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The de Haas-van Alphen effect for a system of interacting fermions is investigated. It is shown that,
granting certain analytic properties (which were used before in establishing the existence of a Fermi surface,
and which have only been established in the sense of perturbation theory), it is possible to obtain a simple
expression for the oscillatory part of the thermodynamic potential. In particular, one 6nds that the de
Haas-van Alphen oscillations have the same amplitude and period as in the usual quasi-particle picture, but
that the phase is given by a more complicated proceedure.

I. INTRODUCTION Haas-van Alphen (DHVA) effect: namely, that the

magnetization is not a monotonic function of the fieM
strength B, but undergoes oscillations when viewed as
a function of 1/H. The period of the oscillations is re-
lated to a purely geometrical property of the Fermi
surface (FS).' Similar oscillations occur in other physical
properties such as the heat capacity, the magneto-
resistance, the Hall coefficient, etc. For simplicity we
shall refer to these collectively as DHVA oscillations.
What we shall show here is the following: given the
basic analytic properties of the propagator which have
been established to arbitrary order in perturbation
theory, the DHVA oscillations are again present in the
equilibrium phenomena. More specifically, it is shown
that the entire oscillatory behavior of the thermo-
dynamic potential 0 (of the grand partition function)
has exactly the same form as one would get if one as-
sumed that the elementary excitations introduced in I
behaved just like independent particles in a magnetic
field. From this expression, the DHVA oscillations of the
magnetization or heat capacity can be calculated by the
usual formulas.

In Sec. II, the part of Q responsible for the DHVA
oscillations is isolated and expressed in terms of the true
single-particle excitation energies in a magnetic fieM. In
Sec. III the single-particle propagator is studied in
detail. In particular, the gauge invariance of the original
Hamiltonian is shown to determine the essential prop-
erties which we need. The true single-particle energies in

' 'N a recent paper' we have studied some properties of
- ~ a system of interacting fermions, which are related
to what might be called the "single-particle" aspects of
such a system. These included the existence of a sharp
discontinuity in the momentum distribution, defining
the Fermi surface, and simple formulas for the heat
capacity and spin paramagnetism in terms of certain
effective single-particle excitation energies. The tech-
nique used for studying the effects of interaction among
the fermions was that of Luttinger and Ward. ' The
existence of these single-particle properties is related to
an analytic property of the single-particle propagators
which appear in LW. This property has only been
established on the assumption that one may expand
certain quantities in powers of the interaction strength. '

In this paper we shall continue to assume this analytic
property, and use it to investigate the response of an
interacting many-fermion system to an external homo-

geneous magnetic field. As is well known, 4 the inde-

pendent-particle model leads to what is known as the de

~ This work was supported in part by the Once of Naval
Research.

' J.M. Luttinger, Phys. Rev. 119, 1153 (1960).We shall refer to
this paper as I.

~ J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
This paper will be referred to as LW. We shall use the notation of
I and LW as far as is practical.' J. M. Luttinger, Phys. Rev. 121, 942 (1961).' See, for example, A. H. Kahn and H. P. R. Frederikse, Ad-
vancesin Solid-State Physics, edited by F. Seitz and D. Turnbull
(Academic Press, New York, 1959), Vol. 9, p. 257; A. B.Pippar
EePorts on Progress in Physics (The Physical Society, Londo
1960), Vol. 23, p. 176,

d, 5 The general treatment for an arbitrary Fermi surface is found
n, in I. M. Lifshitz and A. M. Kosevich, Soviet Phys. —JETP 2, 636

(1956).
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an external field are then shown to be, to the accuracy
required for the DHVA effect, just what one wouM

expect for quasi-particles of charge e in the external
field.

G=Gp+Gr+G. , (5)

In (5), Gs means the part of G which is Geld dependent
but has no explicit DHVA oscillations in it, taken at
absolute zero. G~ is the first temperature correction to
this. By the usual Sommerfeld treatment of the integrals
arising in Fermi-Dirac statistics, one easily sees that

Gr- (kr/p)'G, . (6)

6„,is the leading oscillatory term of 6, in the sense we
have been discussing. lt is not diKcult to see that

G-.—(~/p) 'Gs (7)

II. OSCILLATING PART OF THE THERMODYNAMIC
POTENTIAL

From (I.75) the thermodynamic potential Q is given

by
j.

Q= ——P Tr(in). +G(i.,)—f,]
p

+S'(f )G(f )}exp(i 0+)+Q'{G), (1)

Q'(G) = )contribution of all closed-linked skeleton
diagrams, but with S„(f1)b„„replaced by
s„'(t )]' (2)

S'(li) is the matrix propagator and G(i 1) the matrix
proper self-energy part, related by

s'0-) = 1/(t. ——G(r )], (3)

where e is the unperturbed single-particle Hamiltonian
of the fermions. The matrix propagator formalism of I is
necessary because in the presence of an external mag-
netic field the translational invariance of the interaction
no longer insures that an incoming line in a propagator
has the same quantum numbers as an outgoing one.
Further we shall also be interested in the case of elec-
trons in an external periodic potential as well as the
external magnetic field and the interaction, and for this
situation the matrix propagators are of course necessary.

To isolate the oscillatory part of (1) we have to
consider some orders of magnitude. There are three
relevant energies in our problem: the chemical potential
p, the thermal energy kT, and the magnetic energy
co= eH/risc. (Un—its such that A= 1 are chosen throughout
this paper. ) The range of interest for the DHVA effect is

kT) Go((p)

and kT not exceeding cv in order of magnitude. The
leading term in the DHVA effect is the one which we
obtain by dropping corrections in (kT/p)', and powers
of ro/p beyond the first which is necessary to give an
effect. The ratio kTja1 is not assumed small, however.

Let us write 6 as follows

Q= P Tr(lnLe+Gs(|, )—|.,]
+So'(f )G 0 )) exp(i 0+)+Q'(Go). (11)

We next have to consider the oscillatory contribution
of Q' to (11).This can only come from summations in
the intermediate states over the propagators So'. Now
these oscillations are a nonanalytic type of behavior in
magnetic field, the argument of the trigonometric func-
tions containing 1/H. s Therefore, they can only come
from places where some Sp (f'1) becomes a slilgular
matrix. Just as in the case of a simple diagonal propa-
gator this only happens when f1 is very near p. Gp(i 1) can
be resolved into an Hermitian and anti-Hermitian part,
the anti-Hermitian part being positive definite and ap-
proaching zero as (1 1 p)' for f'1—near p, .' This means that
except for l 1 near p, 1 1 s Gs(l—1) c—annot vanish and Ss'
cannot be singular. Therefore, the contribution of 0' to
the oscillatory behavior of 0 only comes from a little
region of each line close to p. Since we are interested in
the leading term of the oscillatory behavior, it is ob-
tained by taking this contribution in any diagram once
from each line and ignoring it from the rest of the lines
in a diagram. Therefore, the oscillatory behavior of 0'
is the same as that of'

» —Z so'0 1)L)0'1) exp 0 io+)
p

(12)

where D(l &) is the matrix we get by opening a single line

These results on G(f~) follow in almost identical fashion to the
corresponding ones' for a simple propagator.' The factor exp($~0+) in (12) is only necessary for those con-
tributions which lead to a D(g~) independent of g~. It comes be-
cause in those diagrams there is the prescription in the original
formalism that for a disconnected propagator (not connected to
others by p& summations), we must multiply by exp(&&0+).

under the conditions given above. This is done in detail
for a simple case in Appendix A, but the result is quite
general, and obtained by essentially the same method.
Therefore,

G.„/Gr —( o/k T)'(p/(0)-))1,

so we may drop G& for our purposes.
Further, by the stationary property of the expression

(1) for Q, viewed as a functional of G, we have

—1
— 2 T (l L +Go(i )—f ]+S '(i' )Go(i' ))

p
&&exp(i 10+)+Q'(Gp)+O(G. ,,s). (9)

In (9),
Ss'(fi) = 1/D 1 e —Gs—(i 1)] (10)

Again, consistent with our assumptions, we can drop the
last. term in (9).This is because it is Of(o&/p) ].The rest,
as we shall see, gives rise to conventional DHVA
oscillations in Q, which are of order of (o~/p)'*. LSee, for
example, reference 5, Eq. (2.17).]Therefore, the leading
term of the DHVA oscillations is contained in
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in all possible ways for the closed-linked skeleton dia- and (1g) becomes

grams, dropping all oscillatory contributions. But this
is just Goo t). Therefore, the oscillatory part of 0'{Gs}is
contained in

= ——P ln(1+e~i&-~")). (22)
P r

Tr —P So'({i)Gt) Q )) exp({ )0+)

Combining (13) with (11), we see that,

1
&)-....~= ——Tr 2 i{in[a+Go(t i) —{'ij}

(13) The expression (22) is exactly the thermodynamic
potential for a collection of independent fermions with
the energy levels E„.' It only remains to investigate
these levels for our case.

III. SINGLE-PARTICLE EXCITATION ENERGIES IN
THE PRESENCE OF A MAGNETIC FIELD

Xexp({ i0+)
- osc part

(14)

The reasoning which leads from (11) to (14) is, inci-
dentally, formally identical with that which leads to the
expression (I.44) used to compute the first term in the
temperature dependence of Q.

We shall drop the notation "osc part" from (14) from
now on, it being understood that the equation is only
valid for the computation of the oscillatory part of Q.

Just as in I, let us introduce the characteristic values
of the matrix e+Gp((')), which we shall call L„g')).Then
(14) becomes

1
f1= ——P P exp(t, o+) ln[L„({.,)—{,j.

lim L„(x—ir)) =—Q„(x)+iJ,(x).
q —&0+

(17)

J„(x) is non-negative and behaves like (x—p)' as x
approaches p. Therefore, in the neighborhood of p
(which is the part we need for the oscillatory behavior)
J„(x) approaches zero, and we may write from (I.49)

ds
g(x—Q„(x)),

ee(* s)+1—

By means of the usual argument of I.W (Appendix
A), we may write (15) as

f ds 1
{ln[Q„(x)—x+i2,(x)]

~ ~ .e« -»+12~i
—ln[Q„(x)—x—iJ„(x)]}, (16)

where

A'= A+vx (23)

(x being any scalar function of position), all physical
results are unchanged. In particular this means that the
energy levels E„must be invariant under the trans-
formation (23). This in turn means that the "Hamil-
tonian" e+Go({i), from which the E, are computed,
must be a "gauge-invariant" operator in the same sense
as any single-particle Hamiltonian for a particle in a
magnetic field. We now make this statement more
precise and prove it.

It is convenient to work in the coordinate representa-
tion. For this representation the total Hamiltonian of
the system takes the form

1
dxit, t(x)sit, (x)+— dxdx'P t(x)P t(x')

2~

(x,x')P."(x')P. "(x). (24)

Here repeated spin indices (o,o.',o.",o.'") are summed

over. v„," " (x,x') is the interaction between a, pair of
particles (assumed velocity-independent for simplicity
of writing). e is the Hamiltonian of the individual

particles. For the case of a particle of mass m, charge e,
magnetic moment p, B, spin —'„moving in an external
periodic potential U and external magnetic field II, we

have

To study the e6ect of an external magnetic field on
the single-particle excitation energies, it is necessary to
study the field dependence of the propagator. To do this
we shall make use of the gauge invariance of the entire
theory. That is, if the vector potential A is replaced by
A', where

where

0(i) =1, f,&0
=0, $(0. (19)

[p—(%)A]'
+U' —uzi)H a,

2m
(25)

I.et us introduce as usual the "single-particle excita-
tion energies" E„by

E,—Q, (E,) =0.

0('-Q, (*))=0( -E,),

where o is the Pauli spin matrix vector.
Next we need the matrix propagator in the coordi-

nate representation. That is, we need to investigate
5'(xo-,x'o'; li). As is convenient for such general dis-

We emphasize again that expression (22) is only valid for
calculating the oscillatory part of Q.



1254 J. M. LIITTI N GER

cussions, we write this as'

P

5'(xo-, x'o.', ( /) = " e r'"5'(xo-, x'o.', u)du, (26)

5'(xo.,x'0', u) =Tr(exp[P (0—X+//cV)]

XT(y..&(x',u)~I. (x) )), (27)

Since the different components of p —(e/c) Vx commute,
there is no ambiguity about the order of the factors
in (39).

We can only satisfy (39) identically for arbitrary A

if the vector potential only enters in the combination

p —(e/c)A. That is, we have shown from gauge in-

variance that S' has the form

where 5'=S'(p —(e/c)A, r, e; H). (4o)

P '(X) =&—'ie/cix/xiP (X) (30)

It may be verified easily tha, t P' and P satisfy the same
commutation rules so that they are related by a
canonical transformation 8:

4.'(x) =&It"(~)& ',

3C'=ESCA '.
Therefore we have

(31)

[5'(xo,x'er'; u) ].~+v,
=Tr(exp[ja(Q —3C'+/i'll/)]

XT(exp(K'u)It t(x') exp( —X'u)p (x)))
=Tr(exp'(Q —K—/I/X)]T(exp(Ku)B 'f;"'(x')&

Xexp( —Xu)13 'P, (x)&)). (32)

However, from (31) a,nd (30) we have

I3 lp (x)II ~r'(e—/cixixip (x) (33)

,t (xr) g —e
—'( / i x( ')P, ,& (x') (34)

Therefore (32) becomes

[5'(xo.,x'0.'; u)]&+vx
ae(e/c)h(x) —x(x')1[5 (Xrr X'eT'

or
(35)

[5'(xv, x'0'; i /)]~~v„
—~/ie& c) ix(xi—x(x')1[5 (xer x err . i /)]/, (36)

Now suppose we view S' in operator form expressed
somehow as a function of the operators y, r and of
course the spin variables o. Write

[5']&=5'(p, r,e; A, H),

[5 ]/tv =S (p r e; A+VX BC).

(37)

(38)

(36) tells us that

5'(p, r, s; A+ Vx, H)
—ge(e/c) xir)Sr (p r ir . A H)&

—&(e/c) x(r)
k'7 ) )

=5'(p —( / )V, A, H) (39)
9 This representation, which is well known from field theory, has

already been used in reference 3 to discuss the analytic properties
of the propagator.

T(P;"(x'; u)P. (x))=P.,t(x', u)P. (x), u) 0
= —It'. (x)It. t (x',u), u &0, (28)

and
P, t(x', u) =exp(Xu)P, t(x') exp( —Xu). (29)

Under the transformation (23), II goes over into II'.
As one sees immediately, H' is given by the same ex-
pression (24) as II, where we have replaced P, (x) by

G(t /) =G(p (e/c)A, r—, ir; H; i,). (41)

According to (17) and (20), what we need to compute
the single-particle excitation energies are the charac-
teristic values Q„(() of the "effective Hamiltonian" h($)
defined by

»(r) = ~+&(&), (42)

"See, for example, the articles by E. A. Stern and L. M.
Falicov in The Fermi Surface, edited by W. A. Harrison and M.
B. Webb (John Wiley R Sons, Inc. , New York, 1960).

"V. Ambegaokar, doctoral dissertation, Carnegie Institute of
Technology, March, 1960 (unpublished). See a]so A. Klein, Phys.
Rev. 115, 13.36 (1959).

Since the different components of p —{e/c)A do not
commute with each other, there is some ambiguity in
the order of the factors occurring in (40). The order of
these factors can be fixed for example by imagining (39)
expanded in power series in the components of p, A, and
Vx. Then one sees easily that (40) means that if we

expand in components of p —(e/c)A we have to sym-
metrize completely our result with respect to all these
components.

While this result is not at all surprising, we have felt
it important to exhibit it in detail for one reason. If we
replaced e in (40) by some other number e*, 5' would
still have a formal gauge-invariance property, but the
single-particle excitations would behave as if they had
an effective charge e* instead of the original charge e.
It has often been suggested that this might be the case."
However, our method of connecting the gauge invari-
ance of S' with that of the original Hamiltonian shows
that in fact, as far as the response to an external mag-
netic field is concerned, it is e which comes into (40) and
not some e*.That is, the charge of the elementary excita-
tions is the same as that of the original particles.

Actually, if the metal has a magnetic permeability
e, the vector potential in the medium should be
multiplied by a factor e . Since we have an exact many-
body theory these effects shouM be included auto-
matically if the calculation is done correctly. It is lost
in (40) because we have assumed in making the esti-
mates that led to our results, that the interaction be-
tween the particles is short-ranged. The permeability
factor comes from. the long-range magnetic forces be-
tween the particles. "This error is completely negligible,
e differing from unity by about 10 ' for common
metals.

Since e has the form (40), it follows that the proper
self-energy part does also
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where
lim Go($—ig) =E($)+ij(g),
g mP+

(43)

k= k(p —(e/c)A, r, 8; (). (45)

We now expand (45) in powers of the H which appears
explicitly in it.

k=ho(p —(e/c)A, r; P)
+H L (p (e/c)A, r; P—)+O(H'), (46)

where we sum on the repeated n indices over the
Cartesian components of H. By time-reversal argu-
ments, the term linear in 8 has no expectation value
linear in H for eigenstates of ko. Therefore up to terms
of order H' we can use the first term of (46) to compute
the characteristic values. We can actually drop the H'
terms since, in the sense of this paper, they give cor-
rections to the DHVA period of the order (&v/p)' and to
the phase of order &v/p. Therefore we have the result
that the characteristic values of k can be obtained with
sufficient accuracy for DIVA purposes from

k=kg(p —(%)A, r; (). (47)

If A is zero, ko is just the Hamiltonian which is used
to compute the single-particle excitation energies for the
band case without external Geld. That is, if we put

ko(p, ', &)~,.=Q.(1;&)~' (4g)

(where v is a band index and k the quasi-momentum of
the excitations), then the single-particle excitation
energies E„(k) are given by

E.(k) —Q„(k; E„(k))=0. (49)

The Fermi surface of the metal was shown to be' the
collection of those surfaces for which

E„(k)=p. (50)

To find the excitation energies E„ in the magnetic
field, we must find the characteristic values Q„($) of ko

ko(p —(/)A, ; ~)O, =Q'(~)~, ,

and then use (20).

(51)

E and J both being Hermitian. From (25) and (41),
this has the form

k= h(p —(%)A, r, e; H; P). (44)

Now the inclusion of the spin splits otherwise de-
generate levels by small amounts proportional to p&II.
This leads' to a change in the value of the phase of the
DHVA oscillations, but does not affect their period. The
correct calculation of this phase is in fact quite compli-
cated, and we shall not go into it here. We wish only to
point out that many-body effects do inhuence it, and its
value is not given by the simple expression of Lifshitz
and Kosevich, which assumed that the spin only enters
the quasi-particle energy through a factor —p&H 0'.

Dropping the spin dependence of (44), we may write

A. &Q, (n, k. ; ~)=2-(.+,)(H-/), (52)

where e is an integer and r stands for the index triple
i, m, k, . The quantity A „(Q,k, ; $) is the cross-sectional
area of the curve given by the intersection of Q„(k; g)
=Q and the plane k, fixed. Using (20), E, is then ob-
tained from

A, (E„k,; E,) = 27r(n+ )2(eH/-c) (53)

Now consider the levels which we would obtain if we
had used E„(p—(e/c)A) as the Hamiltonian. Call these
E„'.From the WKB procedure these levels are given by

A „'(E,', k,)=2ir(n+-', )(eH/c), (54)

where A„'(E,k,) is the cross-sectional area of the curve
given by the intersection of E„(k)=E and the plane k,
6xed.

From its definition, A„(E,k, ; E) is the area of curve
given by the intersection of Q„(k; E)=E with the plane
k, constant. However, from the definition (49) of
E„(k), this is the same as the intersection of E,(k) =E
with the plane k, constant. Therefore,

or
A, '(E,k,)=A.(E,k, ; E), (55)

(56)

This means that the levels E„can be computed in the
usual way of Lifshitz and Kosevich, using the single-
particle excitation energies as if they were real inde-
pendent particles with charge e and kinetic energy
E„(k). In conjunction with (22) this means that the
DHVA effect (apart from the phase of the oscillations)
in all equilibrium properties (magnetization, heat ca-
pacity, etc.) is exactly what, one usually computes on the
single-particle basis, except that the true single-particle
excitation energies must be used, and the true Fermi
surface is what determines the period of the oscillations.

'2 W. Kohn, Phys. Rev. 115, 1460 (1959).Kohn only considers
the simple case where the Hamiltonian without Geld is of the form
p'/2m+U. It is not di%cult to generalize his argument to an
arbitrary periodic Hamiltonian. See also W. Kohn, Proc. Phys.
Soc. (I.ondon) 72, 1147 (1958), for a summary of the consequences
of the application of these results to the DHVA effect. This pre-
scription is only valid with sufficient accuracy for the DHVA
problem, if there is a center of symmetry present. We shall assume
this to be the case. Even if a center of symm'etry is not present,
this formula is still good enough to give the period of the oscilla-
tions correctly, but not the phase.

Now it is well known" how to obtain the charac-
teristic values of (51) from those of (48) with sufficient
accuracy for the DHVA effect. The Q„(P) are obtained
from the Q, (lr; t) by using Q„(p—(e/c)A; $) as the
Hamiltonian [symmetrized with respect to the com-
ponents of p —(%)A in the same sense as in the dis-
cussion immediately following (40)J, and using the
WKB approximation to obtain the levels. H the field is
in the s direction, then the equation for these levels
is5, 12
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APPENDIX A. THE FIRST-ORDER PROPER SELF-
ENERGY PART IN A MAGNETIC FIELD

In this Appendix we give an explicit calculation of the
field dependence of G, to the first order in the inter-
action. For simplicity we omit the spin and the periodic
lattice, and take an isotropic interaction. The 6rst-order
proper self-energy part G„„"l is given by (see I,
Appendix A)

which is easily proved by closing the contour to the left
if x is less than zero and to the right if x is greater than
zero. With (A.11), we may write p(21) as

p
$00+o

p(21) = e+'»Q(xs, xr, ttl), (A. 12)
27rz &; +. (1/x) sinx. t

Q(xs, xi, y) =—P„it„*(xs)e ~ "P„(xr). (A.13)

We make use of the identity

1 p
—tXdt, (0(c(1), (A.11)

e'+1 2x.i ~—;i. (1/x.) ain't

G„„ol=gf;t,(rsl vlr's) (rsvp—el sr')},
The reason for writing p in this form is that Q is easy to

(A 1) calculate exactly for the Hamiltonian (A.4)."
Choosing the Landau gauge

8 )
ee(&s y)+ 1— the result is

t'A. 2~
A=( —Hy, 0, 0), (A.14)

(rlrsl el rsr4)
—= f l*(»)4 s*(xs)~(xr,xs)

glPrs(xr)it'r4(x, )dx~dxs. (A.3)

Here the Pr, e„are the eigenfunctions and eigenvalues,
respectively, of the unperturbed single-particle Hamil-
tonian; e(xi,xs) the interaction between a pair of
particles. We take as the unperturbed single-particle
Hamiltonian (e)

e= s Lu
—(e/c)K' (A.4)

where we have chosen units so that the mass of the
particles is unity. We have

(
ro =eH/c,

( 1 &'t'
J"(r;-;~)=l

E2x.y) (4x sinh(roy/2) i

(a&y ) 1
Xexp ——cothl —

l
(x'+y')+ —s' . (A.16)

E2) 27

In (A.16), yl means that branch of the function which
is positive on the real axis.

From (A.12) we have

Q(xs xr ,'y) = exp (i~ (y, +yr) (x&—xr)/2)

yF xs —xr, a); y), (A.15)

r= ster. (A.5) p(21) = exp(ia&(y&+y&) (xs—x&)/2)g(xs —xr,' a&), (A.17)

Inserting (A.3) into (A.1) we may write for the matrix
G&'&(1) in the coordinate representation g(r; re) = e'»F (r; (o; tP). (A.18)

2xs ~-; +. (1/vr) sinvrt

Gl') (1)= dx& n(x& x&)Lp(22) —p(21)Prsj, (A.6) 'Using (A 17) (A 6) becomes

where
p(21)—=Z. f. ~t.*(»)0.(»),

f
(A.7) Gl'& (1)= '

dxs e(l xs—x, l)

and Pi2 is the exchange operator

P»y(x&) =@(xs).

This operator may be written formally as

jP —g &(x2 X1) P112

(A.8)

(A.9)

(. (ys+yr)(» —»)i
&& g(0;ro) —expl iM

2 j

&&g(x,—xr,.co)Ers . (A.19)

it being understood that in the expansion the yi is not
to differentiate the x~ in the exponent. This form will be
of use later on.

We must next calculate p(21). This is done most
conveniently as follows. Write

"E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951).See also A. H. Wilson, T/zeory of 3Ietals (Cam-
bridge University Press, New York, 1958), pp. 160—170. Wilson
uses a slightly different gauge than we do. It is easy to see that for
any vector potential linear in the coordinates, the F in (A. 15) is
unchanged and the phase factor in front becomes

1
p(») =Z 4.*(x ) ~t.(xr).

~P(.1—~)+y
" (A. 10)

ie
exp —(xl+x&) I A(x& —x~) —IIX (x&—x.)]

2c
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Changing the integration variable from x2 to r= x2—x~,
and using (A.9), this becomes

g A+B gAgBg —s(A, B) (A.21)

/which is true as long as the commutator (A,B) com-
mutes with both 2 and 8), we have

(e'"'»+""'e"'~'=exp ir
] p~

——A~ )

c )
Therefore

G"'(1)= dr n(r) g(0; ~)—g(r; co)

( 8
&&exp sr

I y& A&
I (A 23)

c )
Thus we have verified in detail the general gauge

invariance property (41) for this simple case.
It now remains to calculate g(r; ~). As one easily

sees, the contour in (A.18) may be closed by a very large
semicircle to the left, without changing the value of the
integral. The singularities of the integrand within the
resulting contour are on the negative real axis (which is
also a branch cut) and, in addition, at the points

t$ (27ril/pM——), i= &1, +2, .&~, (A.24)

f
G'"(1)= dr v(r)/g(0; )

g(r ~ ~)girux(M+&JI2)g~'r Py) (A 20)

By means of the elementary operator identity"

by the range of the potential. Roughly speaking, for
typical metals the screened Coulomb potenti. al has a
cutoff length comparable to the reciprocal Fermi mo-
mentum. Therefore we shall assume

(A.28)

(in our units an energy is a reciprocal length squared).
Under these circumstances go and g& are easily obtained.

First consider go. Let us change the integration vari-
able from t to n,

(A.29)

Because of the factor e now occurring in (A.26) and the
fact that the integration contour runs along the negative
o. direction, this integral. gets cut off for n of order of
unity. Therefore, we can expand the integrand in (A.26).
As one easily sees,

p, i exp (—w'/4n)
F(r; (o; n/p) = +OL(a)/p)'),

(2m)*' n: (A.30)

Bf:2IJ,f ~

on using (A.28) as well as the usual DHVA condi-
tions (4).

Similarly we get for the entire integral in (A.26)

g, (r; ~) =
(2~)l 2x-i

t dn $
—w')

&& ~'
—exp~ n ~n+O((u/p)' (A.3. 1)

~c~' E 4n )
where sinh(&vPt/2) vanishes. Therefore, we may write

g(r; (u)=gp(r; a))+g~(r;(o),
V2 sinzv —z cosa

go(r; ~)=W:— +OL(~/~)') (A 32)
7r2 ZV

1
go(r; ~) = I e'»P(r; a); tP), (A.26)

2~i ~ c (1/m) sinvrt
The leading term here (the only one we have evaluated)
is of course just what we'd get if no magnetic held were
present, which may be verified immediately by starting
with the zero-field case.

The term g~ is a little more complicated to evaluate in
the lowest order for which it exists. Putting on the /th
contour of (A.27)

where C is a contour which proceeds counter clockwise
around the negative real axis, and infinitesimally close
to it.

g~(r; ~)= 2' e'»F(r; &v; tP), (A.27)
Zvri & ct (1/vr) sinvrt

This well-known integral may be done at once, "
(A.25)

where C& is a contour consisting of a very small circle
proceeding counterclockwise around the point t~. The
prime on the summation indicates that 3=0 is excluded,
the origin being contained inside the contour C.

We shall evaluate these expressions in the usual limit
of interest for the DHVA oscillations: a&, 1/P«p, but
coP of the order of unity. Further, we need to know the
order of magnitude of r, which also comes into (A.18).
For a short-range potential this is limited )see (A.23))

'4 This can be veri6ed, for example, by direct power series ex-
pansion of both sides of the equation.

I" becomes
t= f(+y'/p, (A.33)

F=
2(2m)'(Pt )+y') l sinh(a&y'/2)

(a&y ) S'
Xexp ——coth~ ~(x'+y')+ . (A.34)

2(P«+v')
'5 W. Magnus and F. Obeghettinger, Speci al Functions of

Mathematical Physics (Chelsea Publishing Company, New York,
1949), p. 28.
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On the contour C~ we are integrating over a small circle
around the origin in y'. It is not difFicult to see that the
leading term comes from expanding in y', higher order
corrections to the term we give being O(&u/p, );

1 (—1)'

(»)'(P~I)'
(x'+y''l

X p —I, I +O( / ). (A.35)

Proceeding similarly for the rest of the integrand, we
obtain finally

(—1)~es" ~I 1
gi(r ~)=

(2Ir)'p I=— (pti)'* sinIrtI 2Iri

exp(» —(~'+y')/2&'}
X dy'. (A.36)

7'

The last integral is again well known. "Substituting its
value and that of ti, we finally obtain (up to correction
terms of order &u/p)

a)& ~ (—1)' sin(2Irlp/co —Ir/4)
g, (r; ~) =—P

2Ir t=i PP(o sinh(2vr'l/Pa))

x&0(L2p(~'+y')]'l. (A.37)

When gi is put into (A.23) it will yield the oscillatory
terms in the proper self-energy part. Comparing go from
(A.32) with gi, we see that gi/go is of the order of (co/p) i,
which is the estimate we used in obtaining the general
formula for the DHVA oscillations in the thermo-
dynamic potential. It is easy to trace down the origin
of the ru' dependence of gi. it arises from the f, factor
in (A.1).This same kind of dependence comes in higher
order skeleton diagrams from the sums on the true
propagators, for i I near p, and therefore it is easy to see
that this co' dependence is quite general.
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Dielectric Constant, Density, Expansion Coefficient, and. Entropy of
Liquid He' Under Pressure Below 1'K*t

D. M. LEE,t HENRY A. FAIRBANK, AND EDWARD J. WALKER
Josiah lVillard Gibbs Laboratory, Yale University, item IXaven, Connecticut

(Received October 25, 1960)

By 'measuring the resonant frequency of an LC circuit containing a capacitor filled with liquid He',
the dielectric constant of the liquid was measured from 0.14 to 1'K at several pressures from 0.2 to 29.5
atmospheres. From these measurements the density, expansion coefficient at constant pressure, and the
change in entropy on compression from saturated vapor pressure to higher pressures were determined.
a„was found to be negative and, hence, (8S/BI')z positive for all pressures below a certain temperature
which increased monotonically with pressure, confirming behavior found by Brewer and Daunt. A minimum
in the melting curve of He' was found at T=0.32+0.01'K and p =29.1&0.1 atm. The results are compared
with those obtained by other methods.

I. INTRODUCTION

HE present experiment is an outgrowth of an
earlier set of measurements on the heat transport

properties of liquid He' in which it was found from the
convection behavior that a maximum in the density
occurs at 0.5'K for a pressure of 2 atmosphere. '

In this paper we report experimental measurements
of the density, p, the thermal expansion coefficient at
constant pressure, n„, and entropy of compression of
liquid He' at temperatures from 0.14 to 1.0'K and at
pressures from 0.2 to 29 atmospheres. Because the
changes in density below 1'K are small, a sensitive
method of measurement was required. The limited
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f Part of this work has been submitted to Yale University by

D. M. L. in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

f Now at Cornell University, Ithaca, New York.
1 D. M, Lee and H. A. Fairbank, Phys. Rev. 116, 1359 (1959).

e—1M 4x

6+2 p 3

where M is the molecular weight and A is the molar
polarizability. n„= (1/V)(BV/BT)„was likewise deter-
mined at several diferent pressures. The entropy of
compression at any pressure p could than be found from
the relation

fP

S„—5,.„=—
)

' Un, dp,
SVP

(2)

amounts of He' available likewise restricted the size of
the liquid sample. Both of these requirements were
satisfactorily met in a measurement of the dielectric
constant, e, of the liquid as described in Sec. II. The
density of the liquid was found from e, using the
Clausius-Mossotti relation,


