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The equilibrium shapes of rotating liquid drops are calculated in the spheroidal approximation. The
solutions are prolate forms for high angular momenta such as are produced in compound nuclei resulting
from heavy-ion bombardments. This is thought to account for the angular and energy distributions observed
in heavy-ion-induced fission and light-particle evaporation.

UCLEAR reactions induced by high-energy heavy
ions differ in several ways from reactions with
energetic protons or other light ions. Even at several
hundred Mev the trajectory is classical up to the point
of contact, the probability of formation of a compound
nucleus is large,! the available energy per nucleon is
only a few Mev, and the average angular momentum
of the compound system is very large. In recent heavy-
ion experiments on high-energy fission and particle
evaporation, processes which are usually described with
a compound-nucleus model, there is evidence for
important effects due to large angular momentum.
These effects are of two types: (a) The angular distri-
butions of evaporation particles? and fission fragments?
are sharply and symmetrically peaked ahead and behind
ninety degrees in the center-of-mass system. (b) The
barrier for charged particle evaporation? is lowered,
and the fission barrier is probably reduced also.t
In an attempt to incorporate high angular momentum
into the compound nucleus we have investigated a
liquid-drop model with collective rotation. The model
is similar to that of Pik-Pichak* who has studied the
lowering of the fission barrier by high angular momen-
tum. In this paper we are concerned with the bases of
the model and a study of the equilibrium shapes of
liquid-drop nuclei of high angular momentum. These
shapes may be of interest as starting points for evapo-
ration and fission calculations, but such calculations
are not developed here.

THE MODEL

When an energetic heavy ion collides with a target
nucleus the compound system can have very large
angular momentum, typically 50 to 200 %. If a com-
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pound nucleus is formed it must carry this angular
momentum, and we assume that such large values can
only be carried by collective rotation of the nucleons.

The available center-of-mass energy in such a collision
is shared among several forms. Some fraction will excite
the intrinsic motion of the nucleons, and the remainder
will appear as collective energy: vibration, distortion,
and rotation. Without a specific model the energy
partition is not calculable, but with any model both
the intrinsic and collective energies are appreciable
fractions of the total.

The intrinsic and collective energies are related in
some fundamental but obscure way. In classical langu-
age this relation is described by the hydrodynamic and
thermodynamic properties of the nuclear matter. The
most detailed considerations of the hydrodynamic
properties of nuclei have been made in connection with
the Bohr-Mottelson theory of low-energy collective
rotations of deformed nuclei. The developments of
this theory indicate that there is as yet no unambiguous
way to introduce collective rotation into an arbitrary
system of nucleons. The original theory® assumed a
hydrodynamical model with irrotational flow and gave
too small moments of inertia. Later calculations,®
mostly with the Inglis model, have increased the
moments to the range of the experimental values which
lie midway between the irrotational and rigid-body
values. The complexity of this low-energy problem
arises from the interaction of nucleons in closed and
unclosed shells. Closed shells rotate as irrotational fluid,
but even small interactions with nucleons outside the
shells cause large increases in the rotational inertia,
even sufficient to cause the whole nucleus to assume
the rigid-body value.

Recently it has been shown’ that a Fermi gas rotates
as a rigid body even when particle-particle interactions
are present. Thus it seems plausible that in the absence
of closed shells nuclei rotate as rigid bodies. At the
high excitations of interest here it is unlikely that shell
effects persist, and we assume rigid-body rotations.
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The collective properties of a nucleus are described
by its shape. In the liquid-drop model two shape-
dependent energies are used. These are the surface-
tension energy and the Coulomb self-energy. Their
shape dependence is usually derived by classical calcu-
lations for a distorted, uniformly charged liquid drop
with constant density and surface tension, and the two
energy coeficients are deduced from the Weizsicker
semiempirical model of nuclear masses.

Neither the assumption of uniform charge nor energy-
independent surface tension is correct. The former
conflicts with the Stanford electron-scattering data, and
the latter with theories of the pressure of a statistical
system. However, at the present time, it does not seem
possible to incorporate these refinements, and we will
ignore them. Our model is a liquid drop rotating as a
rigid body with constant mass and charge densities
and constant surface-tension described by the constants
of the Weizsicker model. The intrinsic energy of the
nucleons is simply the remainder after the equilibrium
collective energy is calculated with the classical mini-
mum principles discussed below.

THE DYNAMICAL PRINCIPLES

The classical problem of an isolated rotating liquid
held together by gravitation has received much atten-
tion as a model in cosmogony.® Although the forces in
the nuclear problem are completely different, the gen-
eral dynamical principles are the same and there are a
number of analogies in detail.

Two dynamical principles have been developed to
find the equilibrium shapes of an isolated liquid mass
rotating as a rigid body.® One is an energy-minimum
principle which is written,®

E=V+ (J#%)?/29=minimum, (1)

where V is the algebraic sum of all potential energies,
J# is the constant angular momentum, and ¢ the rigid-
body moment of inertia about the rotation axis. In the
gravitational problem V is the total gravitational self-
energy (negative). In the nuclear liquid drop the
dominant (and negative) energy term is the volume
energy which, for constant density, can be ignored in
Eq. (1) since only volume-preserving shapes are con-
sidered. Even in processes where the number of nucleons
changes, such as the initial impact leading to the
compound nucleus, this volume energy can be ignored.
Thus, in the nuclear liquid drop, V is the sum of a
Coulomb self-energy (positive) and a surface-tension
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Jeans, Problems of Cosmogony and Stellar Dynamsics (Cambridge
University Press, New York, 1919); R. A. Lyttleton, T/e Stability
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Bodies (Interscience Publishers, New York, 1958).

9 Rotation as a rigid body in no way implies rigidity in the
elastic sense, but simply means that the local transverse, collective
velocity is proportional to the radial distance from the axis of
rotation.
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energy (also positive) which is the product of a surface-
tension constant and the surface area. The energy
minimum is to be sought by arbitrary shape variations
conserving mass, volume, and angular momentum.

Since the Coulomb and surface energies can be
integrated only for certain families of shapes, the
generality of Eq. (1) is not immediately useful. One
must assume some suitable family of trial shapes for
which V can be calculated, find the minimum subject
to this restriction, and proceed to the true minimum by
expansions around this trial shape. Further, with Eq.
(1) alone one never knows when the true minimum has
been reached.

The second dynamical principle is derived from the
hydrodynamical equation of motion and the constancy
of pressure on the drop’s surface. It reads®

— ¢+ 3w?=constant on the surface, (2)

where ¢ is the total potential (per unit mass) at a
surface point, » the angular velocity, and r the radial
distance from the rotation axis to the surface point.
In the gravitational problem ¢ is the gravitational
potential at the surface (negative). In the nuclear
liquid drop’ ¢ is the sum of a similar Coulomb potential
(positive) and a surface-tension curvature potential or
surface-tension pressure per unit mass (also positive).
The practical difficulties of applying Eq. (2) are similar
to those for Eq. (1) with one exception. If a solution
to Eq. (2) is found then it is automatically a figure of
stability.

Discussions of stability in cosmogony® distinguish
between ordinary and secular stability. A secularly
stable shape is stable for all small oscillations even when
there is internal dissipation of dynamical energy,
whereas if this “friction” is zero the stability is said to
be “ordinary.” This distinction only occurs in problems
with collective rotation and the rules are rather unfa-
miliar. A secularly stable shape is also ordinarily stable,
but the reverse does not hold. Ordinary instability
implies secular instability, but again the reverse does
not hold. The condition of absolute minimum of Eq.
(1) insures secular (and hence ordinary) stability.
Equation (2) is less stringent; both kinds of stability
are included in its equilibrium shapes.

In the gravitational problem simple trial shapes (at
least in retrospect) are also exact solutions. They are
oblate ellipsoids of revolution about the rotation axis
(Maclaurin spheroids), and nondegenerate ellipsoids
with their shortest axis along the rotation axis (Jacobi
ellipsoids). As the angular momentum increases from
zero (sphere) the secularly stable shapes are a sequence
of Maclaurin spheroids of increased flattening. At a
certain angular momentum this sequence crosses the
sequence of Jacobi ellipsoids; that is, there is one shape
common to the two sequences and at this point secular

0 W. J. Swiatecki, Phys. Rev. 104, 993 (1956), has used Eq.

(2) without the rotation term to find the saddle-point shapes in
liquid-drop fission theory.
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stability is transferred from the Maclaurin to the Jacobi
shapes. This is an example of Poincaré’s organization
of “linear sequences” of secular stability and their
“points of bifurcation.”

The dynamical assumptions of Egs. (1) and (2) are
sufficiently general for the nuclear liquid drop model.
Of course, the solutions will not be Maclaurin spheroids
and Jacobi ellipsoids. However, they might be expected
to be somewhat similar. With small angular momentum
a spherical drop will become oblate, and for high
angular momentum prolate forms will minimize Eq. (1).

A principal difference between the cosmogonical and
the nuclear problem involves the relevance of secular
stability. In the gravitational problem the system
begins in a secularly stable shape, and the question is
to trace its evolution as the density slowly increases.
Evolution along a sequence of shapes only occurs if
they are secularly stable because of the irreversible
transfer of collective dynamical energy into heat. In
the nuclear problem the true relation between collective
and intrinsic energies may permit reversible inter-
changes. However, the constant-volume model used
here cannot treat such interchanges since no thermo-
dynamic work can be performed at constant volume.
This is a rather unsatisfactory feature of the model
since it separates the intrinsic and collective energies
permanently, even in the initial impact and the evolu-
tion closely following it. This cannot be true. Thermal
expansion and lowering of the surface tension must
occur at high intrinsic excitation but, as we have
noted, we are unable to include these effects quantita-
tively at this time.

We ignore these difficulties and assume that the
system after impact evolves along a sequence of unstable
states during which collective energy is irreversibly
transferred to intrinsic energy until the absolute mini-
mum of Eq. (1) is reached. We also ignore collective
vibrations or other processes which could interrupt this
evolution. If the energy minimum of Eq. (1) is deep
and prolate we feel that this is reasonable, since the
system is already elongated at impact. If there are
several minima separated by low barriers the assump-
tion is very questionable.

THE SPHEROIDAL APPROXIMATION

For analytical calculation of the stable shapes of
Eq. (1) it is necessary to have explicit formulas for
the energies. The simplest shapes for this purpose are
spheroids (ellipsoids of revolution), and we have
investigated these shapes in some detail.

It is necessary to remember that shapes which
minimize Eq. (1) are not the true stable shapes unless
all distortions are permitted. With only spheroidal
distortions the minimum shapes may be poor approxi-
mations. Indeed, it can be shown with Eq. (2) that the
rotating nuclear liquid drop shapes are never spheroids.
However, the spheroidal minima of Eq. (1) might be
expected to be fair approximations in most cases and
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should be good starting points for further approxi-
mations using more general distortions.

The calculation proceeds as follows. We assume an
incompressible liquid with surface tension and uniform
volume charge and calculate the energy of Eq. (1) for
two classes of spheroids: (a) oblate spheroids with the
rotation axis along the symmetry axis, (b) prolate
spheroids with the rotation axis through the center and
perpendicular to the symmetry axis. Taking z as the
rotation axis and g, , ¢ as the semiaxes of the ellipsoids,
the energy of Eq. (1) for fixed angular momentum is a
function of the shape described by a single parameter
n: o> (a/c=b/c=n)>1 for the oblate case and
0<(¢/a=b/a=n)<1 for the prolate case.! We call the
axis ratio % in both cases. Thus 7 ranges from zero to
infinity, passing through the sphere at #=1. The
numerical coefficients for the Coulomb and surface
energies are taken from the semiempirical mass formulas
of Green.?? For spherical nuclei, denoted by superscript
0, Green’s formulas can be written

ES=A47r20A4%=17.804% Mev,
ELS=3er12247=0.710224—* Mev,
70=1.216X 1071 cm,
r=rod},
1724-1=35.344-5 Mev,

where 4, 7, and Z refer to the compound nucleus. The

collective energy of Eq. (1) is
E. E, 1 (Jh)? /9
e ) (G () ©
Ep EQ 2 9o g

where the dimensionless terms in parentheses depend
only on the shape. For prolate spheroids

E, sin~1(1—n?)?

Exo 77(1_"72>7

E. 1+ (-}
— =3 (1—n) ln(*——},
EY 1— (1—2)!

9o
=25/ (1),
g

and for oblate spheroids

E, [ 1n[n+(n2—1);]}
=i I+—,

E n(p*— 1)

7‘*0:77%(712" D~ tan™'[ (= 1)1 ],

N

—-‘_“"]kif.

g

11 There is also an identical prolate form with the long axis
along y.

12A. E. S. Green, Nuclear Physics (McGraw Hill Book Com-
pany, Inc., New York, 1955).
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To study the shapes of nuclei throughout the periodic
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for the compound nucleus. In these calculations we
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F16. 2. Variationjof the surface, Coulomb, and rotation energies,
of Eq. (3) and their sum, the total collective energy for the com-
pound nucleus 4 =66, Z=31 with J="70. The energies E= 168.64
Mev, EL2=290.70 Mev, {3#?J,7J2=160.60 Mev of the spherical
shape are taken to be zero in the figure.

assume that the farget nuclei lie on Green’s line? of
beta stability and choose compound nuclei made from
these by oxygen-16 capture. However, this does not
mean that our compound nuclei apply only to this
mode of formation.

In the calculations J is treated as a parameter and a
different energy vs shape curve results for each J. In
order to use these curves, the possible J in a given
collision are investigated separately. We assume that
the maximum J, Jmax, corresponds to tangential contact
of ion and target in a classical Coulomb scattering with
no distortion of either nucleus. On this assumption

Jmaxhz (71+r2)[2M(Ec.m.—ECb)]%;

where r; and 7, are the radii of ion and target nuclei,
M is the reduced mass, Ee.n. is the fofal kinetic energy
in the center-of-mass system at infinite separation, and
Ecy, is the Coulomb barrier energy defined as

62Z1Z2
7‘1+7’2.

Ecp=

Figure 1 shows Jma.x for several ions and targets.
Although each impact yields a different J and hence a
different shape, certain averages are of interest. The
arithmetic average J for a uniform flux of ions is 2/ mx,
and the J which divides all collisions into equal numbers
with greater and lesser J is 273/ max.

Figure 2 shows the variations of the surface, Coulomb,
and rotational energies with the distortion parameter
7 for a particular J and compound nucleus. Figure 3 is
a set of energy curves for the same nucleus. Figure 4
gives the value of 9 for which the energy is a minimum;
these curves were calculated from dE/dn=0.
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F1c. 3. The total collective energy E of Eq. (3) as a function
of the distortion parameter 5 for the compound nucleus: 4 =66,
Z=31.

The intrinsic excitation energy of the nucleus can be
obtained by subtracting from the total energy available
in the reaction the sum of the rotational, surface, and

140

! T T T T I T T T T l T T T T l T
150 |— —
- J-0 1
q>, I~ ~
=
100
50
L COMPOUND NUCLEUS A 4
ol v o by oy by e Ly

50 100 150 200

F1c. 5. Intrinsic excitation energy at the prolate energy mini-
mum of compound nuclei formed by bombardment with 160-Mev
016 jons. Curves for different angular momenta are shown. The
dashed curve corresponds to Jmax.

Coulomb energies. The excitation energies for the
shapes of minimum collective energy are shown in
Tigs. 5 and 6 for the cases of bombardment with
160-Mev oxygen ions and 400-Mev argon ions.

If the spheroidal shapes give absolute minimum for
Eq. (1), then for these shapes Eq. (2) would be satisfied.
This is not the case. The total curvature of spheroids
varies too rapidly®® near the outer edges of the figures
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F16. 6. Intrinsic excitation energy at the prolate energy mini-
mum of compound nuclei formed by bombardment with 400-Mev
A% ions. Curves for different angular momenta are shown. The
dashed curve corresponds to Jmax.

18 W. J. Swiatecki, reference 10, finds this also for nonrotating
liquid drop nuclei. ’
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to allow Eq. (2) to be satisfied. Typical errors in
fitting the surface pressure with spheroidal figures are
ten percent. Another less serious point regarding prolate
spheroidal shapes should be mentioned. No prolate
spheroid can satisfy Eq. (2) since all points on a
circular trace which lies in plane parallel to the rotation
axis have the same total curvature and Coulomb
potential but are at different distances from the rotation
axis and hence cannot satisfy Eq. (2). This is also true
in the gravitational problem and is responsible for the
flattening of the Jacobi ellipsoids.

DISCUSSION

Aside from questions regarding the validity of the
classical model for nuclei of high angular momenta, the
calculations themselves are quite incomplete. The
spheroidal shapes are thought to be fairly good first
approximations but this has not been proven. Calcu-
lations of distorted spheroids would test this. We have
begun such calculations using the methods of spheroidal
harmonic analysis, but the calculations are incomplete.

If, however, we accept the spheroidal shapes as
reasonable approximations to the true equilibrium
shapes, we may discuss qualitatively the effect of high
angular momentum in compound nucleus reactions.
We note that the distortions obtained are large and
that the prolate minima are deeper than the oblate
minima for large angular momenta. The Coulomb
potential barrier for the emission of charged particles
from the ends of the prolate shapes (or the equators
of the oblate shapes) are significantly lower than the
barriers for the spherical shapes. For example, the
Coulomb potential at the outer ends of the minimum-

W, J. Swiatecki, reference 10; and Proceedings of the Second
United Nations International Conference on the Peaceful Uses of
Atomic Energy, Jume, 1958 (United Nations, Geneva, 1958);

U. L. Businaro and S. Gallone, Nuovo cimento 1, 629 and 1277
(1955).
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energy prolate shape for the case of 160-Mev oxygen
ions on Ni and J=37, is about 2 Mev lower than for
the corresponding spherical shape. Furthermore, as
compared with the spherical shape, the nuclear temper-
ature will be significantly decreased because of the
energy held in rotation and distortion.

For heavy compound nuclei the prolate shapes
indicate a lower fission barrier as compared with the
sphere. It can be shown that for any sequence of
shapes with increasing moment of inertia leading to
fission, the effect of angular momentum will be to lower
the fission barrier. The location of fission barriers and
saddle point shapes remains to be investigated in detail
although some work has been done on this problem.*

In the interaction of light elements the minimum
energy figure may be greatly elongated. For example,
in the collision of maximum angular momentum of
160-Mev oxygen ions with Al the prolate equilibrium
figure has an axis ratio of 3 to 1. For such small com-
pound systems and very high angular momentum it is
unlikely that compound nuclei are formed. Such
collisions have been discussed as grazing contacts.!®
Even disregarding these physical questions: of the
shapes calculated here, those of highly distorted light
nuclei are probably the poorest approximations to the
true minimum energy shapes. We surmise that calcu-
lations done with more general distortion parameters
would show these highly distorted shapes to be unstable
to fission. This may be related to the high probability
of fragmentation in the interaction of Al with 160-Mev
oxygen ions.'
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