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The Gnal-state interaction of the two neutrons from the reaction ~ +d ~ 2n+y has a pronounced and
distinctive e6'ect on the momentum spectrum of the outgoing particles. In particular, the neutron spectrum
is sharply peaked in the neighborhood of 2 Mev, with a shape that is quite sensitive to the strength of the ez
interaction. In the region of this peak, the relative neutron-neutron momentum is so small that the ng
interaction is completely characterized by its scattering length. Hence it is proposed that a measurement of
the shape of the neutron spectrum from this reaction may provide a convenient means of measuring the
neutron-neutron scattering length. Neutron spectra are calculated in an impulse approximation, for several
assumed values of the scattering length. It appears from their shapes that, in this way, present neutron-
detection techniques should be capable of determining the scattering length to within 25%

to suggest what appears to be a feasible and accurate
method of measuring it.

I. INTRODUCTION

ECAUSE the force between two nucleons is nearly
strong enough to produce a bound singlet state, the

singlet nucleon-nucleon scattering lengths are abnor-
mally large, and hence very sensitive to slight difIer-
ences between the pp, np, and rtrt interactions. It has
long been known, for instance, that the nuclear singlet
scattering lengths for rtp and pp scattering differ by 25%
or more. The singlet np scattering length is about —23.7
fermis, ' while the nuclear part of the pp scattering
length is approximately —17 f,' corresponding to a
difference in well depth of about 2%

The cause of this distinct violation of charge inde-
pendence has been the subject of considerable discus-
sion. The simplest electromagnetic effects, such as the
magnetic moment interaction, ' seem to be too small to
account for the discrepancy when handled realistically. '
This suggests that the answer must be sought in an
understanding of the mesonic origin of the nuclear force,
and there is some indication' that the efI'ect may be
largely attributable to the vr' —x+ mass difference. If
this is indeed the case, then the nucleon-nucleon force is
to this extent inherently charge-dependent, but one can
still ask whether the coupling of pions to nucleons is
charge-independent. If effects such as the pion mass
difference can be calculated accurately, it may be pos-
sible to employ the nucleon-nucleon scattering lengths
in conjunction with pion-nucleon scattering data to
check the charge independence of the pion-nucleon force
with considerable accuracy. 4 The ee scattering length is
one of the desirable pieces of information, and we wish

II. THEORY IN BRIEF

Our proposal for determining the ee scattering length
is a special case of a more general technique discussed
previously by Watson. ' In fact, it is actually a modifica-
tion of a very similar but less practical suggestion once
made by Watson and Stuart. ' The proposal is this: Qf
the two modes of m capture observed in deuterium,

7r +d ~ 2rt,

7r +d-+2rt+y,
the latter occurs about 30% of the time. The final state
contains two neutrons in both cases, but in the two-
body mode the outgoing momenta are fixed by con-
servation laws and so not inQuenced by the final-state
interaction. In the three-body mode, however, the
conservation laws are not sufhcient to determine the
momenta uniquely. Each particle has a momentum
spectrum, and the way in which the total momentum is
distributed among the three outgoing particles (i.e., the
spectrum shapes) is sensitive to the interactions be-
tween them. Of the three interactions, two are fortu-
nately n —p interactions, very weak compared with the
gw interaction; it is this which makes this reaction a
"clean" one, preferable to several others one might con-
sider. This leaves the desired ee interaction as the
principal factor determining the spectra of final-state
momenta. The neutron spectrum, in particular, is ac-
cessible to accurate measurement, and'we believe that a
measurement of this spectrum can be used to determine
the nrt scattering length with an accuracy of 25% or
better.

Because the ee force is attractive, its qualitative
effect on the spectrum of each neutron is easy to see.
The neutrons have a range of recoil energies only be-
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Fzo. 1. Notation employed for momentum variables (k is the
photon, and p~ and pg the neutrons).

cause of the three-body anal state; if the di-neutron
were strongly bound, it would recoil with a unique
energy, about 4.8 Mev. Although the force is pre-
sumably not quite strong enough to produce a bound
state, its effect should still tend to equalize the neutron
recoil velocities, and thus produce a peak in the energy
spectrum of each neutron at about 2.4 Mev. The
stronger the force, the sharper will be the peak, so we
can expect its width to be the parameter most sensitive
to the nn'interaction.

The results of the detailed calculations to be described
in Sec. III substantiate these expectations, as illustrated
by Fig. 2. As an example of the type of measurement
that would be required to determine the nn scattering
length, we have plotted in this 6gure a portion of the
neutron energy spectrum at an angle of 172' to the
photon direction. YVe have chosen this restricted portion
of the spectrum because it corresponds to the smallest
values of the relative momentum p of the two neutrons.
(The minimum relative momentum, of course, occurs at
the peak of the spectrum. ) Over this portion of the
energy spectrum, p in fact remains so small that the ng
interaction (and hence the shape of the spectrum) de-
pends only on the nn scattering length. It is for this
reason that a measurement of the spectrum shape can
be used to determine the scattering length. To illustrate
the sensitivity of this dependence, we have calculated
the neutron spectrum for three assumed values of the nn
scattering length, a, near the singlet tsP value of —24
fermis. 7 Recalling that when u is equal to —~ the force
is just strong enough to produce a bound state, we see
from the given curves that, as expected, the stronger the
force, the Inore sharply is the spectrum peaked.

This particular spectrum is, as we shall see, only one
of the many possible energy and angular distributions
that one might measure, all of which can yield the same
information on the nn interaction. Other distributions,
such as that of Fig. 3, will be discussed later, after their
inter-relationship has been made clear.

At very little cost, the above argument can be sharp-
ened enough to give a numerical estimate of the shape
of the spectrum and explain why it depends on only one
parameter of the en interaction. Recall erst a few
salient points of the three-body decay kinematics. The
capture occurs from the lowest mesonic Bohr orbit, i.e.,
essentially at rest in the laboratory system, so the mo-

~ The normalization of these curves is meaningless. For con-
venience of comparison, vie have arbitrarily normalized them all
to the same height at their maximum values.

mentum-conservation condition is pt+ps+k=0. The
total energy available is essentially the rest energy of
the pion. Consequently, the spectrum of each neutron
extends from zero to /0 Mev, and that of the photon
from zero to about 131.5 Mev. The attractive nn
interaction causes these spectra to be strongly peaked in
the region of small relative nn momentum. This, as we
noted earlier, corresponds to neutron energies in the
laboratory system of a few Mev, which is a convenient
range for using time-of-Qight techniques.

The problem has, kinematically, two independent
variables. That is, there are three outgoing momenta,
hence three energies and three relative angles, and the
four conservation conditions leave two of these six
variables independent. The distribution of capture
events will consequently be a two-dimensional distribu-
tion. Any two variables can be used to describe it; we
have chosen to use E&, the energy of one of the neutrons,
and Pt, the angle its momentum makes with —k, the
negative photon direction. (This was used rather than its
supplement merely to get an angle that is less than 90'
for all the interesting cases. ) Rather than pt and p, , it
will be especially convenient to introduce the mo-
mentum variables p = s (pt —ps), the relative tsar momen-
tum in the center-of-mass system of the two neutrons,
and P= pt+ p„ the momentum of this c.m. system. The
energy of the two neutrons is then (pP+ps')/2M
= (p'+-.'P')/cV = (p'+4k')/M, by momentum conser-
vation. Since k+(p'+-„k')/M must equal the initial-
state energy, ' p is uniquely determined by the photon
energy. Consequently, we have found it convenient in
Fig. 4 to plot, for illustration, a few contours of constant
k, very near the high-energy end of the photon spec-
trum, i.e., near p= 0. lt is interesting to notice that they
are restricted to fairly small values of Pt, and to Et
values of a few Mev.
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We employ units in which k= c = 1.

PIG. 2. Neutron spectrum at tI'~ =8' for various assumed values
of the nn scattering length. The curves have arbitrarily been
normalized to the same height at Ej =2.3 Mev. For notation, see
Fig. i.
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These contours are especially useful in analyzing the
problem for two reasons. In the first place, we shall see
shortly that p is the key variable of the problem, and
that the matrix element for the process is very nearly a
function of p alone (near p=0), so that these contours
are also nearly contours of constant counting rate.
Secondly, in order to be able to analyze the problem
practically, the erI, interaction must be limited to an
interaction in relative 5 states. The ee phase shifts,
however, are functions of p, and the 5 wave will be
dominant only if p is sufficiently small —hence it is also
important for this reason to know what region of the
Ei Pi plane—corresponds to small p values.

As Watson' ' has pointed out, one can estimate the
energy dependence of the matrix element for the process
in the p ~ 0 limit by using the zero-range approxima-
tion for the nn interaction. (The justification for this is
presented in Sec. III.) In the p —+ 0 limit, only the 5-
wave interaction will be important; if Ps(r) is the
singlet S-state wave function for the ee system, the
matrix element will have the form

Ms= Ps*(r)rf(r)d'r,

where rf(r) represents all the other factors. All we need
to know about it is that its p dependence is expected to
be weak near P =0. In the zero range approximation, lt s
is given by its asymptotic form all the way in to r=0,

lt s(r) = sin(pr+8)/pr, (2)

where 8(p) is the S-state nn phase shift. In this ap-
proximation,

sinb
Ms(p)= ~f(r) cosprd'r+cotb ~~f(r) sinprd'r .
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Fxo. 4. Contours or loci of k = constant (and p =constant) in the
Ej—QI plane, for values of k near the upper limit of the photon
spectrum. As discussed in the text, these are also roughly contours
of constant counting rate, the maximum being at $1=0, EI=2.3
Mev.

volving (sinpr) will approach 0 at least as fast as p.
We assume that ~a~&&Ro (the radius of the deuteron);
it is then readily seen that, for pRii&(1, the p dependence
of the integrals is negligible in comparison with that
of (sinb)/p. In this limit the p dependence of 3IIs(p)
is given by

~s(p) =»»(p)/p. (3)

The momentum dependence of 8(p) can be found
from the effective-range expansion,

p cotii= —1/a+-', rpp'.

By suitably restricting the range of neutron energies
detected, it is quite feasible in the present experiment to
keep p so small that the effective-range term can be
neglected. In this case,

sinb= a (1+ 'a' l. (4)From the effective-range expansion, cotb approaches
—1/pa as p approaches 0, and clearly the integral in- The energy dependence of the cross section is then

simply
(Ms~ n=L1/(1+p G) jn, (5)
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where 0 is the appropriate phase-space factor. H neu-
trons are detected, 0 remains nearly constant near p= 0.
Consequently when p approaches 0, the cross section is
principally a function of the relative nn momentum p,
and is peaked, as expected, at p=0. Over an energy
range such as that of Fig. 1, the more detailed calcula-
tion given below shows this approximation to be re-
markably good.

The condition that the effective-range term be negli-
gible is —,'rpap'«1. If we insert the singlet np values
rp= 2.65 f and

~
a

~

= 24 f, this means

p/p, &(0.27,

FIG. 3. The angular distribution (relative to the photon direc-
tion) of 2.4-Mev neutrons. The curves for diGerent assumed values
of the nn scattering length have been normalizedjarbitrarily to
the same value at /~ =0. p/ii (0.19 (6)

p, being the pion mass. More detailed calculations show
that
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FIG. 5. Neutron energy spectrum at p1 ——9', showing the effect
of varying r0, the nn effective range. For the solid curve, the
nn scattering length was taken to be —24f. Note that the
spectrum is very insensitive to r0 for B& between 1 Mev and 3.5
Mev, where p is small. For comparison, the dashed curves show
the dependence of the spectrum on the scattering length when r0 is
held at 2.65 f (the value used in Figs. 2 and 3).

provides a "safe" upper limit. This is approximately the
value of p on the largest of the contours in Fig. 3, so the
region inside this contour is the usable region of the
Et—lt& plane. (The exact effect of varying rs is illus-
trated by the curves shown in Fig. 5.) The corresponding
range in the relative energy E=p'/M of the two neu-
trons in their c.m. system is

8&750 kev.

From this discussion, i.t is clear that the essential
va, riable of the problem is p. Whatever distribution one
actually measures, its shape will be merely a reQection
of the simple function 3IIe(p). Since a two-variable
distribution is inconvenient and time consuming to
measure experimentally, one might reduce it to a one-
dimensional distribution by holding some convenient
variable constant. One possibility is that employed in
1 ig. 2, the neutron energy spectrum at g& ——constant.
Another is the angular distribution of neutrons at
E~= constant, such as that plotted in Fig. 3 for E~= 2.4
Mev. (The approximate shapes of these distributions
can be obtained by thinking of them as vertical and
horizontal slices of the contour plot in Fig. 4.) Clearly
there are an ininite number of ways of extracting a one-
dimensional distribution from a two-dimensional one,
and these two were merely chosen to illustrate the
method. If others prove more feasible for experimental
reasons, we have the necessary functions coded for 650
computation, and can readily supply whatever alterna-
tive data are needed.

There is still another way of deriving a one-dimen-
sional distribution. This is the Inethod used by Watson
and Stuart, ' ' who integrated over one of the variables
the angle between p and k, and were left with a distribu-
tion over k. Since k is related directly to p, this looks like

. ' Also, more recently, by D. %. Joseph, Phys. Rev. 119, 805
I'1960), who considered the alternative process, x +d ~ 2n
+8 +8

an attractive thing to do, especially since it involves
only the detection of single photons rather than the two-
variable coincidence experiments needed for the above
method. In spite of this, we believe it to be a less
practical method. The reason is that the p-ray spec-
trum, which peaks at about 130 Mev (see Fig. 2,
Watson and Stuart' ), has a width about equal to that
of the neutron spectrum given in Fig. 2, approximately 2

Mev. Consequently, whichever particle is detected, the
neutron or the gamma ray, the same 2-Mev width must
be measured (to about 200 kev). The advantage to be
gained by looking at the neutrons is that this is a far
easier thing to do with 3-Mev neutrons than with. 130-
Mev y rays. "

However, if the di-neutron were bound, the peak of
the photon spectrum would be shifted considerably. By
looking for this effect, Phillips and Crowe" were able to
conclude with considerable certainty that the scattering
length is negative. Note that when the eftective-range
term is negligible then Eq. (5), the cross section for the
production of unbound neutrons, is insensitive to the
sign of the scattering length; thus it is important to
have this independent determination of it.

III. CALCULATION OF THE SPECTRA

We shall assume that the impulse approximation pro-
vides an accurate estimate of the momentum distribu-
tions we wish to calculate. By this we mean that the
recoil momentum from the photon'emission is initially
absorbed solely by the proton, and that the matrix
element describing the process is the same for the proton
in the deuteron as it is for a free proton. This means that
the . momentum with which the spectator neutron
emerges is transferred to it entirely via its interaction
with the other nucleon. In Sec. IV we shall estimate the
effect of "exchange currents, "which enable the specta-
tor neutron to participate directly in the photon emis-
sion process; it does not appear to modify seriously the
results obtained within the impulse approximation.

In coordinate space the transition operator for a
process in which momentum —4 is transferred to the
proton has the form exp( —sA r&)T(tl, ,q~), where r& is
the position of the proton and I; and qf are the center-
of-mass relative rnomenta in the initial and final states,
respectively. In the present case the pion carries no
momentum, so cL is equal to k, the momentum of the
photon. In terms of T, the matrix element for radiative
absorption in deuterium is

~—)tLe
—ik ~ (rr+&s)/sp (rr —rs)$*

Xe 's'"Tg(rt —rs)$d'rtd'rs (8).
' Additional reasons for imposing this stringent restriction on k

are that certain of the approximations used become less good as
k is decreased, and at the same time the contributions from poorly-
known sources, such as the deuteron D state, become quite signifi-
cant. See the detailed discussion in Sec. IV."R. Phillips and K. Crows, Phys. Rev. 96, 484 (19&4).
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Here r~ and r2 are, respectively, the proton and neutron
position vectors, and we have used p~+ps ———k; Ps is
the wave function for the relative motion of the two
neutrons in their center-of-mass system, p is the
deuteron wave function, and g the wave function of the
pion in its Bohr orbit.

Two approximations must be made in order to pro-
ceed. First, since the radius of the pion Bohr orbit is
some 50 times larger than the deuteron radius, it is a
very good approximation to call j a constant. over the
"inside" of the deuteron, and remove it from under the
integral sign. (Since we are not interested in the magni-
tude of the matrix element but only its energy depend-
ence, we shall neglect $ altogether. ) Secondly, since this
is a three-body process, to do the integral correctly we
would have to know T(q;, q») off the two-body mass
shell, but in fact very little is known about it, even on
the mass shell in the energy range we used. However,
the range of q, and q» values that appear in Tg is due
entirely to the motion of the proton in the deuteron.
This range of q, and qy values is in fact very small, and
the best evidence available indicates that T should re-
main very nearly constant over this range. Ke shall give
this argument in detail below. Its conclusion is that we

may safely neglect the momentum dependence of T
altogether, so that it becomes a constant rather than a
momentum operator. It is, however, still an operator on
the spin variables, which of course can always be written
in the form T=2+8 o; T is the pion photoproduction
operator, which near threshold has the property A&(8."
Since the absorption process corresponds to photo-
production approximately at threshold, this must also
be the case for absorption, and so we shall take T=B s.
This has the effect of weighting the triplet ee states
twice as heavily as the singlet ones, but for the range of
momentum values in which we shall be interested, the
calculations show the triplet contribution to be small
anyway. Thus the neglect of the A term has little effect
on the results.

Then if all energy-independent factors are neglected,
the singlet matrix element is given in terms of an inte-
gral over the relative coordinate r= r& —r2 only:

M""(k,p) = ' s '*"V,.*(r)4(r)d'»,

where Ps, ,(r) is the singlet spatial part of the c.m. wave
function for the two neutrons with relative momentum
y. The triplet matrix element has an exactly analogous
form.

In order to evaluate the integral, we must know the
two wave functions involved: fs for the Nn system, and

$ for the deuteron.
By restricting ourselves to events for which the rela-

tive mrs energy is less than 1 Mev, we guarantee that
their interaction occurs only in the S state, so that it, ,

"See, e.g., M. J. Moravcsik, Phys. Rev. 104, 1451 (1956).

differs from a properly symmetrized plane wave only in
the 5 state. Watson and Stuart, however, have argued
that in fact M8 is nearly independent of the exact form
of Pq, the singlet-S part of Ps,„for small values of p.
The reason is as follows. We saw above that if the
asymptotic form of it z is used, Ms(p) sin8(p)/p. Let
the exact it s differ from its asymptotic form by Bit 8, and
let f(p, r) =Aps(p/sink), or 6/8= f(p, r)(sinb/p). We
note that f(p, r) differs from zero only inside the range
of the ee force, where the depth of the potential is much
greater than p'/M for the range of p values we are
considering. This, however, is just the condition that
guarantees that the integral appearing in the effective-
range expansion is nearly constant except for the
normalization factor of the wave function. As Blatt and
Jackson" have shown in detail, if the customary normal-
ization is used, this integral in the ep case changes by
only about 1%%uo as p varies over the range 0 to 0.2 p
which we are considering. " It is seen, however, that

f(p, r) has just this normalization. Therefore, its integral
should also be very nearly p independent over this

range, showing that the correction to Ms(p) has the
same (sin5)/p dependence as found in Eq. (3). Conse-

quently, any reasonable wave function may be used to
calculate the correction AM8. Ke have used a square-
well function because of its simplicity. As an indication
of the validity of the Watson-Stuart argument, we

might mention that in the neutron spectrum shown in
Fig. 2, the singlet-5 contribution (the integral Is given
in the Appendix) differs from a sinb (p)/p dependence by
less than 1%%u~ over the entire energy range shown.

Finally, there is the choice of the wave function p for
the deuteron. However, again the exact wave function
used does not critically aHect the functional form of

M(p) for small p, provided it has the correct asymptotic
behavior, e "/r. This can be inferred from the fact that
any momentum parameters that describe the spatial
dependence of g(r) within the range of the ep force
Lsuch as P in the Hulthen function (e "" e~")/r) —must
necessarily be larger than n, for they correspond to
smaller spatial dimensions. "If, however, such parame-
ters are called P&, P&, etc. , then M(p) can only depend on

p through p/k, p/o. , p/p&, etc. Now we are only con-
cerned with p in the range 0(p&0.2 p, whereas k p,
n 0.33 p, and P,)o.. The P of the Hulthen function,
which should represent something of an average of the

P;, is about 1.5 p. Thinking of M(p) as a power series in

p/k, p/n, and p/p, , we see that the restriction of p to
the range p(0.2 p will permit only a very weak depend-
ence of M(p) on the p;, i.e., on the exact interval form
of the deuteron wave function. Consequently, we have
employed the Hulthen function for simplicity; as noted

'3 J. M. Blatt and J. D. Jackson, Revs. Modern Phys. 22, 77
(1950); Phys. Rev. 76, 18 (1949).

'4 Note that p ' sinb varies by a factor of three over this range
of p.

'~ For example, see the values of the parameters used in an
approximate wave function by M. J.Moravcsik, Nuclear Phys. 7,
113 (1958) all of which are &1.5P.



1406 KI RK Vf. McVQY

above, its influence on M(p) is so small that M(p) is
equal to sin5(p)/p to within 1%over the range p&0.2 p.
/This does not imply that the contribution to the
magnitude of M(p) comes almost entirely from outside
the range of the forces. The internal integral contributes
substantially, but its p dependence, like that of the ex-
ternal integral, comes primarily from the normalization
of the ne wave function. 7

Since all the integrals to be calculated have been
stated explicitly by Watson and Stuart, ' we shall not
list them here, but for reference we have compiled the
results of the integrations, in their notation, in the
Appendix.

p =R(0.066)/E(0. 19), (10)

and we shall attempt to estimate the eRect of each of the
approximations on p.

In quoting the possible errors in this way, it must of
course be borne in mind that they are defined relative to
this specific momentum range, p&0.19. Since this
covers the entire range we suggest as being "usable, " it
gives a maximum estimate of the error to be expected
over this range. However, if a larger range of p is
employed, it is to be expected that the error encountered
will increase. This, as well as the desire to eliminate the
inhuence of the effective range, strongly suggests a re-
striction of the measurements to as small values of p as
possible.

IV. ESTIMATES OF THE ACCURACY
OF THE THEORY

The approximations we have employed are the
following.

(1) Assumed validity of the impulse approximation.
(2) Assumed constancy of meson bound state over

the volume of the deuteron.
(3) Approximation to P~(r).
(4) Approximation to g(r), both 5 and D waves.
(5) Neglect of the momentum dependence of T(q;, qr).

We shall attempt to make a numerical estimate of the
effect of each of these approximations on the shape of
the energy spectrum of Fig. 2. Ke choose this particular
spectrum for our estimate merely because it is con-
venient; it is, however, quite representative of other
possible spectra, for they are all merely different re-
jections of the central function M(p). One might use
this spectrum to determine the scattering length by, for
instance, measuring the ratio of the counting rate at the
peak to that at, say, E&=4 Mev, and we shall choose
this ratio as our figure-of-merit. The eRects" of the
various approximations will be given in terms of their
effect on this ratio. To be quite specific, two points at
which we have convenient data available to make the
estimate are Ei——2.39 Mev (p=0.066 p) and Ei——4.25
Mev (p=0.19 p). Consequently, if R(p) is the counting
rate at a point on this spectrum, we define

It is also well to keep the following points in mind
during the error discussion. We may conveniently divide
the ee wave function into an 5-wave part, a "non
5-wave singlet part, " and a triplet part. In the last two
parts we have assumed all phase shifts for /&0 to be
zero, which should be extremely good for neutrons with
a relative c.m. energy of less than 1 Mev. Consequently,
these parts of the wave function are "exact."The major
contribution to the cross section in all cases considered
comes from the 5 wave, which we have taken as a
square-well function, but the other contributions are not
completely negligible. The non 5-wave singlet contribu-
tions are always quite small, and at p=0.066 p the
triplet contribution is also negligible. (It is noted in the
Appendix that I&=0 whenever Ei——E2.) However, the
triplet contribution increases rapidly as p increases, and
at p=0.10 it is about 9% of the cross section.

Estimate (1). The impulse method employed in Sec.
III assumes that the spectator neutron has no "dis-
torting inhuence" on the proton during the absorption
and emission process; this means that this neutron re-
ceived none of its momentum directly from the recoiling
photon, but only from the other recoiling nucleon. This
would seem to be an eminently reasonable approxima-
tion in view of the large size and weak binding of the
deuteron, and there is some experimental evidence to
this effect. White et al."have measured ~+ photopro-
duction from the deuteron at about 300 Mev, and found
it to be some 25% smaller than the corresponding free-
proton cross section; this agrees well with a calculation
by Chew and I„ewis'7 which employs this same impulse
approximation.

Not only are the violations of the impulse assumption
thus likely to be small, they will also alter the mo-
mentum distributions in a predictable direction, which
we can see as follows. The essential part of the impulse
approximation was the appearance of the factor e 'k ",
representing the recoil momentum (—k) absorbed by
the proton alone. Since the proton is not free, there are,
presumably, mechanisms by which this recoil mo-
mentum can be shared by both the nucleons; Fig. 6
indicates one such diagram, in which the photon is
emitted by a charged meson being exchanged between
the nucleons. Although, of course, the exact eHect of
this strong interaction cannot be calculated, it would

appear quite reasonable tp make the caskets that, by
analpgy with the e '"'" factpr, the general fprm pf the
operator describing the emission of a photon by a two-
nucleon system is

e
—i[fk r1+(1—f)k r2]g'

where T' is a momentum operator analogous to T, and

f is a number between 0 and1which gives the fraction
of the recoil momentum absorbed by the proton.

"R.S. White, M. J. Jakobson, and A. G. Schultz, Phys. Rev.
88, 8S6 (1952}."G.F. Chew and H. W. Lewis, Phys. Rev. 84, 779 (1951}.
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n
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J g
k'- k

-k

k'- k

I'IG. 6. I'eynman diagram for a matrix element which violates
the impulse approximation. Note that the recoil momentum —k
is shared between the two neutrons even without any final-state
interaction.

If this conjecture is correct, the matrix element is, as
before,

eik ~ (ri+r2)/s)p a(r)P
aJ

)(e—i[fn+li —f)rml &T'y(r)ds. ridsr2 (12)

Thus, it reduces as before to an integral over the relative
coordinate r=ri rs A—t f=. 1 we of course recover the
previous matrix element, and at f=-', the exponential
factor is just unity. This is because the nucleons then
recoil as a unit, and it merely expresses over-all mo-
mentum conservation for this "elastic" case.

Of course, nothing has really been gained if the form
of the operator T' is not known. However, we shall find
below that the operator T corresponding to f= 1 can be
well approximated as a constant. The reason is essen-
tially that T, being a meson-absorption operator, affects
principally the high-momentum components of it (r),
which do not strongly affect the resulting matrix ele-
ment, M(p). Since the same argument would appear to
apply to T', we shall also assume that T' is simply a
constant.

If this is the case, the matrix element is altered in a
very simple way and can be obtained from the previous
result simply by replacing k by (2f—1)k. The number

f need only range from 0.5 to 1, for the other half of its
range repeats the same results. Thus, the effect is
always to decrease k, and it is found that this always
causes the neutron spectra to become more peaked, i.e.,
increases the quantity p. If we take the extreme case,
f=-,', we find that p is increased by about 18%.

This would roughly correspond to increasing the
magnitude of the (negative) scattering length by about
20%, i.e., shifting one of the curves of Fig. 2 into the
next lower curve. However, this is assuming that the
impulse approximation is entirely incorrect. As a liberal
estimate, it would seem unlikely that effects of this kind
should change p by more than perhaps 5%%uo. Also, the
direction of the error is known in this case. If the
scattering length is obtained by using Fig. 2 or Fig. 3, in

which the impulse approximation was employed, then,
to the extent that the impulse approximation is incor-
rect, the scattering length so obtained would be too
large in absolute magnitude.

Estimate (Z). The bound-state wave function P(r) of
the pion should be given fairly well by e "~"&, ro being
about 200 fermis in this case. Since the deuteron wave
function effectively restricts the integration to distances
of less than 4 f, $ varies only from 1 to 1—1/50, or
something like 2%. As we have seen, however, the
functional form of M(p) comes almost entirely from the
normalization of the en wave function rather than from
the integral itself, so that this slight change in the
integrand should produce a completely negligible change
in the form of M(p).

Estimate (3). The 5-state part of )P„ the nn wave
function, was approximated by a square-well function
with the correct scattering length and effective range.
(The effective range was chosen as 2.65 f, the same as
for the np singlet state. The influence of the effective
range in this way is unavoidable but very small. ) Since
the correct wave function is unknown, we cannot say by
how much the square-well function is in error, but we
can get a gross idea of the inhuence of the shape of the
wave function by asking how much p would be changed
if we used the asymptotic form of the wave function
instead of the square-well function, i.e., the zero-range
approximation. As noted above, this changes the p
dependence of the S-wave integral by much less than
1%. It does increase its magnitude by about 15%,
though, and since the triplet contribution does not
change, p is increased by 3.6%%uo. Since one would not
expect the exact wave function to differ from the square-
well function as radically as does the zero-range func-
tion, we might estimate the possible error in p from this
source to be about 2%.

Estimate (4). The fact that the Hulthen wave function
for the deuteron S state may be somewhat inaccurate is
insignificant, for, as we noted above, the p dependence
of the main part of the cross section (that due to the nn
S wave, Is of the Appendix) differs from sink(p)/p by
less than 1% over the whole usable range.

The D state of the deuteron is more troublesome,
however. Since it is very poorly known, it is unfortunate
that it contributes significantly to the process. %e have
used the simplest possible approximation to it, and in
this approximation it contributes 12.7% of the cross
section at p=0.66[i and 9.5% at p=0.19[i.'s Because
its fractional contribution does not change much over
this range, though, its effect on the spectrum shape is
considerably less. It is impossible to estimate accurately
how far wrong our approximation to the D state is, but
if it is neglected altogether, p is increased by 4.2%%uo. Since

"Watson and Stuart estimated that the D-state integral con-
tributed only about 3%% to their cross section. This included an
integration over angles we have not considered, but even allowing
for this the difference between 3%% and 9%% does not seem easy to
understand.
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we know so little about what this function should be, it
seems quite possible that this could contribute an error
of 4% in p.

Estimate (5). Finally, perhaps the most serious source
of uncertainty is the assumption that the meson absorp-
tion operator, T(q, ,qf), remains constant over the range
of momenta present in the deuteron. LMore precisely,
the assumption is that the shape of Tg(r) is not
signiflcantly different from that of p(r) for large values
of r. jNothing at all is known experimentally about this
operator in the energy range employed here (which
would correspond to m photoproduction from neutrons
just at threshold). In fact very little can reliably be said
about it at all, but we wish to point out a few kinematic
features which tend to strengthen considerably one' s
confidence in the assumption that it remains constant.

The most important consideration is merely the fact
that the pion is captured predominantly from an 5
state. Since the deuteron is also largely 5 state, the

—p relative angular momentum is zero, and one
knows from general considerations" that the matrix
element is constant for small relative momenta in this
case.

The more detailed kinematic facts are these. The
relative vr —p momentum comes from the motion of the
proton in the deuteron. Assuming an average kinetic
energy of about 15 Mev for the bound proton, we esti-
mate the significant range of momenta in the Fourier
transform of its wave function to be from zero to about
1.5 p, .

In T(q„q~), q, is the relative x —p momentum and

qf the relative m —y momentum, both in the c.m.
system. When two-body kinematics do not hold, g,: and

pf are independent quantities; in the present case the
range of values they assume is determined entirely by
the range of proton momenta in the deuteron. In the
initial state, the c.m. system nearly coincides with the
proton, so although the range of proton momenta in the
laboratory is 1.5 p, in the c.m. system it is reduced by
p/(3I+p) and extends only from zero to 0.2 p. The
range of m momenta in the c.m. is of course the same,
so q;&0.4 p. The range of c.m. photon momenta in the
final state depends on the relative proton-photon direc-
tion. If all directions are assumed possible, the maxi-
mum range of c.m. photon momenta is from 0.75 p to
1.13 p, and so 1.5 p&qf(2. 26 p.

Although we expect T to be constant for q; "small, "
we would like to know how small. The only available
information on T near the photoproduction threshold is
that derivable from the dispersion-theory arguments of
Chew et al. '0 From their complete photoproduction
amplitude near threshold the (m

—p) 5-wave part can be
projected out. For small values of q,/p, this expression

"See, e.g., H. A. Bethe and F. de HoGmann, 3fesons end Fields
(Row, Peterson and Company, Evanston, Illinois, 1955), Vol. II,
p. 143.

"G.F. Chew, M. L. Goldberger, F. E. Low, and V. Nambu,
Phys. Rev. 106, 1345 (1957).

Is given approxUTlately by

T,= 1+0.15iqP/qqp. (13)

This is, of course, only the expression on the two-body
energy shell, but for the above ranges of q; and qf it
indicates that

~

T
~

' remains extremely constant, in fact
constant to within 0.02%. Thus, if the expression for T
at nearby points off the energy shell is any kind of
reasonable continuation of Eq. (13), the error incurred

by considering T to be constant is entirely negligible.

$(n,P,q) = q e " sinPr jo(qr)dr.
n'+ (P+q)'

ln (A-1)
n'+(P —q)'

and
f

C(n, P,q) =
q~

e ' cosPr jo(qr)dr

1 t' 2nq
I+~~, (A-2)

2 & n'+ p' —q')
where

a=0 if n'+p' —q'&0,
c= 1 if n2+P2 —q2(0.

"M.J. Moravcsik (private communication).

V. CONCLUSION

The effect of the final-state ee iq.teraction on the
momentum spectrum of each neutron is found to be
pronounced and distinctive when the relative nm mo-
mentum is small. (The spectra of Fig. 2 would be nearly
flat if this interaction were not present. ) Consequently,
a measurement of one of these spectra appears to pro-
vide a feasible means for determining the ne scattering
length. From the examples given in Figs. 2 and 3, it
would appear that the different types of spectra are all
about equally sensitive to the scattering length, so that
the choice can best be made on grounds of experimental
convenience.
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APPENDIX

The integrals that appear in the calculation are listed
here for reference. Since we employed the same wave
functions as Watson and Stuart, ' we shall use their
notation and refer the reader to their paper for further
details.

Since the following two integrals occur frequently, it
is useful to introduce a notation for them. If jo(x)

= sins/x, we define
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(In both integrals it is assumed that n, p, and q are all

positive. )
Another pair of integrals that arose may perhaps be

of use to others. If j2(x) is the second spherical Bessel
function, the integrals are

the integrands of I.2 and I.20 are equal outside the well
and these parts of the integrals cancel. If the well depth
is U and its radius R, we define y = (M2U2+ p') & and note
that the boundary conditions at r= R yield the condi-
tions p cot(pR+8) =y cot7R. This expression can be
used to express the well parameters in terms of the
effective range and scattering length, and can also be
used to condense the 1.20 integral into compact form.

00 3 p
S2(n,p, q) =

~ e "sinpr j2(qr)dr=
Jp 2q'

and

sin (pR+8)
e—~(n+y cotyR) . (A-9)

The result is
3n2 —3p'+q' 3 rrp

+ S(n,p, q)
———C(n,p,q), (A-3) Sx sinb

2q' 2 q' L23(n) = (n+ p cotb)
r22+p2 p

00 3 Q

C2(r2, P,q) =
~ e "COSPr j2(qr)dr= ———

Jp 2q'

3n2 —3p'+q' Qp
+ — -(~,p, q)+3 S(~,p,—q) (A-4)

g

(&) d3rt e—ip r eip rje ik rl2e—ar/r. -

4 L(~2+q 2)
—1 (~2+q 2)—lj (A-6)

In calculating the integrals I~, Ij, and J~, we use the
Hulthen wave function for the 5 state of the deuteron,

43(r) =(e "—e ~")/r. (A-5)

Consequently, these three integrals will have the form

I=I(~)—I(P),

so we need only give I(n). The integrals are

The other half of I2(rr) is the integral of the square-
well function,

L2(n) =2)f d'r
r(B

sin(pR+5) sinyr

sinyR
e—ik rl2e ar/r—

It appears that this integral cannot be expressed in
terms of elementary functions. After the angular inte-
gral is done, however, a factor sin-,'kr remains in the
integrand. Now k 0.93 lr, and for rp= 2.65 f, R 1.76/p,
so —',kR=0.83. Sin(0.83), however, is equal to 0.76.
Consequently, even at the upper limit of integration we
make less than a 10% error in the integrand by using
sin —,'kr=-,'kr, and this should have a negligible e8ect on
the accuracy of the result. With this approximation, we
And

where il+=p&-,'k. Note that when Ei ——E2, then q+' sm(PR+~)
L2(n) =82r

q )an g

I&(&)
—. dpr[eip ~ r+e ip r 2—(pr)

—1 sinpr je ik rl2e ar/r— — 7
&& e ~(n+y —co—tyR) . (A-10)

sinyR
—42rL (&2+q 2) 1+(&2+q 2) 1

I2=I2+I2,
—4(pk)-'S(rr p -'k)j

16m sinb
LC(n, p,-'2k)+cot5 S(n,p, -'2k) j.

k

I2"(~)=L2(~) L»(~)-
where

I2'(n)=2 d3r(Pr) 'sin(Pr+$) e '"'l'e a"/r

(A-7)

(A-8)

Because j2(-,kr) is small near the origin, we have simply
used the asymptotic form of the n —n wave function.
For the same reason we shall simply use the asymptotic
form of the D state,

—ng
—AT (A-12)

Hulthen and Sugawara' suggest that n should be taken
as 0.2, which is the value we have used. In this case

Finally, there is the integral over the D state of the
deuteron,

I,=2 d'r(Pr) ' sin(Pr+8) j2(2'kr)$2(r). (A-11)
J

L23(i2) = 2 d'r(Pr) 'sin(Pr+1'l) e '""—e "/r-—
and vrhere the integration is only over the volume of a
sphere of radius R. This is because we are using a
square-well wave function for the n —n system, so that

I3=2~~dpr(Pr) ' sin(Pr+8) j2(-', kr)(0.2)e a'/r

sln5

p
= (0.2)82r fC (n,P,—,'-k)+cotb S (n,P,—,'k) }. (A-13)
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In terms of these functions, the counting rate R is
given as

Ii.= f @Iti'+a(iIr+Is i' —v2IsIs))0, (A-14)

keeping only the leading term in I3 and dropping all
factors of 2m, etc., since we are not concerned with the
absolute normalization of E. Factor 0 is the phase-space
factor which depends on the pair of variables observed.
If Er and fr are observed, as in Figs. 1 and 2,

The following constants were employed in the nu-
merical evaluation of these functions:

p= 139.63 Mev,

M „/tt = 6.2786,

a/tt =0.3274,

P/tt = 1.54,

[tt —(M n M—„) Bo—]/M n =0 1449

2srM'h'pg
0= dEId01.

M+4 —pq costs
(A 13) In employing the effective-range expansion, we used

the first two terms, with r0=2.65 f.
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Charge Distribution in the Fission of Uranium Isotopes Induced
by 20—40 Mev Helium Ions*

L J COLBY» JR )t AND J W COBI3LE

Department of Chemistry, Purdue University, Lafayette, Indiana

(Received March 28, 1960; revised manuscript received November 21, 1961)

The primary yields of Br I' La''0 Pr" and I'3 have been accurately determined for the medium-

energy (20—40 Mev) helium-ion-induced fission of U"', U"', and U"'. These accurate primary yield data
have been correlated with the constant-charge-ratio rule for nuclides away from the neutron shells and

give a smooth, but different, distribution curve for nuclides of 83 neutrons.

INTRODUCTION

'HE details and mechanism of the primary nuclear
charge distribution of fission fragments in higher

energy fission have largely been inferred from studies
involving the determination of primary yieMs of various
fission products. In principle, if primary yield data for
enough of the nuclides of a given mass chain could be
obtained, a charge distribution curve could be con-
structed, the maximum of which vrould define Z„, the
most probable charge for that mass. A comparison of
Z„with that predicted by the various theories describ-
ing the nuclear arrangement at the moment of fission
can yield valuable information on this important
phenomenon. Therefore, the construction of such
distribution curves based on primary yield data has
been the goal of the majority of previous investigations.
Since the necessary experimental conditions for the
determination of the charge distributions of every
fission product mass do not exist, it becomes necessary
to assume that the charge distribution is essentially
independent of mass to correlate data for different
masses.

Charge distributions in fission were first considered
for low-energy (thermal neutron) fission of Uses by
Glendenin, Coryell, and Edwards' (and later modified

*Supported by the U. S. Atomic Energy Commission; from
the Ph.D. thesis of L. J. Colby, Jr., June, 1960.

t U. S. Rubber Fellow, 1958—1959.
'L. E. Glendenin, C. D. Coryell, and R. A. Edwards, Eadio-

by Pappas'). They obtained the most probable charge,
Z„, by postulating equal beta-decay chain lengths for
the light and heavy fragments. This postulate is usually
referred to as the equal-charge-displacement rule
(E.C.D.).

Another hypothesis was proposed by Goeckermann
and Perlman' to obtain Z„values which would best
correlate their primary yield data obtained from
bismuth fission induced by 190-Mev deuterons. This
hypothesis assumes that fission at high energies is so
rapid that the charge distribution in the fragments is
essentially the same as in the fissile nuclide, i.e., a
constant-charge ra, tio (C.C.R.).

Steinberg and Glendenin' have adequately discussed
these rules in a summary concerned with the radio-
chemical data on the fission process. Additional primary
yield data obtained by mass spectrometric and radio-
chemical methods have appeared for neutron fission of

chemical Studies: The Fission Products (McGraw-Hill Book
Company, Inc. , New York, 1951}, Paper No. 52, National
Nuclear Energy Series, Plutonium Project Record, Vol. 9.

s A. C. Pappas, Proceedings of the International Conference on
the Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations,
New York, 19S6), VoL 7, p. 19; also Atomic Energy Commission
Report AECL-2806, September, 1953 (unpublished).

~ R.H. Goeckermann and I.Perlman, Phys. Rev. 76, 628 (1949).
E. P. Steinberg and L. E. Glendenin, ProceeChngs of the

International Conference on the Peaceful Uses of Atomic Energy,
Geneva, 1955 (United Nations, New York, 1956), Vol. 7, p. 3.


