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Approximate Calculation of the Anisotropy of the Re]axation Time of the
Conduction Electrons in the Noble Metals
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The ratio of the relaxation times on the "belly" and on the "necks" of the Fermi surface is estimated
numerically by very crude methods. It is shown that the relative amount of s-wave to p-wave scattering by
impurities is important and that Umklapp processes play a major role in phonon scattering. The ratio depends
on impurity type and on temperature in just the right way to explain qualitatively the variation of the Hall
coeScient in the metals and their alloys.

INTRODUCTION
" 'T has been shown elsewhere' that it is impossible to
~ ~ get good agreement between theory and experiment.
for such properties as the Hall effect, magnetoresistance,
thermoelectric power, optical absorption, etc. , in the
noble metals unless we assume that the relaxation time
of the electrons is different at different points on the
Fermi surface. From these transport properties we can
infer the general way in which v must behave, but we
still lack a direct calculation starting from the electronic
band structure of the metal a,nd the type of sca, ttering.
This is the problem which is studied here.

Let it be said at once that the full problem is of ex-
treme complexity. Even supposing that we knew exactly
the shape of the Fermi surface, the electron velocity for
each value of k, the matrix elements for all scattering
processes, the lattice spectrum, and all, we should still
be faced with the very difFicult mathematical problem
of solving the Boltzmann equation —an integral equa-
tion over the Fermi surface. Indeed, we should then find
that a relaxation time could not be defined uniquely at
each point on the Fermi surface; it would depend on the
direction of the electric field, the existence of thermal
gradients, magnetic fields, etc. This can easily be shown

by an inspection of the integral equation and the con-
sideration of special cases.

Nevertheless, we must not escape in this way from all
responsibility towards this problem. Experience and
physical intuition tell us that there must be something
very like a relaxation time for the state Ik) inversely
proportional to the probabilities of transitions into and
out of this state weighted to allow for the big effect on
an electric current of scattering through large angles.
We are bound to find an expression similar to the exact
solution in the standard isotropic case.'

1 2' d5'
~ (1—cos8) l(k k')I'

,'.r(k) h ~ Av

where (k,k') is the matrix element for the transition
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s J. M. Ziman, Llectrons and Pltonons (Oxford University Press,
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from
I k) to the sta, te

I
k') in the region dS' of the Fermi

surface, where the velocity is v'. We assume here elastic
scattering.

In the free-electron case, 0 is just the angle between
the wave vectors k and k'. Our more complex system
does not have this solution; even the plausible guess
that 0 might be the angle between the electron velocities
at k and k' does not generate a better formal solution of
the integral equation, and is not easy to deal with
mathematically. But the main thing is that the transi-
tion probability in the integral should be strongly
weighted for processes in which the electron velocity
makes a large change —for example, when it is scattered
right across the Fermi surface. So me shul/ assume thai

the fornilla (1) is calid, trtith 8 the atigle betweeri k arid k'.
This is our first approximation.

IMPURITY SCATTERING

To proceed with the calculation, we need a formula
for the Fermi surface. We shaH use the "8-cone" model' '
in which the wave function of the state

I k) is expressed
in the form

Ik) ctk exp=(ik r)+pk expl i(k—g) r]. (2)

The coefficients crk, pk can be calculated at each point
of the Fermi surface from the standard formula for the
mixing of plane waves. 3~lore exactly, we should use
orthogonalized plane waves (OPW's), in place of the
simple waves, but the difference is not relevant to our
present purposes.

For the matrix element for scattering by an impurity,
we then write

(krak ) trk trk'+k' —k+tL tak'+k' —g'-k+g

+ctk Pk'+k' —g'—k+4k crk'+k' —k+gq (3)

where Ui x is a matrix element for the scattering of a
single plane wave (or single OPW) between k and k'.
This formula is not exact, since it uses the Born ap-
proximation, but it ought to give a reasonable semi-
quantitative description of the form of the scattering
probability. In particular, it takes care of the inter-
ference between the two waves in (2) which is, as we

' J. M. Zirnan, Proc. Roy, Soc. (London) A252, 63 (1959),
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shall see, very important in the hnal result. Hut for an
exact calculation we should need a better theory of the
functions Uk

Even now, the integra, tion of (1) is extremely heavy
work. We make two further approximations, which de-
pend mainly on the fact that Uk k is a slowly-varying
function of

l

k' —k
l

—that is, of the angle 0. 1Ve suppose
that the variation of U(0) over a single "cone" of the some

can be neglected Th.en k —g will always lie in the cone
that is opposite to the cone of k, and we can assume, on
the average, that it is equal to —k. Thus, we write

Uk' Q+g UQ—' ( gi —U(v' —0), etc. (4)

When we have put (4) and (3) into (1), and used the
normalization condition, n'+p'=1, we can reduce our
formula into the following expression:

T 2z'
(1—cos8)

r(k) h' &

X

foal:

U'(0)+U'( —0)]+2 'P'l:U(0) U( —0)]

+(- -P )(-"-P")-:LU(0)-U (--0)]
+2~P(U(0) U(~ 0)—

dS'
+2~'p'2l U'(0)+ U'(~ —0)])) (5)

~I

The coeKcients n and P are functions of k, and can be
taken out of the integral. But n', P', and 0 are all func-
tions of k'. We approximate again by noting that n' and
P' go through the whole range of their values on a single
"cone," where U(0) may be treated as more or less
constant. Thus, we replace n'P' and n"—P" by their
averages over a cone, and integrate the remaining ex-
plicit functions of 0 over a whole solid angle.

With these assumptions we write

1/. (k) = (T +(2-'P'),T.)+(-'-P')((-"-P"))
&& (T. T~)+2~P(T—+v(2 'Po') T ) (6)

2nP=+-' n' —P'=-' on the belly;

2nP= &1, n' —P'=0 on the neck.
(12)

These numbers are not to be supposed very accurate,
but they clearly indicate that n is much larger than p on
the belly, where a single plane wave or OP% is a good
representation of the wave function. On the neck,
however, we must have lcLl = lpl. There is still the
relative sige of the coefficients to be fixed. This depends
on the symmetry of the wave function at the zone
boundary. It now seems fairly certain' that the p state
lies lowest in Cu, and perhaps also in the other noble
metals; this makes the sign of 2' in (11) and (12)
always negative.

We now need only values at the various weighted
scattering cross sections, (7), (8), and (9). These are
easily estimated from the phase shifts for scattering by
charged impurities, e.g. , in the work of Blatt. But in-
stead of using such numbers, let us suppose that only
two partial waves are important. —the s wave and the p
wave —and that the corresponding phase shifts, 60 and
8~, are both small enough to write sinbo=80, etc. Ke then
have (dropping constant factors like h and v.)

T,= g (2l+1) sin'St=00'+3~i2
l=o

All these expressions have already turned up in pre-
vious calculations, ' and can be evaluated very easily.
6'ith Cu, or Au, as our model, we find

(2 'P')..-~-:, ( "-P")'---' (»)
We can now use our standard formula, s to find n and P
at any chosen spot on the Fermi surface, and hence
estimate the local value of 7-. But all we need for our
present analysis is some measure of the anisotropy of 7..
A convenient parameter is the ratio of the extreme
values of v, i.e., on the belly and on the neck. At these
points

where

T~ (1—cos0)——
h~ &

X-', LU'(0)+U'(m —8)] sin0d0, (7)
kr'

Tv = (1—cos0) U(0) U(n —0) sin0d0,

whence

Tv= P (2l+1)(—1)' sjn'8i=bo' —3&i'
L=O

T,= Q l sin'(8(+i —8i) = (00—8,)',
Z=1

r(belly) 84(bi/00)'

r (neck) 1—7 (bi/80) +63 (bi/60)'

(13)

(14)

d5'
Q By=— Q

4m. ~

(10)

4x'
T„T&=, (1—cos0)—

$2

X-'LU'(0) —U'(v. —0)] sin0d0, (9)

1 p
dS'

(2n'P')..=—,2~'P'
4~ ~ v'

This relation, plotted in Fig. 1, does not, of course,
really give precise numerical estimates of the ratio of the
extreme values of the relaxation time on the Fermi
surface. The calculation is obviously much too crude.
Nevertheless, it shows some important qualitative fea-
tures. If we look at Blatt's data, we find 0.5 (6l/6v(1
for most of the charged impurities. This would make the

4 B. Segall (private communication).' F.J. Blatt, Phys. Rev. 108, 285 (1957).
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2.0- charged impurities. This is also indicated by the experi-
ments on the Hall effect.

belly

&neck

Lo

0
0 0.5

PHONON SCATTERING

The above calculation gives us. some hope that we

may be able to calculate directly the anisotropy of v for
diRerent types of impurity, and encourages us to plunge
into the more complicated problem of the eRect of
phonon scattering on the electrons. We make our at-
tempt as follows.

First we note that (3) is still valid. In calculating the
electron-phonon interaction we only use first-order per-
turbation theory, so that the eRect on a mixed wave can
be expressed as a matrix element combining contribu-
tions from the separate simple plane waves. It is true
that when these are OPW's there are some corrections to
the simple Sardeen formula and the whole theory of
screening is much more complex, but Collins' has shown
that these are not large effects. Thus, we may write'

(15)
FIG. 1. Anisotropy of r, as a function of the ratio of the phase

shifts, for impurity scattering.

ratio (14) lie somewhere between 1.4 and 1.6. That is, r
is rather smaller on the neck than on the belly —which is
just what we need to explain the values of the Hall
coefficient in alloys of the noble metals. '

But we also note that when 8~((50, the ratio (14) tends
to zero. In other words, the relaxation time on the neck
is then very much greater than on the belly. It is quite
easy to see why this should be so. The ratio 6q/60

measures the relative proportions of p-wave to s-wave
scattering by the impurity. On the neck the electrons
are in pure p states. If the scattering of a plane wave is
s-like, then these electrons will not be scattered at all,
and their relaxation time will be very long. That is,
when the scattering of a single plane wave is isotropic,
there will be complete destructive interference of the
partial waves and no scattering.

This is just the sort of condition that might occur
when the impurity, for example Ag, has the same
valency as the parent metal, for example, Au. These
elements both have the same atomic volume so that the
eRect of the Ag on a conduction electron in the Au will

be due only to minor differences in the eRective po-
tential deep down in the ion core. We then expect the
scattering of a single plane wave (actually, a single
OPW) to be equivalent to the scattering by a very
localized perturbation, almost a 5 function. Such scat-
tering is well known to be s-like, i.e., nearly isotropic.
It is significant that the Hall eRect in the Ag —Au be-
haves as if r(belly) were very much less than r (neck), in
agreement with our analysis. In the Cu —Au system,
however, the diBerence of atomic volumes gives rise to
substantial phase shifts for the p wave' and the ratio of
relaxation times can then be much the same as for

To avoid difficulties with the lattice spectrum, we
shall assume (quite illegitimately, of course) that lolgi
tldieat and transverse razes have the same velocity. From
the three degenerate lattice modes of wave number g,
we can then construct a single mode whose polarization
vector e~ is parallel to (k' —k), and this is the one that
scatters; the other two will be polarized normal to
(k' —k) and need not be counted. This device keeps the
counting of transitions correct, but tends to underweight
certain types of electron-phonon Umklapp process
where the scattering is mainly by the low-frequency
transverse modes.

For the functional form of the rest of (15) we assume

sin(Er. )—(Er,) cos(Er,)
C(E) ~ G(Kr, )=,(16)

(Er,)'

where r, is, as usual, the radius of an atomic sphere. This
ignores a screening factor, and another complicated and
incalculable factor depending on the eRect of displacing
the ion core; these factors tend to cancel one another to
some extent, but ought to be included in a proper
calculation. It is reasonable to take

~

k' —k
~

=2k' sin-', 0,

where k& is, say, the radius of a simple Fermi sphere.
We must still allow for a most important eRect-

the part of the transition probability that depends on the
occupation number of the phonon states involved in
the scattering and on the conservation of energy in the
process. This is a mechanical calculation' in which we
include certain extra factors in (1),and integrate over all

' J. G. Collins (to be published).
7 J. M. Ziman, see reference 2, Sec. 5.8.' J. M. Ziman, see reference 2, Sec. 9.5.
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phonon wave vectors and over the energy of the anal
state

~

k'). In the case of electrical conductivity (but not
of thermal conductivity nor of thermoelectric power),
these integrations can easily be done; they tell us that
we shall get the proper answer if we include under the
integral sign in (1) the factor

~i csch'(hv/2k T),

l

I
/

/

/

where v is the frequency of the phonon involved in the
process of scattering from ~k) to ~k').

We naturally assume a Debye model, in which
FIG. 2. The minimum phonon wave vector for U-processes.

Av/kT= (q/Qg)) (8/T), (19)

q/QD ——v2 sin-', 8 for 0(8(-,'m.
,

qlQ = ' [-'( +x—8)j/ (-' +lx)
for -'~ (0(x,

where the angle x is defined so that

(20)

q;.lQD =~2/(1+cotkx), (21)

i.e., so that q=q;„when O=z. This function is con-
tinuous as we pass from 1V-processes to U-processes (a
necessary property of any electron-phonon interaction
theory; the zone boundary in the phonon reciprocal
space is as arbitrary as it is in electron k space) and
provides a reasonable interpolation formula between the
limits that we know; obviously it can only be a very
crude approximation to the true function.

For a point k on the neck it is easy to see that q;„=0.
Truly, here the distinction between X-processes and
U-processes is artificial, but we must retain it formally
so as to include all terms in the integral. But on the
belly, in the [100$ direction say, the point k is quite a
long way from the zone boundary, and further still from
points on the Fermi surface in the next zone. A rough
estimate, from the geometry of the surfaces in Cu, gives

q '-/QD=2 ~ (22)

with Q~ the Debye cutoff wave number. For E-processes
we can very easily calculate the contribution, putting
q=k' —k. This holds for small values of 8, until q

reaches its maximum, QD. But then we go over to
electron-phonon Umklapp processes, where the re-
lation between q and 0 is much more complicated. There
is only one simple general rule; when 0 is somewhere
near m, q will have reached a minimum value, corre-
sponding to a transition from k to the nearest point on
the Fermi surface in the repeated zone (Fig. 2). This
minimum value of q is really the most significant
parameter in the theory of U-processes, since it provides
a lower cutoff frequency, a minimum temperature,
below which U-processes involving the state k are no
longer possible. As we shall see, the value of r at k de-

pends strongly on this parameter.
To give arithmetical expression to this behavior, we

use the following formula:

We now have enough data to carry out the calculation.
We put (15), (16), and (17) into (7), (8), and (9),
including under the integral sign alto the factor (18)
with (19), (20), and (21). The result is of the form of

(6), except that the cross sections depend on k (through
the choice of q;„), and everything depends on the
temperature. I have carried out the integrations on a
desk calculator, and 6nd the following results:

T/e

~(belly)/r (neck)

0.2

2.2

0.5

0.9

First we observe that at "high" temperatures (T=8)
the relaxation times are about equal, on belly and on
neck. Thus, phonon scattering at high temperatures
partakes a little of the s-wave behavior [we can check
this by looking at (15) in detail] and does not give so
much anisotropy as scattering by charged impurities.
This is what we want for the Hall effect in alloys,
although to explain the magnitude of e* we want
7(belly) still to be a bit greater than r(neck) at room
temperature.

But we notice that the anisotropy of ~ increases
rapidly as we go to lower temperatures; at T=0.20 it has
already greatly exceeded the typical ratio for charged,
impurities. If we look at the temperature dependence of
the Hall effect, ' we find direct evidence of this —a rapid
drop in e* at around 100'K in Cu. This behavior stems
directly from the limit (15). U-processes for states on
the belly are electively "frozen out, "and the relaxation
time there, governed only by X-processes, increases
rapidly. On the neck there is no lower limit to q, and
U-processes contribute down to the lowest temper-
atures.

The above calculations, both for impurity and phonon
scattering, are extremely uncouth; it is to be hoped that
no one will be misled into treating these numerical
ratios as if they were exact. Nevertheless, without
straining the algebra or arithmetic, we find a pattern
which agrees qualitatively with the experimental evi-
dence. This pattern would, for example, be entirely
different if we had s-states at the zone boundary; for
impurity scattering the anisotropy ratio would then be
between 1.3 and 1.6, (depending on the ratio 8q/8e) and
would not become small when 8~/8e(&1, while for phonon
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scattering it would be much larger —something like 3,
and not so sensitive to temperature. The fact that all
three noble metals show the same behavior in their Hall
effects—both with alloying and with temperature —is
good evidence for the p-state lying lowest in all three.

It would be interesting to apply the same arguments
to the alkali metals, where the Fermi surface is not so
distorted, and where, it seems, the s-state moves below
the p-state as we pass from Na, through K, to Rb and
Cs.' Hut we lack serious data on the Hall effect, and
other manifestations of the anisotropy of 7., so that we
should have little chance of making comparison with
experiment. Another effect that might be calculated in

F. S. Ham, The Fermi Surface, edited by W. A. Harrison and
M. B. Webb lJohn Wiley k Sons, Inc. , New York, 1960), p. 9.

the way we indicate here is the thermoelectric power,
since this depends strongly on the way that r(k) varies
as we change the energy of k. For example, is Br(e)/8»
negative on the belly simply because increasing the
length of k reduces the value of q;„, and thus allows
many more U-processes? These, and many other ques-
tions in this field, remain to be answered.
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The infrared lattice bands of a quartz have been investigated at 297'K from 5 to 37@ in reliection and
transmission with polarized light. Previously published measurements of the optical constants do not agree
in this spectral range. It is shown that dispersion theory can Qt the data within experimental error throughout
the range, and accurate values of the dispersion parameters and the optical constants are obtained. This is
the first accurate dispersion analysis of a complex spectrum. A study was made of the accuracy of the
Kramers-Kronig method of analysis on this spectrum. The strength, width, and frequency of 14 optically
active lattice vibrations are given, 4 of which have not previously been established. From a consideration of
published Raman data, 10 of the resonances are assigned according to symmetry type as fundamental
vibrations.

I. INTRODUCTION

~ UARTZ was one of the first materials to be~ extensively investigated in the infrared. Because
of its scientific and technological importance it has
continued to be a frequent subject of investigation.
Vet, its optical properties in the infrared remain largely
unknown or uncertain. From an inspection of the
existing literature one cannot obtain consistent values
for the optical constants. The present work was under-
taken with the purpose of providing a comprehensive
and consistent account of the optical properties of 0.

quartz in the region of its strong lattice absorption
bands, 5 to 37 microns (li). In order to achieve this
purpose it was necessary to analyze the optical data
according to classical dispersion theory. The success of
this analysis demonstrates the applicability of this
theory to very complicated lattice spectra such as that
of quartz.

The reRectivity of n quartz (hereafter written simply
"quartz") at room temperature (297'K) was measured
in the range 5—37 p for the ordinary (0) ray and
extraordinary (E) ray with plane polarized light. The

transmission was measured in the range 7—27 p for the
0 and E rays with polarized light. The sample thickness
for the transmission was 0.00262 cm, which was
sufficiently thin to afford considerable transmission
between the main absorption bands. The range 5—37 p,

includes all of the strong lattice absorption bands.
Since a major aim of this work was to obtain a high
degree of accuracy in the measurements, they were
taken with great care and in many cases rechecked
several times. Particular attention was paid to elimi-
nating errors due to scattered light and incomplete
polarization. A quantitative dispersion analysis was
carried out with the aid of an IBM 704 computer on
the reRectivity for both the 0 and E rays. From this
analysis the optical constants for both rays were
obtained over the entire spectral region studied. The
extinction coefficients so obtained compare well in
the regions between the strong absorption bands with the
transmission measurements. The primary results of the
dispersion analysis are the values of the dispersion
parameters which describe the optically active lattice
oscillators. The measurements and analysis are com-


