projec-
tiles is

4"I"Ad = (I"4")A~

which is not the usual Hermiticity condition, since

complex conjugation is not employed.
It is convenient to expand the scattered amplitude

in eigenfunctions of the angular momentum, ), of the
relevant nuclear coordinates,

t(ko, k.,n) = g C,k, (ko,k')Ak. (n)

where other quantum numbers are specified by y. Now,
the scattered amplitude, as can be seen from (4), is

7 D. M. Chase, Phys. Rev. 104, 838 (1956).
S. I. Drozdov, Soviet Phys. —JETP 1, 591, 588 (1955).
R. J. Glauber, in Lectures iN Theoretical Physics (Interscience

Publishers, Inc. , New York, 1959), Vol. 1.

ji
k -kb

Fxo. 1. Schematic representation of the symmetry properties
of the scattering process. Sketch (a) represents the original
scattering process. The scattered amplitude is unchanged when
the entire physical system is rotated by ~ about the recoil direc-
tion, as is shown in sketch (b). By the reversibility theorem, this
latter amplitude is equal to that corresponding to sketch (c).
Thus, the scattered amplitudes of (a) and (c) are equal, which is
the content of Eq. (8).

invariant with respect to either a rotation of the
coordinate system or a rigid rotation of k, ko, and the
potential. Refer to Fig. 1 for the following. A rotation
by s. about the k,—ko direction (s axis) leads to

t(kk, k.,n) =t(-k., —kk, n'), (7)

where o.' are the rotated nuclear coordinates. But using
the reversibility theorem, Eq. (5), in the form

t(—k.,
—k„n') =t(k„k.,n'),

we obtain

2 ~v&. (ko»-)4'v&. (n) = E C'~)„(ko,k.)4,k, (n'). (8)
yhtM ghat

S»ce lt, k, (n)=(—)"p»,„(n'), we conclude that only
even-tk are contained in the sum (6).

For the special case, C, (n) =
~

I=0, M=O) (which is
appropriate to excitation of even-even nuclei), the
above result requires that the matrix element of the
scattered amplitude,

Trsr; oo(adiab) = (IM
~
t (kk, k„n)

~
()(})= Tr~

vanish if M is odd.
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These conclusions may be illustrated by consideration
of the simple example of an axially symmetric scattering
potential which is a function of the quantity E=RsL1
+pi1'Is(8)], where 8 is the polar angle referred to the
body axis, which is oriented in the direction of the
unit vector d. The scattered amplitude for a fixed
orientation of the nucleus will be a function of the
various parameters of the potential, including Ro and

Pi, and the scalar quantities E', a', K d, x d, where
K=k,—ks and x=k,+ks. (The combination L(K x)
d]s may be expressed as a combination of the pre-

ceding. ) Since x changes sign (while K does not) under
the interchange, k, —+ kq, ks ~ —k„ the reversibility
theorem, Eq. (5), requires that no terms odd in x d
occur in the scattered amplitude. Comparison to the
explicit form of the spherical harmonics shows that this
is equivalent to the statement that only even-M states
of an even-even nucleus will be excited.

Let us now apply these results to the angular corre-
lation of the gamma ray from the excited nucleus; we
restrict ourselves to the excitation of an even-even
nucleus and subsequent gamma-ray decay to the ground
state. For a given scattering angle, 0, the probability
for finding the gamma-ray radiation at angle 8v, @~
with respect to adiabatic recoil axis, K (&v=0 and 7r

correspond to a gamma ray in the scattering plane),
is proportional to the correlation function

W(8,8„&,) =
M'M"

Ekere, the nuclear statistical matrix, A~ ~"z, is defined
as

A3frllf « = Tz3EI TzM"

The corresponding statistical matrix for unpolarized
gamma rays, a~ ~ z, is well known:

IIM M-'=(21+1)(4 )'(—)
'+'

2z 1
X Z F„-- (8„~,)

e=o, even (2m+ 1)*

(S, r, m', ~"~., ~"--~')(1,7, -1, 11,0) (12)

Since states with odd M' are not populated and

(8v,p„)= ( )V, , (8v, $—v+~), we may verify ex-

plicitly the anticipated result that the gamma-ray
distribution is unchanged by a rotation of ~ about the
adiabatic recoil direction and in the scattering plane is
symmetric about that axis. These results have been
obtained also by Satchler4 for the special case when the
adiabatic scattered amplitude is calculated in the
distorted-wave Born approximation.

For the interesting case where a 2+ level is excited,
we now show in the adiabatic approximation that the
correlation function in the scattering plane assumes the
simple form

2 IM ( ) 7 I ivy— (14)

which holds quite generally for spinless projectiles
exciting a "natural parity" level of an even-even
nucleus. "This lemma may be established as follows:
From the symmetry of the scattering process and the
absence of any projectile spin, the asymptotic wave
function describing inelastic scattering,

PM 7'IMII ~» (15)

is unchanged (except for a possible over-all change in
phase) when the coordinate system is reflected through
the scattering plane. Such a reQection is equivalent to
an inversion through the origin and a rotation of z
about the axis perpendicular to the scattering plane,
so that the transformed wave function is

(—)'PM &IMPM IfM M (~)i&~')
=&M &IM( ) ll ~), —(«)

since dM Mi(ir) =8M, M( —)™.Comparison of the
coefficients of the nuclear wave functions in Eq. (15)
and (16) yields the stated symmetry property. This
lemma also may be proved from inspection of partial
wave decomposition of I'z~.

The above lemma alone permits us to use, for spinless
projectiles, a form of the 0—2 —0 correlation function
given 6rst by Banerjee and Levinson, '

W(8, 8„y„=0)=a+fi sin'L2(8, —8s)], (17)

where a, b, and 00, which are functions of 0, are defined
in Eqs. (4.5), (4.6), and (4.7) of reference 2. With the
aid of this result we may derive Eq. (13) in exactly
the same manner as is indicated in the steps preceding
Eq. (4.8) of reference 2. However, we can see directly
how the general form Eq. (17) reduces to the special
form Eq. (13) when only even-M intermediate states
exist in a 0—2—0 excitation-de-excitation. Indeed, the
existence of an even-M state assures symmetry about
the s axis, since then all components of the photon
function have the same symmetry with respect to
rotation by m about s. The absence of an isotropic
component —or radiation along the s axis—can be seen
as follows: The (1.=2, M=&2) photons clearly have a
node at the poles, since the angular dependence of the
vector potential only contains components I'z„~ and
VI„M~I. The (2,0) photon has no intensity along the
s axis since it has no component of angular momentum
in that direction, and a photon must have &t. units
in its direction of propagation.

It is worthwhile to consider the correlation function

As noted earlier, this is also the prediction of direct
interaction theories based either on the plane-wave

. Born approximation' or the inelastic diGraction model. ' '
To obtain the correlation function given by Kq.

(13), crucial use is made of the additional symmetry
property

W(8, 87, &v=0) =b sin'(28v). (13) 'e A. Bohr, Nuclear Phys. 10, 486 (1959).
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for circularly polarized gamma rays decaying to the
ground state of an even-even nucleus. In this case the
gamma-ray statistical matrix is given by Eq. (12) with
the change that the v sum runs over only odd values of
v from 1 to 2I—1. The necessary condition for the
circular polarization correlation function to be identi-
cally zero is that the nuclear statistical matrix, Eq.
(11), be multiplied by (—1)~" ~' under the exchange
M'~ —M", a result which follows from the anti-
symmetry property of the gamma-ray statistical matrix
with respect to this exchange. This condition is trivially
satisfied in the plane-wave Born approximation since
only the 3I=O state (with respect to the recoil direc-
tion) is populated. In the adiabatic approximation,
this condition on the nuclear statistical matrix is equiva-
alent to the requirement that 2 «~ *2«~ ——2"«~ T«~"*
where use is made of Eq. (14) and the result that Trsr
vanishes for odd M. The preceding requirement is not
satisfied in general although it is obeyed for those
adiabatic approximation models in which the phase of
the scattered amplitude is independent of M, in
particular for the Fraunhofer' or the sharp-cuto6'
models. For a 0—2—0 excitation de-excitation, the
circularly polarized gamma-ray correlation function in
the adiabatic approximation is proportional to

(Tsp*Tsp TppT—ps*)/I'ps(8~A ,~) I'p, -—s(8~A v)j
(Tsp T22 TspT22*) (*ys/r'), (Ig)

where x, y, and s are the coordinates of the gamma-ray
counter in a coordinate system where the adiabatic
recoil axis is the s axis and the x axis lies in the scattering
plane. Satchler'" has given a detailed discussion of
circularly polarized gamma-ray correlation functions in
the distorted-wave Born approximation.

3. APPLICATION TO EXPERIMENT

There is one rather important distinction to be made
between the predictions of this paper and those resulting
from use of the plane-wave Born approximation. For
a theory based on the adiabatic approximation, the
symmetry axis is the direction of momentum transfer
that would obtain were the excitation energy equal to
zero. Hence, the symmetry axis makes an angle of
(m/2 —8/2) to the incident beam where 8 is the scattering
angle in the center-of-mass system (both the angle of
the symmetry axis and the scattering angle are taken
to be positive although they lie on opposite sides of the
incident beam direction).

On the other hand, for plane-wave Born approxi-
mation theories, the symmetry axis is predicted to be
the actual recoil direction for finite energy transfer
K=k —k~. The actual recoil direction will frequently
lie close to the adiabatic recoil direction but will differ
significantly from it for scattering in forward directions
when the excitation energy is non-negligible compared
with the initial projectile energy. Indeed, as the

"G.R. Satchler, Nuclear Phys. 16, 674 (1960).

TAaT.K I. Calculated and observed angles between symmetry
axis and direction of incident beam.

C'2, 4.43 Mev

Scattering
angle
in the Actual

laboratory recoil
system angle

8 lab 8~
(deg) (deg)

28
59

Adia-
batic
recoil
angle

8~(ad)
(deg)

71
52

Observed
symmetry

angle
8o

(«g)
69
57

43 Mev, Shook&

Mg'4, 1.37 Mev

Mg&, 1.37 Mev

35 68 69 73

30 70
42 5 65
70 52
95 40

120 28

75
68
54
41
29

73
66
60
44
26

43 Mev, Shook&

16.6-Mev p,
Yoshikib

C'o, 4.43 Mev 1S
30
45
60
80

110

69
67
61
55
45
31

82
76
65
58
47
32

73 %5
68.2 &2
62.5 ~5
55.3 %2
46.4 &2
34 ~5

39.3-Mev p,
Adams, Hintz&

' See reference 12.
b See reference 16.' See reference 18.

TABLE II, Calculated and observed ang1es between symmetry
axis and direction of incident beam.

C" 4.43 Mev

Ne'o, 1.63 Mev

S32, 2.24 Mev

Mg24, 1.37 Mev

Mg24, 1.37 Mev

Scattering
angle
in the

laboratory
system

8 lab
(deg)

90
120

60
90

120

60
120

68
92.5

121

45
60
90

Actual
recoil
angle

8z
(deg)

24
16

51
39
26

49
38.5
26

59
53
40

Adia-
batic
recoil
angle

8~(ad)
(deg)

40
26

58.5
43
28.5

59
37

55
42
28

66.5
59
44

Observed
symmetry

angle
8o

(deg)

51
33

62
56
50

70
90

49
38.5
26

58
48
42

6.2-Mev p,
Hausman, Dell,
and Bovrshera

6.2-Mev p,
Lackner, Dell,
and Hausmanb

7.01-Mev p,
Seward&

' See reference 21.
b See reference 20.
& See reference 22.

scattering angle diminishes to zero, the adiabatic recoil
angle approaches pr/2 while the actual recoil angle
approaches 0.

A striking feature of most of the observed 0—2—0
correlation functions when the gamma rays are in the
scattering plane has been their correspondence to Eq.
(17), whether the projectiles be spinless alpha particles
or protons. In Table I we compare the angle of the
observed symmetry axis 00, to the actual recoil angle,
8~, and to the adiabatic recoil angle, 8~(ad)= (pr/2—8/2) for various experiments involving medium-
energy projectiles. (All angles are measured with respect
to the incident beam direction. ) The same information
is given in Table II for some experiments involving
protons of rather low energy; while the adiabatic and
the plane-wave assumptions are both clearly unjustified
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FIG. 2. Plot of symmetry angle, 00, versus laboratory scattering angle, 9„,for 16.6-Mev protons exciting the 4.43-Mev level of C' .
The circles represent the experimental points of Sherr and Hornyak. '4 The solid curves correspond to (a) Ha, the prediction of the
plane-wave Born approximation with no 6nite range nucleon-nucleon exchange interaction, (b) Ha(ad), the adiabatic recoil angle,
and (c) the symmetry angle computed by Banerjee and Levinson' 's in the distorted-wave Born approximation using the parameters
which give the best fit to the angular distributions of the inelastically scattered protons.

for low-energy protons, it is interesting to observe that
some correspondence is found between Oo and either Og

or 8~(ad). Further comments on the experiments are
given below for various targets and bombarding
particles.

C" and Mg'4 —43-Mev Alpha Particles

Shook" has observed the angular distribution of
gamma rays following excitation of the lowest 2+
levels of these nuclei as well as the alpha-particle
angular distributions. The correlation patterns are
reasonably consistent with the simple result given in
Kq. (13). This should be no surprise since it has been
noted in previous papers' "that the elastic and inelastic
scattering cross sections of alpha particles at this energy
correspond, particularly at moderately small scattering
angles, to the predictions of the strong absorption dif-
fraction model for inelastic scattering; one of the as-
sumptions of this model was the adiabatic approximation.
Since the uncertainties in the determination of Oo are
comparable to the differences between 8~ and 8rr(ad),
it does not appear possible to say which predicted
symmetry angle is favored in this experiment.

C"—16.6-Mev Protons

A detailed study of the dependence of correlation
pattern on the scattered angle has been provided by
Sherr and Hornyak. " Their measured correlation

'~ G. B. Shook, Phys. Rev. 114, 310 {1959)."J.S. Blair, G. W. Farwell, and D. K. McDaniels, Nuclear
Phys. 17, 641 (1960).

'4R. Sherr and W. F. Hornyak, Bull. Am. Phys. Soc. I, 197
{1956).

functions were of the form given by Eq. (17) for
spinless projectiles. The isotropic contribution, however,
was distinctly different from zero in contrast to the
simple prediction, Eq. (13); the ratio a/b attained a
value as large as 0.5. The results for Oo are not included
in Table I, but rather are indicated in Fig. 2. Also shown
are curves corresponding to (a) 8~, the prediction of
the plane-wave Born approximation when there is no
finite range exchange term in the perturbing potential,
(b) 8'�(ad)= (w/2 —8/2), the a,diabatic recoil angle, and
(c) the symmetry angle computed by Banerjee and
Levinson' "in the distorted-wave Born approximation
using the parameters which give the best fit to the
angular distributions of the inelastically scattered
protons. (By construction there will be no exchange
term in the perturbing potential when it is assumed
that the proton interacts with a collective potential;
however, such an exchange term does arise when the
perturbing potential is taken to be the sum of two-body
interactions between an incident proton and the target
nucleons and the total wave function is appropriately
antisymmetrized. ') It will be observed that the adia-
batic result is here superior to the plane-wave Born
approximation prediction and to the curve computed
in distorted-wave Born approximation. (The adiabatic
result also provides a markedly better 6t than some
other distorted-wave calculations shown in Fig. 16 of
reference 15; in these calculations the correlation
function is rather sensitive to the choice of parameters
in the distorted-wave calculation. )

"C.A. I.evinson and M. K. Banerjee, Ann. Phys. 3, 67 (1958).
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Mg'4 —10.0 Mev Protons

Voshiki" has observed that for the smaller scattering
angles, Oi,b=30', 42.5, and 70', the correlation pattern
is well approximated by the simple form given in Eq.
(13). For larger angles it is necessary to take into
account in the correlation function a term proportional
to sin'(0~ —Hp' ); such a term may be present for the
case of projectiles with nonzero spin' ' " and is indi-
cative of spin-Qip processes. Because of this compli-
cation, we believe that the comparison between adia-
batic recoil angle and the observed symmetry angle is
significant only for the first three angles listed in
Table I.

C"—39.3-Mev Protons

The results of Adams and Hintz" at this higher
energy are similar to those of Sherr and Hornyak in
that the correlation functions are consistent with the
general formula for spinless projectiles while at the
same time they contained a substantial isotropic
component. The observed symmetry angles tend to lie
between 8~ and 8~(ad) and, indeed, are closest to 8~.
Adams and Hintz have shown that the observed
symmetry angle is in good agreement with that dis-
torted-wave Born approximation calculation which
uses parameters which give the best ht to the inelastic
angular distribution of 40-Mev protons. "
C" Ne", S" and Mg"—6.2—'7.01 Mev Protons

The correlation patterns observed by Hausman,
Dell, Bowsher, and Lackner"" and also by Seward"
conform well to the spinless form, Eq. (17). The
isotropic contributions are generally quite large, how-

ever. Further, the correlation patterns computed by
Seward" on the basis of the Hauser-Feshbach" com-
pound nuclear model suggest that the compound
nuclear model may provide a satisfactory explanation
of the correlation patterns where Oo is close to 90' or
45'. (Seward makes the interesting observation that
the Hauser-Feshbach compound nuclear model does not
necessarily imply that the correlation pattern is sym-
metric about 90'; his computed correlation functions,
however, approximate such symmetry. ) Thus, compar-
ison between the direct-interaction predictions and
experiment is most relevant when the predicted sym-
metry angles are distinctly diGerent from 45' and 90'.

' H. Yoshiki, Phys. Rev. 117, 773 (1960).
'7 J. Sawicki, Nuclear Phys. 7 503 (1958).
's H. S. Adams and N. M.'ifHintz, University of Minnesota

Linear Accelerator Annual Progress Report, 1959 (unpublished).
"S, Chen and N. M. Hintz, University of Minnesota Linear

Accelerator Annual Progress Report, March, 1958 (unpublished).
'0 H. A. Lackner, G. F. Dell, and H. J. Hausman, Phys. Rev.

114, 560 (1959).
"H. J. Hausman, G. F. Dell, and H. F. Bowsher, Phys. Rev.

118, 1237 (1960).
), "F.D. Seward, Phys. Rev. 114, 514 (1959).

ss W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).

Not listed in Table II are (i) the data of Hausman,
Dell, and Bowsher" on the gamma correlations follow-
ing proton excitation of the 1.78-Mev level of Si",
which exhibited symmetry about 90', and (ii) the data
of Seward' on excitation of the 1.37-Mev level of A&3g"

by 6.66-Mev protons, which for the two smallest proton
scattering angles also gave a correlation pattern sym-
metric about 90'. The observed symmetry angles given
by Lackner, Dell, and Hausman" for i4lg" are not best
fit values but rather are the actual recoil angles, which
were found to be in good agreement with experiment;
this accounts for the exact equivalence between 0~ and
00 indicated in Table II.

Before summarizing our conclusions, we should
emphasize that most of the experiments have involved
proton scattering and that for such cases the theoretical
results of the preceding section are relevant only to the
extent that the spin of the proton does not affect the
scattering. This is not a generally valid assumption;
it is a familiar fact that the spin-orbit potential plays
a large role in determining elastic scattering amplitudes
so that we anticipate that it will similarly affect the
inelastic scattering. Further, Yoshiki s correlation pat-
terns for large-angle scattering show explicitly the
presence of spin-Rip processes. Thus, when we encounter
discrepancies between the proton experiments and the
simple adiabatic predictions, it is not clear whether we
should attribute these to the proton spin or to a break-
down of the adiabatic assumption.

4. SUMMARY

The adiabatic approximation leads to predictions for
the gamma correlation function which are similar to
those predicted by the Born approximation. The
physical content of the two theories differ in that: (1)
The adiabatic approximation admits arbitrarily strong
interactions; in the Born approximation, the scattered
amplitudes are calculated to only first order in the
interaction. (ii) The Born approximation admits finite
excitation energy, so that initial and final momenta
may be different in magnitude; the adiabatic approxi-
mation assumes equal initial and final momenta. The
distorted-wave Born approximation and the adiabatic
approximation become equivalent as both the excitation
cross section and excitation energy vanish.

The functional form, sin'2/0~ —Hs(8) j, for the gamma
distribution in the scattering plane is common to both
the adiabatic and plane-wave Born approximations, but
the two differ with respect to their prescription for Hp(0).
Although the symmetry angles t 0~(ad;8) a,nd 8~(8),
respectively) are similar over most of the range of 8,
they differ significantly for scattering into near forward
directions. The adiabatic symmetry angle, Hz(ad; 0),
varies linearly from s/2 to 0 as 0 varies from 0 to s..
The recoil angle, Hit(8), varies rapidly near the forward
direction, starting at 0~ (0)=0 and approaching
8~(ad; 0) at angles larger than AF/F, where AF is the
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energy loss. At exactly forward, the two directions
8~(ad;0)=-', sr and 0~(0)=0, are equivalent, as far as
concerns the correlation pattern.

In what alpha-particle work there is available, the
sin'$2(8~ —8o)$ form appears to be reasonably well

satisfied, but it is not possible to distinguish between
the adiabatic and plane-wave Born approximation
predictions. More proton than alpha-particle work is
available. In many cases the gamma distribution can
be 6tted with the form for spinless projectiles, and a
comparison of the models is significant. The work of
Sherr and Hornyak (16.6-1VIev protons on C") clearly
fits the adiabatic prediction for the symmetry angle

better than the plane-wave or distorted-wave Born
predictions. However, the symmetry angles observed
by Adams and Hintz (39.3-Vtlev protons on C") are
intermediate between the adiabatic and the plane-wave
Born predictions, somewhat favoring the latter, and
are in good agreement with distorted-wave Born
approximation computations. Experiments by Yoshiki
(16.6-Mev protons on 3'Igs4) somewhat favor the adia-
batic approximation.

More experiments conducted at forward scattering
(angles of the order of AE/8) would be highly desirable
in distinguishing between the models; no such alpha-
particle data are yet available.
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DeCay Of Hfts'"t *

W. F. EDWARDS' AND F. BOEHM

Cabfornea Insiitgte of Technology, Pasadena, California

(Received October 26, 1960)

The energies and relative intensities of the gamma radiation and the relative intensities of the conversion
electrons following the decay of 5.5-hr HP" have been measured using the curved-crystal gamma-ray
spectrometer (recently calibrated for accurate intensity measurements), the ring-focused beta-ray spec-
trometer, and the semicircular spectrometer at the California Institute of Technology. The measured transi-
tion energies are: 57.54~0.01, 93.33~0.02, 215.25%0.13, 332.5&0.3, and 443.8~0.6 kev. The energy
levels deduced from these values are not entirely consistent with the two-parameter rotational formula.
Conversion coefficients derived from the measurements were absolutely normalized using a method in-

volving information available from the decay scheme. All of the 57.54-kev transition conversion coefficients
are anomalously high if compared with the theoretical E1 coefficients. No admixture of 3f2+E3 can, account
for the anomaly. The E conversion coefficients of the Z2 transitions are all about 10% low with exception
of the 93.33-kev transition. The I. coefficients have a varying deviation, the maximum being 12%. The E
conversion coefficient of the 501.3-kev transition has the value 0.037~0.012 which is consistent with the
theoretical E3 value of 0.040.

INTRODUCTION

HE energy levels of the Hf'" nucleus have for
some time served as a classical example of a

rotational excitation spectrum. ' Above the 0+ ground
state four excited states with spin 2+, 4+, 6+, and

8+ are known. The energies of these levels can be com-

puted using a two-parameter formula of the form

Er = (A'/2J)I(I+1)+M'(I+1)' (1)

where J is the moment of inertia parallel to the sym-

metry axis, I the nuclear spin, and 8 is a constant tak-
ing into account the rotation-vibration interaction and
other second order effects. ' The Hf'" y-ray energies
have now been measured with enough precision to pro-

*This work was submitted by W. F. Edwards as a portion
of a Ph.D. thesis, California Institute of Technology, 1960
(unpublished).

t Work supported by the U. S. Atomic Energy Commission.
f. Present Address: Utah State University, Logan, Utah.
' See, for example, S. A. Moszkowski in EncycloPedia of Physics

(Springer-Verlag, Berlin, 1957), Vol. 39, p. 485ff; and A. K.
Kexman, in XNclear Reactions (North-Holland Publishing Com-
pany, Amsterdam), p. 429.

vide a useful check of the validity of the two-parameter
formula in this overdetermined set of data. It seemed
to us worth while to undertake this precision measure-
ment using the crystal diffraction spectrometer. The
result to be described shows definite deviation from
Eq. (1) for the 6+ and 8+ levels.

In addition, a precise evaluation of y-ray and con-
version-electron intensities seemed feasible and worth
while in the Hf'" decay because of its simple cascade
decay scheme. This evaluation results in precise abso-
lute internal conversion coeKcients for all E2 transi-
tions of the rotational cascade as well as for the Z1
and E3 transition from the 9— intrinsic state (see
Fig. 1)."Anomalies of the conversion coefficients of the
57.5-kev transition have been reported and discussed
by Scharff-Goldhaber et al.' and Gvozdev and Rusinov. '

» 3lote added in proof. From a recent experiment by M. Deutsch
and R. W. Bauer, Proc. Conf. Nuclear Structure, Kingston, 1960,
p. 592, a spin assignment of 8—follows for the 1142-kev state.

~ G. Scharff-Goldhaber, M. McKeown, and J. W. Mihelich,
Bull. Am. Phys. Soc. 1, 206 (1956}.

3 V. S. Gvozdev and L. I. Rusinov, Doklady Akad. Nauk
S.S.S.R. 112, 401 (1957); Soviet Phys. —Doklady 2, 35 (1957);


