
PHYSICAL REVIEW VOLUME 121, NUMBER 5 MARCH 1, 1961

Inhuence of Ergodic Behavior on the Scattering of Slow Neutrons
by a Harmonic Oscillator*
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Random quantum jumps of a harmonic oscillator in contact with a temperature bath are shown to give
rise to a general broadening of the slow neutron scattering peaks. An exception occurs in the case of the
elastic scattering peak, a major component of which remains unbroadened. In general, the broadening in-
creases with the number of quanta transferred. The analysis is based on the "damped" oscillator model of
Senitzky.

I. INTRODUCTION

HE effects of random movements of scatterers on
the incoherent scattering of slow neutrons by

disordered systems have recently been discussed by
Vineyard' and by Singwi and Sjolander. ' Both these in-
vestigators deduce a broadening of the slow-neutron
elastic scattering peak as a consequence of the random
motion. In the present work, the influence of another
type of stochastic process on the scattering of slow
neutrons is considered, namely, the ergodic behavior of
a spatially localized scattering system in thermal equi-
librium with a surrounding temperature bath. In this
case, the random processes are jumps of the system
from one quantum state to another owing to the
coupling with the temperature bath. In order to gain
insight into the influence of such random quantum
jumps on slow neutron scattering, a relatively simple
scattering system, the harmonic oscillator, is investi-
gated. The analysis is facilitated by the appearance of
the recent work of Senitzky'on the quantum-mechanical
behavior of a harmonic oscillator with dissipation.
Senitzky, in contrast to several previous investigators,
has viewed the oscillator and the loss mechanism to which
it is coupled as a single quantum system. The coupling
is assumed linear, and the effect of the oscillator on the
loss mechanism is treated as a perturbation, though not
vice versa. Third- and higher-order quantum effects in
the loss mechanism are neglected. The formalism then
yields the quantum analog of the damped oscillator
differential equation of classical mechanics but with an
inhomogeneous forcing term which arises from sta-
tistical fluctuations in the loss mechanism. The solution
of the differential equation appears as the sum of a term
referring to the uncoupled oscillator which is expo-
nentially damped in time, and another which builds up
asymptotically to a value corresponding to a thermal
distribution of states. A characteristic of Senitzky's
model is that the oscillator retains its quantum character
throughout the coupling process, as is manifested in the
validity, at all times, of the usual commutation relation
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between oscillator coordinate and momentum. This re-
sult helps justify the application of techniques in scat-
tering theory which were originally intended for un-
coupled systems. From the point of view of the
development presented here, the analogy with a classi-
cally damped harmonic oscillator need not be empha-
sized. Instead, the Senitzky analysis will be regarded as
a description of the transition of the oscillator from an
initial stationary state to one corresponding to a
thermal distribution over stationary states. The dissi-
pation constant P is then interpreted as the reciprocal
of the time constant r associated with the thermaliza-
tlon pl ocess.

q=e s"q&'&+R(t), (t~&0),

where P is the dissipation constant, q'" is the uncoupled
harmonic oscillator coordinate, and

R(t) =&r F&'&(t,)e—e&' '""cosM(t——tr)Ctr, (2)

in which n is the coupling constant, co is the angular
frequency of the oscillator, and I'(') is the coordinate of
the uncoupled loss mechanism. It is assumed that
P/a&«1, i e , that t.he. coupling is "weak. " Expressions
analogous to (1) and (2) also apply to the oscillator
momentum p. The usual commutation relation'

Lq(t),p(t)$= t

is then obeyed, which is not the case in earlier models of
the dissipative harmonic oscillator in quantum me-
chanics. For the expectation value of q', one finds

1
(q') =(q"")e "+ (1-e-"),

2M'�(z—1)
(3)

where M is the oscillator mass and s—=e "~.From (1)
4 Units in which 4=1 are used throughout.

II. THE SCATTERING LAW

The pertinent results of Senitzky's analysis will be
summarized first. The oscillator coordinate q is given by
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and (3), we find
s+1

&R'(&))= (1—e /").
2M(u(s —1)

Since Lq&'&(/), I'&'&(t') j=0, it follows that

9&2&(/) R(&')3=0 (5)

Now, by a theorem of Bloch,

(exp{ (&:- "'q "(t)—q"'(0)j})2
=expL —-,'z2&&:

—/"q&2&2(t)+q&'&'(0)

—e—s'/2{2q& &(t)q&o'(0)+t q&2&(0)~q&2'(t) j})rj, (11)

The scattering is treated by the method of Zemach
and Glauber, ' which is based on the use of the Fermi
pseudopotential approximation and the introduction of
Heisenberg time-dependent operators in lieu of an ex-
plicit summation over final scatterer states. The diRer-
ential cross section o(8,2) for scattering by a single
spinless scatterer through an angle 0 with energy gain e

is given by Z.G. as

~+&I

0 (e,e) = &22 e—*'"X(&~,t)dt,
2~x, ~ . (6)

X*(2&,t) =X(2~, t), — (7)

where a is the bound scattering length, ko and k are
initial and 6nal neutron momenta, and x is the mo-
mentum gain of the neutron. The dynamics of the
scatterer are contained in the function x, which satisfies
the basic relation

where the subscript X is omitted for the sake of brevity.
Now

where

ss—i' t+si' i

( "'(~) '"(o)) =
2M')(s —1)

geo/ k 7
7

(12)

(13)

(q'I'(&))r=(q""(0)) =
2M'�(s—1)

(14)

&exp(i/&R(t)])z =expL —-', /&2(R2(t))z j
s+1=exp — (1—e-/") . (15)

43fo) Z—i

Also, since third- and higher-order quantum eRects in
the loss mechanism are neglected, we have, ' by (4),

s+1 se '"'+e'"'
e
—P t]2

Mo) Z 1 Z
&x)2 =exp—X=II(exp{iL~~(q (~)—q (o) )j}

Combining (10), (11), (12), (14), and (15) yields finally

harmonic oscillator potential, x assumes the form'

Xexp{2/o, 'fq& (&) q& (0)j}) (8)

where the ~&, (X= 1, 2, 3) are the Cartesian components
of the momentum gain of the neutron, q&, (/) is the com-
ponent of the Heisenberg coordinate operator of the
scatterer, and ( ) indicates expectation value in the
initial scatterer state. For the problem at hand, (8)
still holds and becomes, by (1) and (5),

x=II(e p{'L (~ ""q "'(~)—q'"(0)+R(~))j}
Xexp{-' '~ '"'Lq "&(~) q "'(o)j}) (9)

Taking thermal averages in (9), we find

&&&)z
——exp—

/&2 s+1 sg 0(d +iosl ii

&,
//I I/ i2— (17)

2M(v Z—1

To facilitate the calculation of the Fourier transform
of (17), as required by". (6), we expand the time-de-
pendent factor in (17) in a series of modified Bessel
functions I„,following Z.G. The result is

(&& 0), (16)
where /&2= P&, /o, 2.

f'. To obtain &&&)2 for t(0, we invoke (7), obtaining for
all t

Kg s+1
&x) =exp &inca is m/27 (+&

—/—&[ i(/2) (18)
2M' Z—1 n=~

x&exp{i~& L~ s"'q&"'(/) —
q&

"& (0)1})2 (10)

&&&)r=II(expLiioR(&)j)r exp e //'/'$e '"' e'"'j—
4Mcv

since

Lq&,
&2& (/), q&,

&2& (0)j= (e '"' e'"')/2M(u. —
In (10), ( )r indicates an average over a thermal
distribution of initial states of the complete system of
scatterer plus loss mechanism (or temperature bath).

where y—= /&2/L2Mco sinh(&o/2T) j. For P=O, this yields
the expected delta function contributions to the cross
section; the 22th term in (18), which corresponds to the
transfer of e quanta co, gives a term proportional to
/'&(e na&) For P—&0, .a general broadening of the delta-
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function peaks occurs, which can be seen in the following
way. We consider Qrst the case p&(1, which holds in
many cases of practical interest. If I„(pe @"/') be ex-

panded in a power series and only the leading term

pression for the differential cross section is

a2h
-

/i2 z+1 m ~ yl "I+2m

a(8,e) = exp'— Z
2~ko 2/lf'o/s —1 n ~ y=o2~ "~ [eats~/2

(po //I &—I/2) I ~1

retained, we find from (6), (18), and (19)

(19)
P(l. l+2P)

X (21)
LP (i e

i
+2p)/2g'+ (c—/ta))'

III. DISCUSSION

o (8,e) =Q o„(8,e),

with
s+1

exp
a'k 23fco s—1

0 „(H,e) =
2mko 2l I (g [

ts /2

pf I

X . (20)
(P I

e I/2)'+ (e—mo)'

Thus, in the approximation represented by (19), the
width of the line corresponding to the transfer of n
quanta is P ~

e ~; in particular, for elastic scattering, i.e.,
//, =0, there is eo broadening at all, oo(8,e) remaining
proportional to 5(e) and with an integrated value equal
to that obtained with P=O.

For the case of arbitrary p, the use of the complete
expansion of I„results in power series representation of
o (8,e) whose leading term is proportional to y~ "~, as
shown in (20). Each term of the expansion contributes,
in the case P=O, a delta function, which becomes
broadened when p) 0, except in the case n =0. For I=0,
the leading term is unbroadened when P)0, but all

higher order terms are broadened. The complete ex-

Both Vineyard' and Singwi and Sjolander' have con-
sidered dynamical models in which the random forces
result in the ever increasing separation of the scattering
system from its initial position. As Vineyard has noted,
by inference from a number of specific models, a non-
localized scattering system will not possess infinitely
sharp neutron elastic peaks, whereas a well-localized

system will. The present work has been concerned with
the effects of interactions of the scattering system with a
surrounding temperature bath which cause Quctuations
in its energy state but not in its spatial position. Thus, a
broadening of the elastic neutron peak is not to be ex-

pected. The results of the present investigation with the
Senitzky oscillator model bear out this prediction.

The formalism presented here may be applied to the
scattering of slow neutrons by a crystal lattice. The
mass-point harmonic oscillator is replaced by a lattice
oscillator, while the coupling to a temperature bath
corresponds to the coupling of a lattice oscillator to
other lattice oscillators via anharmonic terms in the
lattice potential energy.
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