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Ferromagnetic Relaxation Caused by Interaction with Thermally
Excited Magnons*
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The contribution of three-magnon processes to the relaxation rate of spin waves is investigated. Relaxation
occurs through the conQuence of two magnons (with the generation of a third magnon), and through the
splitting of a magnon into two magnons. The relaxation rate due to the confluence process is approximately
proportional to the wave number, whereas that due to the splitting process is approximately independent of
the wave number. The latter contribution vanishes at frequencies higher than —,

' (y4s.M) (y=gyromagnetic
ratio, &=saturation magnetization), and increases with decreasing frequency. The implications of the
theory with respect to the observation of spin-wave instability in a rf magnetic field parallel to the dc field
are discussed.

1. INTRODUCTION

'T was pointed out in a previous paper that the ob-
& - servation of spin-wave instability in an rf magnetic
6eld applied parallel to the dc field provides a new,
convenient method for the experimental study of re-
laxation mechanisms in ferromagnetic materials. In
this experiment (henceforth called the "parallel pump-
ing" experiment) the wave number of the potentially
unstable spin waves can be changed by varying the dc
magnetic field. One thus obtains information about the
variation of the spin-wave relaxation time with wave
number. This information should be helpful in identify-
ing the various relaxation mechanisms that may be
operative in any given case.

In this paper the spin-wave relaxation processes
arising from the dipolar interaction will be investigated.
The object of the paper is to determine their contribu-
tion to the relaxation rates observed in the parallel
pumping experiment. Similar problems have previously
been treated in the literature, ' ' but never without the
help of certain simplifying assumptions that are not
justihable under the conditions applicable in many
experiments. It is hoped that the results of this investi-
gation will help in the interpretation of experimental
data obtained from the parallel pumping experiment,

The theoretical discussion will be confined to three-
particle processes. It can be shown that the relaxation
rate caused by these processes is proportional to the
temperature in the high-temperature limit. Higher
order processes (four particles etc.) produce relaxation
rates which increase with a higher power of the tem-
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perature (T' etc.). The experimental results on yttrium
iron garnet' indicate that the relaxation rate contains
contributions which increase proportionally to the tem-
perature. This suggests that three-particle processes
a,ccount for an appreciable part of the observed relaxa-
tion rates.

The general theoretical method used in this paper is
well known. The Hamiltonian containing Zeeman en-

ergy, exchange energy, and dipolar energy is expressed
in terms of the amplitudes of the normal modes (spin
waves). The amplitudes of the normal modes are
quantum-mechanically interpreted as creation and anni-
hilation operators. The Hamiitonian contains a term
that is quadra, tic in the spin-wave amplitudes and also
terms that are of higher order. The eigenstates of the
quadratic part of the Hamiltonian can be characterized
by the occupation numbers of the various normal modes.
All higher order terms in the Harniltonian lead to
transitions between the eigenstates. Only that term in
the Hamiltonian which is of third order in the ampli-
tudes of the normal modes is considered explicitly,
because only this term leads to relaxation rates propor-
tional to the temperature in the high-temperature limit.

2. GENERAL THEORY OF THE THREE-
MAGNON PROCESS

It was first pointed out by Akhiezer' that the dipolar
energy contains a contribution which is of third order
in the spin-wave amplitudes. It, therefore, leads to
transitions in which one magnon is absorbed and two
are emitted (splitting of a magnon), and to transitions
in which two magnons are absorbed and one is emitted
(confluence of two magnons). In these transitions Zee-
man energy is converted into dipolar and exchange
energy and vice versa. The three-magnon process has
also been discussed by Kasuya' and by Sparks and
Kittel, ' who found that the relaxation rate increases
proportionally to the wave number. Akhiezer, ' Kaganov
a,nd Tsukernik, 4 and Akhiezer, Bar'yakhtar, and
Peletminskii, ' have calculated the thermal average of
the relaxation rates due to this process.

7 E. G. Spencer and R. C. LeCraw, Bull. Am. Phys. Soc. 5, 297
(1960);and private communication.
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Following Holstein and Primakoff' and Akhiezer, ' we
begin by expressing the components of the magnetiza-
tion vector in terms of creation and annihilation opera-
tors a* and u:

a(r) = V—*' Pk ake'a'. (3)

Here we have implied periodic boundary conditions
and the components of Ir are integer multiples of 2m./L,
where L'= V is the periodicity volume. The assumption
of periodic boundary conditions is merely a device for
simplifying the theoretical problem and has no physical
justification. Ideally one should use an expansion in
terms of the correct normal modes which satisfy the
physical boundary conditions, rather than in terms of
plane waves. Since the normal modes are very involved,
this approach is not very promising. The use of periodic
boundary conditions is justified if the wavelength 2m/k
is much smaller than the sample dimensions. Under
these conditions the boundary conditions at the surface
of the sample do not play an important role and the
normal modes locally resemble plane waves. By using
the plane-wave expansion (3) we thus restrict the va-
lidity of our results to modes whose wavelength is much
smaller than the sample dimensions. It will be seen later
that for the present purposes this is not a serious
restriction.

It follows readily from Eqs. (2) and (3) that the
operators ak and akt satisfy the commutation relation

&k+Ic' ~k' ~k Ok—k'y (4)

where 6k k is the Kronecker symbol.
We now express the energy of the sample in terms of

the operators ak and ak~. Ta,king into account Zeeman,
exchange, and dipolar energy, one obtains for the
Ha, miltonian

K=K&"+X,&",

where

K&'t =p (A .a„tuk+ —'BkLexp( —2ip )a„a „+c.c.]). (6)

K = Q (4'kkck" taktJk'6 k' +C.C.)~—
kk'k'r

P T. Holstein and H. PrnnakoG, Phys. Rev. SS, 1098 (1940).

Mz+&My= (2gpaM p)'&t(1 g—pft&t&!2M p)''

M, iM„=—(2gpttM p) l(1 gp—ttata/2M p) la,

M, =ufo —gp~Q Q.

Here, g is the spectroscopic splitting factor (g=2), pit
the Bohr magneton, Mo the satura, tion magnetization,
and the superscript dagger denotes the Hermitian ad-
joint. M, M„, and 3f, as well a,s a"' and a are functions
of r (position within the sample) and the operators a(r)
and at(r) obey the commutation relations

a(r)a'(r') —a'(r')a(r) = b(r —r'). (2)

We now introduce the Fourier components ak of a(r)
by the relation

Xq= cosh-', pk, pk ——sinhispk exp2ittttk,
(10)

coshlI'k =A k/Abtkc slnhlpk= By/Ably,

Abtk ——(A k' —Bk') l

gpB[(H+Dk') (H+Dk'+47rM sin'8 )]l. (11)

It is readily shown from Eqs. (9), (10), and (4) that the
transformed operators ak obey the same commutation
relations as the untransformed operators ak, and that
the quadratic part of the Hamiltonian assumes the
very simple form

Kt =pa AbtkQk tak+const. (12)

Thus, the equations of motion as derived from the
qua, dratic part of the Hamiltonian are separated and
the "spin-wave amplitudes" ak are the normal co-
ordinates of the problem. In terms of these variables
the third-order term of the Hamiltonian becomes

where

3C = P (4 kackccGkQkcG kii +C.C.),
kk'k"

+kk a"= (@kk k"~tc C'aa'tc" Pk ) (leak'~k" +Pk' Pk")
+ (C'k"k kPk" —C'k"a k*&a )Pk*&k

=~~a+'+' L»n2ilke '"(~k—
I pk I)

X (Xk Xk"+pa *pk")—sin28k" e'~"
X (4"—

l pk-
l )pk*ltk ]. (14)

The eigenstates of the quadratic part of the Hamil-
tonian (12) are characterized by the occupation num-
bers nk of the various spin waves (tak ——0, 1,2, ). The
cubic part of the Hamiltonian leads to transitions be-
tween these eigenstates. The transition probability is,
according to the well-known time-dependent perturba-
tion theory,

Xcf
——(2tr/A) lK&'&

l cf ft(E' Ef)

IIcre C.C. denotes the coInplcx conjugate of thc cxprcs-
sion preceding it and

fl t, gp——tt (Ii'+Dk'+2~M sin'Ha),

Bk= gPP27/ M sin 8k,

ekk a"= C sin28k exp( —iA) 8k+t, +t,.",
C= g7t—ptt(2gpftM/V)

*

Ok and pk are the polar angles that characterize the
direction of the wave vector k, and D is a phenomeno-
logical constant chara, cterizing the strength of the ex-
change coupling. In the Hamiltonian (5) we have
neglected all terms that are higher than third order in
the wave amplitudes ak and uk~.

Following Holstein and Primakoff, ' we now diagonal-
ize the quadratic part of the Hamiltonian. This is
a,chieved by a transformation to new opera, tors ak and
akt defined by

~ktak+Pkta tc—
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rates are, from Eq. (16),

r. 'I-*~~=2~&-' 2 ~.~ ~-((~'&—(«-&)
k'k"

X&(ax+~~ —~1, ), (18)

ra '~.pi=~k ' Z ~~ ~ ~(1+(«)+(N~"&)

FIG. 1. Graphical solution of the interference condition for the
confluence of a magnon k with another magnon k'. Note that the
solution k' becomes very large as k ~ 0.

Here E; and E~ are the initial and final energy, re-

spectively, and ~X"'~;r is the matrix element of the
perturbation energy with respect to the initial and final

states. Using well-known properties of the creation and
annihilation operators, one thus obtains for the rate
of change of the average occupation number («& of
the mode k

2'
(@~&=—p &~~a ~-L(~1+1)(«+1)(«"&

$2 pl@/1

—(eI,&(e~ )(«-+1&jb (~1+~~ —~~")

+-,'& ~"~ ~&(«+1&(«&(«"&

—(np&(«+1&(«"+1)jb(co.—(op —
coA, )}. (16)

X&(~~—~~ —~~"). (19)

For the confluence process, ~q )coq . Therefore («)(
(«), so that all the factors under the summation
signs are necessarily positive. It is obvious that the
relaxation due to conRuence will tend to zero as the
temperature tends to zero. On the other hand, the
relaxation due to splitting will remain finite at absolute
zero, provided that the interference conditions can be
satis6ed.

In thermal equilibrium the average occupation num-
bers are given by

(«&= t exp(~~, )—1j-', (20)

where +=A/kaT, ks is Boltzmann's constant, and T
the absolute temperature. It follows from Eq. (20) that
under the side condition appropriate for the conAuence
process (~~+cvq —~I,"——0),

1 sinh(era)p/2)
'II' I —

'QIc « (21a)
2 sinh(n&uq /2) sinh(crMI, "/2)

Similarly, under the side condition appropriate for the
splitting process (coq —roy —ruq =0),

sinh (era) g/2)
1+(«)+(«"&

=— (21b)
2 sinh(nor~ /2) sinh(n~~"/2)

These relations are only valid subject to the side condi-
tions with which the two expressions on the left of

Here

The factor —,
' in Eq. (16) compensates for the fact that

the Anal states are counted twice in the summation over
k' and k".

The factor of («& on th—e right-hand side of the
rate equation (16) is the inverse of the relaxation time
for the mode under consideration. For convenience it
may be separated into two contributions, one arising
from processes in which the magnon k combines with
another magnon k' to form k" (confluence), the other
arising from processes in which k splits into two mag-
nons k' and k" (splitting). The two relevant relaxation

2
C3

C
O

l~

I I I I

I 2 5 4 5 6

I/(7 =43 fT}/4) g

7 8

FIG. 2. Correction factor relating the theoretical result of
Sparks and Kittel6 to that derived in this paper plotted versus
1/ca on a reduced scale.
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Eqs. (21a, b) occur in the sums representing the re-
laxation rates. It should be noticed that as n —+ ~
(i.e., T —&0), the right-hand side of Eq. (21a) ap-
proaches zero, whereas the right-hand side of Eq. (21b)
approaches unity.

Consider now the "high-temperature limit" in which
the energy of all rnagnons that are involved in the re-
laxation process is small compared to k~T. If the fre-
quency ~& of the relaxing spin wave is in the I-band
region, the condition moI,(&1 is satisfied for all tempera-
tures larger than approx. 1'K. For the splitting process
the frequencies of the interacting spin waves must
necessarily be smaller than coI,. Thus, the high-tempera-
ture approximation is valid down to temperatures of
approximately 1'K in this case. For the confluence
process the frequency of the interacting spin waves can
be larger than coA, . Thus, the high-temperature approxi-
mation breaks down at somewhat higher temperatures
in this case. It appears, however, that the high-
temperature approximation is valid in most cases that
are conveniently accessible to experimentation. We
shall, therefore, concentrate on this case and replace
the right-hand sides of Eqs. (21a,b) by kirToik/Aoik oik

3. RELAXATION DUE TO CONFLUENCE
OF TWO MAGNONS

According to Eqs. (18) and (19), the relaxation rates
are represented by double sums over the wave numbers
k' and k". Because of the two conservation laws for the
"pseudo-momentum" and for the energy, however, the
summation is actually extended only over a two dimen-
sional surface in k' space. Before evaluating the relaxa-
tion rates explicitly we shall discuss the qualitative
features of this surface by a graphical method.

For the case of confluence of magnons k and k', the

FIG. 4. Graphical solution of the interference condition for the
splitting of a magnon k into two magnons k' and k —k'.

&I '=+a+I ' —&a (22b)

In Fig. 1 both sides of this equation are plotted as
functions of k' for two fixed values of k (ki and ks). The
drawing represents a two-dimensional cut through a
four-dimensional figure. Thus the surface in k' space,
along which the interference condition is satisfied, is
reduced to isolated points. The extension of this con-
struction to the two-dimensional k' space can easily be
envisaged. The parabolas shown in Fig. 1 must then be
replaced by paraboloids of revolution which intersect
along certain lines. The projection of these lines on
the plane of the drawing is also indicated in the figure.
It may be seen from Fig. 1 that with decreasing wave
number k of the magnon whose relaxation rate is being
calculated the wave number k' of the interacting magnon
becomes larger. As k approaches zero the solution of the
interference condition k' approaches infinity provided
that the dispersion relation can be represented by a
parabola. (Of course, this condition breaks down at
high wave numbers. ) It is plausible that this behavior
will lead to a wave-number dependence of the relaxation
rate. For details of this calculation the reader is re-
ferred to an unpublished paper of the author' and to a
forthcoming paper by Sparks, Loudon, and Kittel. ' It
is shown in these papers that the relaxation rate van-
ishes proportionally to k for sufficiently small wave
numbers. One obtains for spin waves propagating per-
pendicularly to the dc magnetic field (Ok= w/2)

conservation laws are

k+k'= k",
Oik+Oik' Oik" ~

These two relations may be combined to give the
"interference condition"

0 . O.l 0.2 0.3 0.4 H/4' M
where

rk
I
0»ri= s7rkaTp MD oik kF, (23)

FIG. 3. Frequency co& of long wavelength spin waves propagat-
ing perpendicular to the dc field and two times the minimum
spin-wave frequency (waves propagating parallel to the dc field)
as a function of the internal magnetic 6eld in reduced units. The
splitting process is allowed only if co&&2'~;~.

F=y(H+ rs47rM)oik '. -(23a)

' E. Schlomann, Raytheon Technical Memo T-233, July, 1960
(unpublished) .

"M. Sparks, R. London, and C. Kittei (to be published).
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Apart from the last factor F, our result; (23) is
identical to that given by Sparks and Kittel, ' who have
calculated the transition probabilities using the un-
transformed perturbation energy (7) instead of the
transformed perturbation energy (13). This procedure
is valid if the spin wave k travels in the direction of the
dc field or for a general direction of propagation if
H))AM. In order to compare our theoretical result
(23) with the experimental data obtained from the
parallel pumping experiment, the correction factor F
should be evaluated for that value of H for which the
wave number of the unstable spin waves approaches
zero (H, in reference 1). For convenience we introduce
the abbreviation

Replacing H by"
0 = SOIL CO~. (24)

H =27rMI (1+40') —17,

the correction factor F becomes

(25)

F= (1+-'0 ') —-'0. ' (23b)

4. RELAXATION DUE TO SPLITTING

The conservation laws for the splitting process are

k= k'+k",
~i=~a'+~i" (26a)

In Fig. 2, F is plotted versus 0. '. It may be seen that
the correction factor diGers by less than ten percent
from unity for 0-& 0.5. In the case of yttrium iron garnet
this implies that the correction is smaller than ten
percent for pump frequencies ls,rger than 5 kMc/sec.
At lower pump frequencies, however, the correction
factor is quite large (F=3 for yttrium iron garnet at a
pump frequency of 1 kMc/sec).

It should be stressed that the result (23) is applicable
only if k is sufficiently small (and T suKciently large).
It can be shown that the next term in an expansion of
7-g ' in powers of k is proportional to k', if the high-
temperature approximation is applicable.

tion (27) is satisfied only if

t&
I apl pVkBT7I Ii G&k d k

X~—~ k ~~(~~—2~~ ) (29)

The integral is evaluated in the Appendix, where it is
shown that

where
~A: spl Tq 0

r, '= ,', kgT(4vr3f)l—D iy,

(30)

(31)

and f(0) is a universal function of o.=a&i/~~. An in-
tegral representation of this function is given in the
Appendix. The integral can be evaluated exactly in
terms of elliptic integrals, but for the present purposes
it has been found more expedient to calculate an upper
and a lower bound

I fi(o) and f2(o)7 which bracket the
function f(o). The two bou.nds together with the esti-

&a & 3&iV,
where co~——y4m-M.

The graphical solution of the interference condition
for the present case is sketched in Fig. 4. Again the two
sides of Eq. (26b) are plotted as functions of k' for a
given value of k. The two parabolas, who'se intersection
determines the solution, now open toward different
sides. As a consequence the solutions k' of the inter-
ference condition remain finite as k approaches zero.
We may thus expect that the relaxation rate due to
this process will contain a contribution which is inde-
pendent of the wave number (in contradistinction to
the relaxation rate due to confluence). This expectation
is veri6ed by the detailed calculation presented below.

We shall evaluate the relaxation rate due to con-
fluence only in. the limit in which k ~ 0 and 8&——7r/2.
Under these conditions co~ =co~"——~coI,. Replacing the
summation over k' by an integration, the relaxation
rate is, according to Eq. (19),

Thus the interference condition is

+a =I —+I—a'. (26b)

l,5
I

For a given value of k this equation does not always
have a solution k'. Consider in particular the case that
k approaches zero in such a way that gi ——~/2. A solu-
tion k' of Eq. (26b) then exists only if coi is at least
twice as large as the lowest spin-wave frequency at the

. given dc magnetic field; i.e., only if

1.0

0.5
orI,))2(o;„. (27)

In Fig. 3 both sides of this inequality are plotted versus
the internal dc field H. It may be seen that the condi-

"Equation (28) of reference 1. Note that in reference 1, co

denotes the pump frequency, i.e., two times the spin-wave
frequency.

O. l 0.2 03 0.4 0.5 06 2/5

FIG. 5. Frequency dependence of the relaxation rate due to
splitting. The various functions are dehned in the text.
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5. DISCUSSION

In the present section we shall briefly discuss the
implication of our theoretical results with respect to the
parallel pumping experiment. A theoretical analysis
pertaining to a similar situation has recently been
published by Kaganov and Tsukernik. '2 These authors
have calculated the absorption in a rf magnetic field
applied parallel to the dc Geld using the assumption
that the spin waves are in thermal equilibrium. This
assumption restricts the validity of their results to the
range of relatively small rf magnetic field strengths.
The effects predicted by Kaganov and Tsukernik"
are very small and have not yet been observed
experimentally.

The parallel pumping experiment described in refer-
ence 1 is carried out at high power levels. Under these
conditions certain spin waves become excited. The
assumption of thermal equilibrium is, therefore, not
applicable for these (unstable) spin waves, a,lthough it
is still applicable for almost all other spin waves.

According to the theory described by Schlomann et

al. ,
t" the unstable spin waves have ei, ——ir/2 and k/0

if H&H„where H, is given by Eq. (25). Under these
conditions the assumption of periodic boundary condi-
tions can be justified, because the wavelength is much
smaller than the sample dimensions, so that the bound-
ary conditions cannot play an important role. If H) II„
however, the simple theory described in references 1
and 13 is not accurate enough because the wavelength
of the unstable spin waves is now comparable with the
sample dimensions. In this situation it is imperative to
formulate and solve the instability problem subject to
the actual boundary conditions. Since this problem has
not yet been solved, we shall restrict our discussion to
the case in which H(H, .

The three-magnon process contributes to the relaxa-
tion rate at k=0 only if 0-(—', . This relaxation rate can
be determined experimentally from the critical field at
H= H, (i.e., from the minimum of the critical field with
respect to the dc field). If II(H„ the wave number of
the unstable spin waves is given by

H+Dk'= H, . (33)

mated behavior of f(o) are shown in Fig. 5. J(rr) in-
creases with decreasing o. (i.e., decreasing frequency),
and vanishes for tr) ss. For ss —o«1 the function f(o)
is approximately

(32)

This function is also shown in Fig. 5. It may be seen
that it approximates f(rr) quite well.

is related to the relaxation rate by

II&crit= 2&+ &Ir, (34)

Here o. contains contributions from all those relaxation
processes, for which the relaxation rate does not reduce
to zero in the limit as k —+ 0. Thus the splitting process
contributes to n, whereas the conQuence process con-
tributes only to p.

The experimental data are very often presented in
the form of an equivalent linewidth AH& of the kth
spin wave, which is related to the relaxation rate v.I,

' by

yAHI, =rI '. (36)

The k-independent contribution to the equivalent line-
width that arises from the splitting process is, according
to Eqs. (30), (31), and (36),

6 H.ip=t-,' n. n~t-'= —,'skiiT(4irM)iD-~j(~), (37)

where f(o) is given in Fig. 5.
The exchange constant D is related to the Landau-

Lifshitz exchange constant A by

D= 2A/M. (38)

Numerical values of A and D can be inferred from the
specific heat at low temperatures. According to Kunzler
et al. ,

t4 for yttrium iron garnet A =4.3&&10—"erg/cm;
hence D=4.4)&10 ' oe cm'. Ke thus 6nd that at room
temperature (4m&= 1800 oe) the factor of f(o) on the
right of Eq. (37) is approximately 0.37 oe.

It should be kept in mind that other relaxation
processes also contribute to o.. For instance, the presence
of minute impurities of rare earth ions will lead to a
k-independent relaxation rate through a mechanism dis-
cussed in detail by Kittel and his collaborators. "It can
be shown that relaxation processes arising from the
magnetoelastic energy and involving either two mag-
nons and one phonon, or one magnon and two phonons,
also contribute to 0..

The second term in Eq. (35) arises from those proc-
esses for which the relaxation rate varies linearly with
wave number. According to Eqs. (35), (34), (33), and
(23), the contribution of the three-magnon process is

Here we have taken into account that the relaxation
rates 7 &

' as calculated in this paper refer to energy re-
laxation. Therefore r& ' equals twice the amplitude re-
laxation rate (usually denoted by r)&). If r& ' varies
linearly with k (as was shown in Sec. 3), the critical
field will, according to Eqs. (34) and (33), vary linearly
with (H, H)l:—

IIt„;r n+ p (H——, H) '. —

According to references 1 and 13,the critical rf field P„„ri=skriTD lF(o), (39)
'2 M. I. Kaganov and V. M. Tsukernik, J. Exptl. Theoret.

Phys. (U.S.S.R.) 37, 823 (1959) [translation: Soviet Phys. —-JETP
37(10), 587 (1960)g."E. Schlomann, Raytheon Technical Report R-48, 1959
(unpublished).

"J.E. Kun'zler, L. R. Walker, and J. K. Gait, Phys. Rev. 119,
1609 (196O).

C. Kittel, Phys. Rev. 115, 1587 (1959); P.-G de Gennes,
C. Kittel, and A. M. Portis, Phys. Rev. 116, 323 (1959); C.
Kittel, J. Appl. Phys. 31, 11 S (1960).
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where F(0) is given by Eq. (23b) and Fig. 2. It is con-
ceivable that relaxation processes other than the three-
magnon process also contribute to P.

Equation (35) may be regarded as the beginning of
a power series in (H, H)l—. Higher order terms arise
if the relaxation rate contains contributions that vary
as k', k', etc. , and/or if the contributions that vary as
k' and k' depend explicitly on the magnetic held. The
relaxation rate due to conAuence of two magnons in
fact depends explicitly on H fEq. (23a)7. This has not
been taken into consideration in Eqs. (35) and (39)
because its effect on the critical field is equivalent to
the eGect of those contributions to the relaxation rate
that vary as k'. Since the latter have been neglected it
is more consistent to neglect the former also. The
measured values of the critical field can usually be
fitted quite well by a relation of the type of Eq. (35)
with n and P independent of H.

In reference 1 the experimental data were tentatively
explained on the basis of a linear dependence of the
relaxation rate on k'. It has now been found that the
data agree much better with Eq. (35), indicating that
the relaxation rate varies in fact linearly with k. The
theoretical value of P..„ri (Eq. (39)j agrees in order of
magnitude with the experimental value obtained at
room temperature on yttrium iron garnet with a pump
frequency of 9.42 kMc/sec. LeCraw and Spencer" have
found that for yttrium iron garnet the relaxation rate
at k=0 increases sharply at frequencies below 3 kMc/
sec. This is exactly the behavior expected on the basis
of the present theory. Further experimental evidence in
support of the theory has been presented by Green and
Schlomann "
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APPENDIX. RELAXATION DUE TO SPLITTING

In the limit as k —+0, k" approaches —k'. Thus,
accorchng to Eqs. (17) and (14) for 8& ——m/2,

shown that

Consider now the delta function that occurs under
the integration sign in Eq. (29). For convenience it may
be rewritten as

8 (~k —2~k )= 2rdk8 (~k' —4r01C')

= 2(ui, 8fvip' —ky'$ (H+ Dk")
&& (H+Dk"+47rM sin'8i, )$) . . (A5)

The surface in k' space over which the argument of the
delta function vanishes is given by

Dk"= —(H+ 2~M sin'8i )
+ t (2~M)' sin'8i, + (a&i,/2y)'7'. (A6)

Since II and cok are related by

equi,
2 =y'H (H+4rrM),

one Ands, after elimination of II,

(A7)

Dk'2/2~M = cos28, .+ (sin'8, +~')'*—(1+4~')-:, (Ag)

where a=~i,/~ia. In Fig. 6 we have plotted E'=k'
&& (D/2mM)'* versus 8i,. in polar coordinates for various
values of 0-. Each curve has the form of a "figure eight. "
Only one loop of the curve is shown for the cases 0-'= 0.4,
0.25, 0.03, and 0.01. As 0- approaches ~3 and zero, the
curve contracts into the origin. The angle Oo at which
the two arms of the eight cross is always less than 30
degrees. The maximum value of E' is obtained when
01.——0 and fT'= ~', .

Equations (A4) and (A5) are now inserted into Eq.
(29) and. the integral is evaluated in polar coordinates.
The integration over P& can immediately be carried

(l ~
—l~' I)'= exp( —0') =v(H+Dk")~ ', (A2)

i~i'4+Iji Pi j

=—,'f1jcoshfi, coshfi+sinhPi sinhiPi cos2(pi —pi, .)$
=—',( ) 'I + '(H+2 M)

X (H+Dk"+2mM sin'8i, .)
+y'(2~M)' sin'8i, . cos2 (Pi, —gi, .)$. (A3)

Combining Eqs. (A1), (A2), and (A3), and using the
fact that ~~.———,'co~, one obtains

3 i i, i ——4C'(de ' sin'28'. y(H+Dk")
)& (~i,'+2y'(H+ 2~M) (H+Dk"+ 27rM sin'8i )

+2y'(2')' sin'8i cos2(@i,—Pi, )]. (A4)

&—i i i=4~@'—a v —i(
(A1)=4C' sin'28& (X& —

~
p& ))') X&4&+p&.*q, ~'.

Here we have used the fact that X ~ =XI, and IJ, ~
——p~. .

With the help of Eqs. (10) and (11), it can ea,sily be ,25

' R. C. I,eCraw and E. G. Spencer, Bull. Am. Phys. Soc. 5,
297 (1960).

'7 J.J. Green and E. Schlomann, J.Appl. Phys. 32, 168S (1961).

Fxo. 6. Solutions of the interference condition for splitting in
the limit as k ~ 0, Of, =m/2. The numbers in the 6gure refer to 0',
where 0 =oui/co~.
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out, since this variable does not occur in the argument
of the delta function. We may thus replace A» I, by
the average value A q q I, taken with respect to &1, , in
other words, the expression given under Eq. (A4) with
the last P-dependent term omitted. For convenience we
introduce the following abbreviations:

Hence

C—d=GDM (O' S ),
2 2 (A17)

ac bd—= 4C24o44'o 'z(4o's+ (1+4a') 'z (o'+ s') j.
According to Eqs. (A13) and. (A7),

1 p2mMq l
k"dk'=-i

i Ls+1—(1+4 'o)&]lds .(A18)
2&Di

(A19)

(A20)
and

zl

f(o) =—
~

g(s)ds,
03~ zp

(A21)
Since d4k'=4skz2dk' d(cos8q) (where the integration
limits on cos8q are 0 and 1), and since d(cos8) = z'x-ldg,
one obtains from Eqs. (29), (A4), (AS), and (A9) g(s) = s-lLz+1 —(1+4 ')-'*)lX[2s—( '—s') j'*

XLg —s2)XPg2s+(1+4o )'*(o +s2)$. (A22)

X= COS 01c~)

A Iz~g~y=slI1 84~ cos 84;~(a—b cos 8pi) =x(1—x)(a bg),

16C2~ —3 (H+DkI2)L~ 2+2 2(H+ 2~M) Thus, from Eqs. (A10), (A11), (A16), (A17), (A18),

X (II+2sM+Dk") j (A9)
&k apl &s

b = 16C24og 'y'(H+ Dk")4~M (H+ 2~M), where

c=4~~4 M(H+Dk"), r, '= ,', k—sT(4—7rM)'*D '*y,

d =4y'(H+Dk") (H+Dk" +4sM) 4oI,'. —

where

rI, 'izpy=2VkzTm '5 ' ' k"dk'F(k'), (A10)

I

F(k')= I dxxi(1 x)(a —bx)8(c—x d)—
~o (A») Th-,

(A23)(o' —z')/2«(o' —zo')/2«

2s &&2s—(o'—s') & 2sL1 —-'(o' —so')zo-'j. (A24)=dzc "'(c d) (ac bd)—, —

In order to obtain an estimate of f(o), we note that
throughout the integration interval

provided that 0(d/c(1. This condition is satisfied as
long as k'&kp, where

We now de6ne a function g~(s) analogous to Eqs. (A22)
except that 2s—(o'—s') is replaced by 2s. Then,
according to Eq. (A24),

2y (H+Dko') —(u4, ——0. (A12) a~(z) & g(z) &a~(s)L1—z(~' —so')so 'j'*(A25)

so ——(1+4o') l—1,

and the upper limit, according to Eq. (A12),

(A14)

(A15)

where o.=4oI/4o~. Using Eq. (A7) the functions a, b, c,
and d are now expressed in terms of z and 0-..

a= 4C'o 'sL2o'+ (1+4o')-'*(1+s)j,
b=4C'o '(1+4o')~z,

c= 2'~ z,

d =4o&Ls(s+2) —o'j.

(A16)

F(k') vanishes if k') ko. Thus ko is effectively the upper
integration limit in Eq. (A10).

For convenience, we introduce a new integration
variable

s= (H+Dk")/2m M.

The lower integration limit is then, according to Eq.
(A7),

The integral over g&(s) can readily be evaluated, with
the result

f~(~) &~f(~) &~f~(~),

f.(-)= L1—:(--s")"-l'f, (-).

(A27)

(A28)

The functions f&(o) and fs(o) are plotted in Fig. 5,

Zg

f~(~) =~ ' g~(z)dz
~0

=2:o-'(—(2/7) xy' ——,'(1+6o'—x)y'

+-', (1+6o'—x')y'+o'(8o —x)y

+a4(8 —7g) (g—1) z tan 'Ly(g —1) &$), (A26)

where
x= (1+4o')&,

y= (o —x+1)'*.

According to Eq. (A25), since the integrand is always
positive,


