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The o? term in the ratio of the hyperfine splitting in the 25
state of the one-electron atom to the hyperfine splitting in the
18 state is recalculated, and a new theoretical value for this ratio
is obtained which is in agreement with the experimental value,
thereby eliminating a previously reported discrepancy. The
calculation consists in the evaluation of the low-momentum parts,
of order o? hfs, of the expression for the lowest order radiative
level shift in the bound interaction representation with external
Coulomb and magnetic dipole fields. By rearranging the terms
so as to display the gauge invariance of the matrix elements with
respect to the external potentials, considerable simplicity is

achieved, and the formulas are easily interpreted as a generali-
zation of the expression for the lowest order Lamb shift. The
contribution from soft photon intermediate states is obtained by
an extension of the method developed by Schwartz and Tiemann
for evaluating the Bethe logarithm, and an appendix contains a
tabulation of twelve analogous integrals which were integrated
numerically, and which may be of use elsewhere. The calculated
value of the ratio is §(1.000 034 54-0.000 000 2) which agrees with
the experimental values for hydrogen: §(1.000 034 6=£0.000 000 3),
and deuterium: £(1.000 034 24-0.000 000 6).

1. INTRODUCTION

ERY precise measurements of the hyperfine

structure separations of the 1S and 25 states of
hydrogen and deuterium have made possible the
determination of the deviation of the ratio of the 25
to 1S separations from the value, one eighth, given by
the Fermi formula.! While the bulk of this deviation
is accounted for by the Breit correction,? arising from
the use of Dirac wave functions, a residual discrepancy,
amounting to about one part per million, has remained.
This discrepancy has been discussed by Mittleman,?
who has pointed out that quantum electrodynamics
contributes to this ratio in lowest order a(Za)? (where
a is the fine structure constant and Z the nuclear
charge), which is just of the order of the observed
discrepancy, and has calculated the effect. His result,
while of the observed sign and order of magnitude,
disagrees significantly with the experimental result.
Such a discrepancy would seem to imply a failure of
quantum electrodynamics at a distance of order as
large as the electron Compton wavelength. In view of
the difficulty of reconciling such a conclusion with the
well-known successes of the theory, it appeared es-
sential to re-examine the quantum electrodynamic
correction, with the objective of either removing the
discrepancy or establishing it more firmly.

We present here a new calculation* of the quantum
electrodynamic effect, and results in agreement with
the experimental observations. Notable calculational
simplicity is achieved by separating the numerous
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gauge variant terms, which ultimately cancel each other
out, from the manifestly gauge invariant terms which
contribute. These latter are easily understood physically
as a generalization to the case of scalar and vector
potential of the expression for the lowest order Lamb
shift. In addition, an improved method, due to Schwartz
and Tiemann,® for evaluating the bound nonrelativistic
propagator is used. It is also of interest to note that the
arguments of Mittleman, showing that there is no
contribution to the required order from nuclear struc-
ture effects, have been verified in the interim by the
explicit calculations of Iddings and Platzman® for the
case in which the nucleus is a single proton.

Before proceeding to evaluate the radiative cor-
rections of interest here, we will briefly review the
various terms which contribute to the hyperfine
splitting. All of them may be obtained from the fully
covariant Bethe-Salpeter equation for the two body
problem. However, it turns out to be more convenient
to separate out the various terms according as they
may be obtained from (1) the Dirac equation for the
electron in the point Coulomb and magnetic dipole
fields of the nucleus, (2) quantum electrodynamics for
the one-electron state with external Coulomb and
magnetic dipole fields, and (3) considerations involving
the dynamic properties of the nucleus such as recoil,
form factor, etc.

Restricting ourselves to nS states (n=1, 2 here), we
can express all terms as multiples of the Fermi energy,!
E. M= (e/3m){a- wy.2(0), where o is the electron spin
operator, u the nuclear magnetic moment operator, ¥
the nonrelativistic Schrodinger wave function for the
nS state, and where rationalized natural units are
chosen so that z=c¢=1 and a=e€*/4rfic=1/137. Under
heading (1) one obtains the term

E M1+ 0, (Za)+bua(Za)ym/ M40 . (1.1)
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HYPERFINE STRUCTURE

The @, arise from the use of Dirac instead of Schriodinger
wave functions and are known as the Breit? corrections.
The difference b,—b; which contributes to Avzs/Avig
has been evaluated by Schwartz® and is obtained by
treating the dipole potential in second order pertur-
bation theory. (The b, individually are divergent for a
point dipole.) Under heading (2) one obtains

E. Mo/ (27)+ (—0.328)a2/n2— (5/2—In2)a(Za)

et +0@b)]. (1.2)
The first two terms are the well known radiative cor-
rections to the static moment of the free electron.” The
third is obtained when binding is taken into account.?
The terms of order o® will be discussed below. Under
heading (3) one obtains

E M —3m/M+6(m/M)*—8.Tam/M

+0(2m/M)]. (1.3)
The first two terms are the reduced mass corrections.
The third is the result of recoil® and finite size®
corrections.

The quantity which will be calculated and compared
with its value, as determined by experiment, is R, the
ratio of the hyperfine splitting in the 25 state to the
hyperfine splitting in the 15 state. We have from (1.1),
(1.2), and (1.3),

R=3[1+4(5/8) (Ze)*— (5/16m)a(Za)?

+ (ca—c1)ad+0(c2m/M)]. (1.4)

We call those terms “state independent” which are
proportional to E,M and hence cancel in this ratio.
The radiative corrections of order a and o?, and the
reduced mass corrections fall into this category.

Let us now concentrate our attention on the terms
of the form c.a® appearing in Egs. (1.2) and (1.4).
They are of three kinds which we may write as of,
o*(Za), and a(Ze)?. By this notation we distinguish
the order of the radiative correction, which is the power
of @, from the effect of binding on the hfs, which is
expressible as a power series in Za (and as we shall see,
InZa). The o term is the unevaluated third order
correction to the static magnetic moment of the

7J. Schwinger, Phys. Rev. 73, 416 (1948); A. Petermann,
Helv. Phys. Acta 30, 407 (1957); C. Sommerfield, Phys. Rev.
107, 328 (1957).

8N. Kroll and F. Pollack, Phys. Rev. 84, 597 (1951); R.
Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84, 597 (1951).
We will make use of results given by N. Kroll and F. Pollack,
Phys. Rev. 86, 876 (1952), hereafter referred to as KP.

9 R. Arnowitt, Phys. Rev. 92, 1002 (1953); and W. Newcomb
and E. Salpeter, Phys. Rev. 97, 1146 (1955) have evaluated the
recoil correction of order am/M for a point nucleus. The finite-
size correction was evaluated nonrelativistically by A. Zemach,
Phys. Rev. 104, 1771 (1956) and relativistically by Iddings and
Platzman (see reference 6). The recoil and finite size corrections
are cutoff dependent when taken separately, but their sum is
well defined. It is expressed above, somewhat arbitrarily, as a
multiple of a(m/M)hfs.
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electron. It gives a contribution proportional to the
Fermi energy and so is state independent and need not
be considered further. The unevaluated o?(Za) term is
analogous to the a(Za) term which by explicit calcu-
lation8 is state independent. That both terms are state
independent may be seen roughly as follows. When
intermediate electron momenta are scaled p— Zap and
the integrands are expanded about p=0, one obtains
an estimate for binding corrections of order (Za)2
However, the relevant integrals in this expansion
diverge at high momentum, indicating the presence of
the lower order terms linear in Za. However, the
momentum space wave functions are state independent
at high momentum so that these terms are also.

This leaves only the a(Za)? terms for consideration.
Denoting by I; and I,, respectively, the coefficients of
a(Za)E:M and a(Za)*E,™ in the expressions for the
level shifts of the 1.5 and 25 states, the (ce—c1)o® term
in the ratio R takes the form (I;—I1)a(Za)? It will be
the principle concern of this paper to evaluate the
difference AI=1,—1,. As will be seen below, it is con-
siderably easier to evaluate their difference than to
evaluate I, or I, separately. The method will be to
obtain the difference of the two integrals which rep-
resent the level shifts in the two states, by taking the
difference of the integrands. We now proceed to the
calculation itself.

2. POLARIZATION ENERGY

Kroll and Pollack® have given finite expressions for
radiative level shifts correct to first order in « and all
orders in Za. We will consider first the level shift due to
vacuum polarization, leaving for later treatment the
fluctuation energy diagram. Vacuum polarization®
causes a change in energy given by KP Eq. (21)1:

dv 12

(1)

AEP{ f (310l icA ) f 1

(1=5®) [pa—pi[?
[4m*/ (1—)+ | pa—p1|]
—(7i|ieS AP | m).

(p1]| n)dpidp:
(2.1)

0AF has a leading term in which the external potential
acts three times. It is of order a(Za)*E™ and will be
neglected.

A contribution to hfs may arise in AEp either by the
explicit appearance of a magnetic potential, or by a

10 R. Serber, Phys. Rev. 48, 49 (1935); E. Uehling, Phys. Rev.
48, 55 (1935).

11 A word on notation is appropriate. We denote the charge on
the electron by —e. p-g=p-q+pigt=p-a—p°; p=p-v;
0, =[vuv,1/2i; |n) represents the electronic state %S, with
mlmy=1, (n|=|B, y=—iBa. All electromagnetic potentials
are external potentials, 4= (A,4%=(uXr/4xr3, Ze/4xr), in
rationalized units. #=c=1. [KP use a normalization ¢,(p)
= (2m)~¥p|n) and denote the charge on the electron by e.]
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dependence of the wave function on the hyperfine
state. We denote the two cases by a and b, respectively,
and consider case ¢ first. Since

7
=—y-(p2—p1) Xv<l’2
4

11 1
p2| AM|p =<p —y-v-Xu|p
(21 ‘1) 24ﬂrT r!}l

1 p1>, 2.2)

we find

¢4
AEps=—o
™ 0

1 1—1g2
i v2( 3v°)
(1-2)

Xf(ﬁlpr)iv'(pz—pl)Xu

1 — 2mr
X<p ~ex ( )
PN =y

p1><p1 | n)dpdp., (2.3)

—a pl (1—1)
AEp,=—- dv 12 :
T (1—?)
ie 1 —2mr ’ (2.4)
x| e () |y
r P (1—a2)}

This expression is easily interpreted as the expectation
value of the interaction energy of the Dirac electron
with the induced magnetic polarization potential.
Since we are interested only in terms linear in the
nuclear magnetic moment, we take the wave functions
to be Coulomb wave functions. Furthermore their
nonrelativistic form suffices to, the required order.
Performing the Dirac algebra, we find

AEpy=—o ldvzﬁ(l Y- ‘u)
T Jo (1—) 3m
L o

where |#) is now the Schridinger electronic state.
Taking a position representation,

a ! (1—12) 1

AEpaz—f dv 12 EM
7o (1—?) 2(0)
<[

0

= p((l“fmﬁ)] [0, (20

Writing AEpe=a(Za)?E.*(I,)pe, the quantity we
seek Al=1I,—1I, is given by

ZWANZIGER

-1
(Za)?r

X f [exp
0

(1=

1
f dv 92
0 1—7)2

=) Ereri

X[W"(”) Yo(r )]r 0
¥2(0) ¢:*(0)
We expand [¢2*(r)/¥22(0)—:2(r)/¥*(0)] in a power

series in 7 and retain only the first nonvanishing term.
Then

AIPa=

2.7

LA 2(1—3e2) ! (2.8)
Alpo=— V(1 —350%)=—1. .
e J, 10

T

We now take up case & in which a contribution to
hfs arises from a dependence of the wave function on
the hyperfine state. To obtain this dependence, the
nuclear magnetic dipole field is treated as a pertur-
bation of the S Coulomb state of the electron. The
change in the wave function is treated nonrelativisti-
cally and to first order in the perturbation. We therefore
write |#)=|C)+|M), where |C) is the Coulomb xS
state and | M) is linear in the nuclear magnetic moment.
(See Appendix A for the perturbing Hamiltonian and
the magnetic wave functions.) Elementary consider-
ations indicate that for a nucleus of arbitrary spin,
| M) is a superposition of S3, Dj, and D; states. The
energy level shift which we seek is proportional to
(C|AP| M), where AP is the polarization potential.
Since we seek only terms linear in the nuclear moment,
in this expression A7F is the polarization potential due
to an external Coulomb field only. Since it is spherically
symmetric the Dy and Dj part of the magnetic wave
functions can give no contribution to the level shift. A
similar argument holds for the fluctuation energy.
Consequently, in all expressions we will retain only the
S; part of the magnetic wave function. It is given by
Egs. (A.4) and (A.S).

We now return to Eq. (2.1) to evaluate AEp;. Either
of the states may be magnetic and they contribute
equally, so we let one be magnetic and double:

AEPIF—%? f(OIP2><p2 2 P1>

Y4
<1—~v2>
Xf dv v?

22

]P2—P1|2
[4m2/(1—v2)+lpz—p1l2]
( —30?)

A 1—2
><<c

(01| M)dpidpz, (2.9)

AEpy=——

( (1”_2::;) M> (2.10)
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We follow the same procedure for AEp,, choosing a
position space representation in the nonrelativistic
limit. Writing (x| M)= (E¥/ry)u(r), we obtain

-2 1 (1—1p2)
f do "
mZary Jq 1—29?

Al pp=

—2myr

Xf;exp[(l_ﬁzﬂ)%] (Yarba—rur)dx.  (2.11)

As before, we expand Ayu=1yms—y1u; as a power series
in 7, retain the first nonvanishing term, and obtain

21In2--3

1
f o2 (1—3?) =— (3—21n2). (2.12)
0 157

Alpy=

™

The net contribution from the polarization diagram is
thus

-1 16
AIP=AIpa+AIP(,='——(7——— 11'12) . (213)
10w 3

It will be observed that a position space represen-
tation of the polarization energy makes all integrals
trivial, and that one can easily obtain the level shift
as a power series in Za by expanding the wave functions
in powers of 7. Alternatively, we could have obtained
Alp by neglecting (p.—p1)? in the denominator of Eq.
(2.1) and evaluated

AEp= (ﬁ]ieVzA[n)f dv 12 (1—142)
4rm? o
(] ievA|n) (2.14)
= 7i|ie n). .
157m?

This is actually a divergent expression for AEp but
AIp=[(AEp)ss/EM— (AEp)1s/EM]/a(Za)? remains
well defined. We will make use of this second method
of evaluation when calculating the contribution of the
fluctuation energy to Al

3. ISOLATION OF GAUGE-INVARIANT TERMS
IN THE FLUCTUATION ENERGY

We now proceed to the more difficult task of evalu-
ating the contribution of the fluctuation energy
diagram. It is given by

AEF——*% f(ﬁ[ p2)(—ie)A,(p2—p1)

3a
XKy (p2,p1){p1| m)dp1dpet+—
(p2,01){p1| )dp:dp +47r
L —2ipy—m(1—2y)
X 7| (—1e)A dy(—ie)A
<n( ie) j; y(—ie) n>
+Lp+Q, (3.1)

i (g m)y
12 See KP Eqs. (27), (33), (34), and (36). There are transcription
errors in Eqgs. (29) and (33). Equation (33) should read, in our

IN HYDROGENIC ATOMS 1131

where

1 dz
K,= fo m{%@—f&z%ﬁ)
X (pa—p1)*vut-m(pr— p1)vowu
— (ipa+m)[(1—2) (ipr—m)+m ]y,
—vu[2(ipa—m)+m](ips+m)
+5(1—-22) (p2— pr*) va

+ (@potm)vu(ipr+m)}, (3.2)
8ia bu [ Pu ) ] >
Lo= 7 icA
° (21r)3f<n p—aprle—2pr "
g
X——r, (3.3)
JERY
Q=—2ia f <n [M’ 2ipu—ivik] 1
(2r)? B—2p-k lip—ik+icA+m

2ip,—ik a*

X[M, ieA][n> * G

B—2p-k B2
The general procedure we shall adopt for evaluating
AEry is as follows. The first two terms of K, are recog-
nized as charge and magnetic moment parts of the
vertex function. That part of Q which contains no
powers of % in the numerator is divergent in the infra-
red, but will give a finite result when combined with
the similarly divergent Lp. To the order of interest this
will yield the remainder of the charge vertex function
and an analog of the sum-over-states of the lowest
order Lamb shift. All other terms will be shown to be
gauge variant to the order of interest, and hence when
summed give no net contribution.

In all expressions for the fluctuation energy in which
4-vector notation is used, it is understood that a 4-
vector representing an electron momentum has its
zeroth component fixed at the energy of the state in
question. One integrates only over the space part of
the electron momenta. Contributions to the hyperfine

notation,
1 dz
Ku=f m{ (p2—p1)*vu[2—63(1—2)]
Fm(p2—p1)sosut§(1—22) (p2— p1D)va
+ (ipat-m)vu(ipr4-m) — % (ipat-m)>y,
- %’)’n (iP1+m)2+z (?2_ Pl)v"'w (d’rl-m)
+ (1 _Z) (ip2+m) (172—P1) va'pv}
1o, — vl (pa—p1)% (1—2) 42 (p2—p1) ]
TS i G L

The integral with respect to # is easily performed. Noting that
(A |In(—p2/mH)A|n)y={(n| Aln(—p?/m?)|n) and integrating par-
tially with respect to z, one obtains the symmetric form given
above for K,.




1132 DANIEL E.
splitting from the fluctuation energy can arise in three
ways: by the explicit appearance of a magnetic po-
tential, by the dependence of the wave function on
the hyperfine state, and thirdly, since the energy
appears explicitly in the 4-vector, by the dependence
of the energy on the hyperfine state. This last case was
neglected by Mittleman.? It contributes to the order of
interest whenever the Coulomb binding energy of the
state also contributes.

The quantity, AI=1I,—1I;, which we seek is the
coefficient of a(Za)? hfs in the weighted difference
(8AE;—AEy) of the integrals which represent the level
shift in the 1S and 25 states. When the difference of
the integrals is written as the integral of the difference
of the integrands, the new integral converges more
rapidly at small ». This is a great advantage since the
operator which is being evaluated is singular at small 7,
and approximations may be made in the integrand of
AT which are not correct for the level shifts AE; and
AE, separately. In particular we will frequently scale
electron 3-momenta p— Zap and expand in a power
series in Za to the order required. We will follow this
procedure whenever it leaves Al finite, even though
the expressions for AE would become divergent if so
treated. In the following it will often be convenient to
write formal expressions for AE which are divergent,
with the understanding that the subtracted form
(8AE,—AE,) is meant whenever approximations and
estimates of order of magnitude are made. The fact
that p is of order Zam in the integral representing Al
when it is of order m in the integral for the level shift,
may be expressed by the statement that high-mo-
mentum contributions are state independent.

To treat the first term of Eq. (3.2) for K, to the
required order, we may approximate the denominator
by —m?. This means that in the denominator we neglect
electron momenta compared to 7, as explained above.
The auxiliary integration with respect to z is then
trivial. It yields a contribution to AEr, which we
denote by AEF(1), that according to Eq. (3.1) is given
by

—a S
AEp(1)=———(2]ieV?A | n).
47m? 6

18/

(3.5)

This is part of the charge vertex function. We will
evaluate this term, as well as all others, to first order
in the nuclear moment.

To evaluate the second term of K,, Eq. (3.2), it is
again sufficient to approximate the denominator by
—m? when K, is contracted with the Coulomb potential.
However when K, is contracted with the magnetic
potential, this term contains the (a/27) correction to
the static magnetic moment which causes a level shift
of (a/2m)hfs. To obtain all the terms of order a(Za)?
hfs, the denominator may not be approximated by
—m?. Instead we expand it about —m? and retain the
first correction term. The auxiliary integration is then

ZWANZIGER

trivial and yields for the second term of K,

—1
I(u(2)=—(p2—Pl)vUVM
m

1 P22+m2J~1 pi2+-m?

X|1—- 1
2 m? 2

6 m?

1L, | 6o

me

It is understood that the last three terms in this ex-
pression are to be retained only when K,(2) is con-
tracted with a magnetic potential. We will treat the
last two terms of (3.6) together with the remaining
terms of K, by making use of the equations of motion
to obtain terms involving more than one power of the
external potential. When we substitute the first two
terms of K,(2) into Eq. (3.1) for AEr, we obtain

s n> G.7)

ax,

e 1 v2\ 94
m

6 m?

a
AEr(2)= —<ﬁ
4

This is the expansion up to V?/m? of the well known
second order magnetic moment form factor of the
electron.’® We again recall that the V2/m? contributes
to the order of interest only when the external potential
is magnetic.

The terms we have considered up until now involve
one power of the external potential. The remaining
terms of K, contain factors of (ip+m) which operate
on the wave functions and so involve more than one
power of the external potential. The second term of
Eq. (3.1) for AEy also explicitly displays two powers of
the potential. We will leave these terms for later con-
sideration and instead proceed to treat Lp, given by
Eq. (3.3) which contains only one power of the external
potential. Since

0

Du
— (—ieA
[k2—2p-k’( ' )]

bu
— (iptmt-ied)—r n> (3.8)
)k2—2p.k
we may write
—Sm f < \ ( Pu )
(27r)3 k—2p. k F2—2p-k
d*k
x[ , (—i0)A ] > . (3.9)
—2p k B2
where p is any constant vector so that p/(k*—2p-k)

commutes with (ip+m-+ied) and Lp is independent of
p. It is convenient to choose p= (0,0,0,E,), so that the

18 See for instance A. Akhiezer and V. Berestetsky, Quantum
Electrodynamics (State Technico-Theoretical Literature Press,
Moscow, 1953), Eq. (44.3). In English translation, U. S. Atomic
Energy Commission, AEC-tr-2876 (unpublished).
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left-hand factor in the expression for Lp does not
contain any spurious lower order terms, but vanishes
with p=p—p. The total level shift naturally cannot
depend on the convergence parameter A and the calcu-
lation is simplified if the two A-dependent terms are
combined and M set to O at an early stage. For this
purpose we separate out of Q the part Qp which is
divergent as A — 0. A simple counting of powers of
as k— 0 in Eq. (3.4) indicates that

8ia
0= J €2

] 1
[ 21) szp—zk—I—m—l—zeA

Pu d'k
x[————, z'eA] ln> :
B—2p-k EBY

i.e., that part of Q with no powers of % in the numerator.

Since
D ]
kB—2p-k

(3.10)

(i

_<1 B Zpk B—2p-k

|-

we may write AEr(3)=Qp+Lp as

Pu
AEn(3)=— f < I )
(2m)8 Fe— 2pk B—2p-k
1
ik [ 2 ,(——ie)A] n>
ip—iktmticAlBB—2p -k
dtk
X—. (3.12)
k2

This form is now convergent and X has been eliminated.

We will now prove that to the required order the
level shift AEp is given simply by AEr(1)+AEr(2)
+AEr(3). Although other terms are individually of
the order of interest, their sum is not. The argument
invokes the gauge invariance of the matrix element
with respect to the external potential. Let us look into
the situation in more detail. The fluctuation energy is
given by

ooy

This matrix element is formally invariant under the
substitution A,— 4,4 09A/0%,, |n)— exp(—ied)|n),
where A(x) is any real scalar. One consequence is that
no charge renormalization terms are present in the
fluctuation energy, since they are of the form
(7i|ieA|n) and hence gauge variant. We will not make
use of gauge invariance in the most general form

1
0 S —
zp—l-zeA—-zk—l-m *

n>—-— (3.13)

)('Lp—l—m—l—wA), (3.11)
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however. The potentials are chosen to be time inde-
pendent and to satisfy the subsidiary condition
(8/3%,)A,=v-A=0. This restricts the function A(x)
to the form A,x,, where A, is an arbitrary constant
4-vector. The restricted gauge transformation is then
of the form 4, — A,+A,, p.— pu—eA,, corresponding
to a change of the external electromagnetic potentials
by a constant. The proof will consist in showing that
to the order required AEx(1), AEr(2), and AEF(3) are
each invariant with respect to the restricted gauge and
that all other terms are of a form which is not invariant
under the transformation.

We will first show that all other terms are gauge
variant to the order of interest. These are the remaining
terms of K,, the second term of Eq. (3.1) and
Qc=0—0p, the part of Q which is convergent. We
consider them in turn. The last term of K, [Eq. (3.2)]
contains three powers of the external potential, when
one makes use of the equations of motion. It vanishes
to the order of interest. The next to the last term
vanishes by the auxiliary integration when the denomi-
nator is set equal to —m?. The third and fourth terms
of Eq. (3.2) contain zero or one power of p in the
numerator and factors of (ip+m) which operate on
wave functions. To the order of interest, these two-
potential terms yield the forms (ea/m?)(C| (Za/ re-B|C),
(¢a/m?)(C|o-AXE|C) and (a/m)(C| (Za/r)?| M)} [The
form (a/m){C | (Za/r)~- zeAlC) also appears, but can be
reduced to the others by using the equations of motion
and dropping terms trilinear in the potential. ] The last
two terms of K,(2) [Eq. (3.6)] and the second term
of AEr [Eq. (3.1)] also contain two powers of the
potential and give rise to the same gauge-variant forms.

We next examine Q¢=Q—(Qp, that part of Q which
is convergent in the infrared. We first note that it is
sufficient to replace the bound propagator by the free
propagator, because the main contribution comes from
the region k=~m. In fact, when this substitution has
been made, Q¢ is evaluated by scaling k-— mk,
p— mZap, and expanding about p=0. When both
potentials are electric, only the term independent of p
contributes to the order of interest. When one potential
is magnetic, terms linear in p must also be retained.
Since Q¢ contains two powers of the potential, it yields
the same gauge-variant forms as have been found
previously.

We have now examined all terms besides AEr(1),
AEp(2), and AEr(3), and found only the gauge-
variant forms

(ea/m?)(C| (Za/7)s-B|C),
(¢ta/m?)(C| - AXE|C)

(o/m)C| (Za/r)*| M).

It is clear that no nonvanishing sum of such terms is
gauge invariant.! We will complete the proof by showing

and

14 See KP, footnote 19.
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that AEr(1), AEF(2), and AEF(3) contain only gauge-
invariant terms, so that the others sum to zero. The
cancellation of the gauge-variant terms has actually
been verified by explicit calculation.

AEr(1) and AEp(2) are manifestly invariant, as
may be verified by inspection of Egs. (3.5) and (3.7).
To prove the invariance of AEr(3) we will carry out the
k integration and thereby reduce it to a manifestly
invariant form. This term contains the complete bound
propagator. It will be found that an expansion of the
propagator in powers of the external potential is not
an expansion in powers of Za, so that the whole series
must be summed. Furthermore the first term in this
series will be found to yield a contribution to A con-
taining In(Za)=~—35 as a factor. These two effects
account for the bulk of AI. We make use of the operator
identity

1
ip—ik+m+ticd

I-l—wA
zp—-zk-l—mL

], (3.14)
ip—ik+-m-ieA

to write AEr(3) of Eq. (3.12) in the form

AEF(3)=(_2:(: f< !( —2-k B p;p-k)

) (—-1p+¢k+m)|' 1 ]
Xik 1—ied
(k—pytm2 L ip—ik+mticd
><[ P wA] >——. (3.15)
—2p-k

We now simplify the Dirac structure, making use of
the equations of motion:
Du Pu

¢
2k KF—20-k
<_ 2P'kpn)
=—( z|{ p+
k—2p-k

ie) Atk

)ik(—ip+ik+m)

D Pu
—2p-k B—2p-k

), (3.16)

since p,=p-+pu. The right-hand term in the last ex-
pression contains an extra power of the external
potential. Although it is of order a(Za) hfs, it does not
contribute to the order of interest in the ratio, as
indicated by a low energy (p=~mZa) estimate of this

ZWANZIGER

term. AEr(3) now takes the form

Sia p+2p- o/ (B—2p-F)
Er(3)= i
A= o f <"| -

. (l—ieA——————)
ip—ik-+m-+tied

S Dy

It is convenient to treat separately the two terms of
the central parentheses, writing AEr(3)=L'+(’,
where L' is the result of retaining the first term:

[ Pu
X
B—2p-k k-

i ()
(21r)3 —20-k/) (k—p)*+m?
1 2p-kp d*k
X[ (p{ ),ieA]n —. (3.18)
B=2p-E\  B—2p-k B

Comparing Egs. (3.9) and (3.18), we note that L’
differs from Lp in that a factor of 1/(k2—2p-k) is
replaced by 1/(E—2p-k+p*+m?), which makes L’
convergent. If we attempt the usual scaling & — mk,
p— mZap, and neglect all Za compared to 1, L'
becomes divergent. However to evaluate L’ to lowest
order, we may omit all terms which would be negligible
under this scaling except the convergence parameter
p?+m?. Then

rea

1 1
(k2—2p-k+p*+m?) (K*—2p-F)
2p-kp
X(p f

. 2p-kp d‘k
)-[p+ ,z'eA] n
k—2p-k k—2p-k

—. (3.19

- 619)
It is now a trivial matter to carry out the % integration
to obtain to lowest order in p*-+m?,

—a 2 m?
LI=—{n (—ln ) . (3.20)
Tm? 3 p2+m2 18
a /4
L’=—(— —_+—)<n1wv2,41n>
4rm2\3 2r
+ : 21 (2mry H—E 3.21
A\ W_mz)p-( )P n>, (3.21)

where H and E may be taken to be the nonrelativistic
Hamiltonian and energy. The entire expression is
independent of ry, which we have arbitrarily chosen
to be the rydberg energy [=2im(Za)?]. The first term
is manifestly gauge invariant and will later be com-
bined with AEr(1) which has the same form. The
second term has been written in nonrelativistic form,
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and will be combined with the remainder of AEr(3)
which we will evaluate next.
According to Eq. (3.17), it is given by

_ —8ia p+2p-kou/ (K2—2p-k)
(21r)3 f< 1eA

(k—p)2+m2
! [
X ] >— (3.22)
ip— 1k+m—|—zeA'.k2 2pk

To carry out the % integration, the complete bound
propagator is expanded in powers of the external
potential, the Dirac structure of the denominators is
rationalized, and as usual a momentum space repre-
sentation is chosen, so that the term by term integrand
is a rational function of 2. A typical term of the series
then has a denominator of the form

(1 L= gp+m ]y f—2g- BB (3.23)

t=1

This has the poles in the & plane shown in Fig. 1 for
typical values of the 3-momenta. The appropriate
contour for the %, integration is also indicated in the
figure. The integration is effected by completing
the contour in the lower half plane. The value of the
integral is then given by the sum of the residues of the
poles on the positive real axis. (The poles of k2—2p-k
wander over the complex %, plane, but the resulting
integral may be obtained by analytic continuation of
the integral which is obtained in the present case.) The
value of the residues at e+[m?+(k—g;)*]} and
e+ [+ (k—g)*—¢* ]} is estimated by scaling (k,q,q:) —
(Zam) (k,q,q:) and is found to be one power of Za too
small. Consequently, the value of Q' is given simply by
the residue at the pole ko= | k|, which may be obtained
directly from Eq. (3.22):

=

1 1
X
(ip——ik—l—m—}-ieA ip——ik—!—m)
[p+(p-k/MIk|)pu_ l d°k
x| PR A]

ey —, (3.24
ok e | (3.24)

( m[k| ) —zj)-|-11k+m)

where k= (k,|k|). We rewrite the central parenthesis in
the form

—ipt+ik—icA+m —iptiktm
(p—krtedPtmi+(e/Dowlu  (p=k)+m?’
where
94, 94,
F = )
ox, Ox,
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+[K|

O A Nae N,

“lkl e - [m®+ (kqy)*] 2 €+[m?+ (k- q;P ]2

€-[e?+ K2~ 2q k]2 €+[€?+ k- 2q-k]2

F16. 1. The complex %, plane, showing the path of integration
of the integral Q' (3.22) and the poles of the integrand. e is the
relativistic energy of the state in question.

and scale k— (Za)?mk, p— (Zam)p, so that to the
required order

o= [ €

X(
(p+eA)2+m2—4-2mk—+(e/2) 0y, F v

—ip+m

—w) (—ip+m)[p,i
PP-mP-2mk

In the same approximation, (—ip-+m)[p, —ieA]|n)
= —2m[ p,H]|n), where

1 Za e
H=—(p+eA)?2——+—0-B,
2m r  2m

the nonrelativistic Hamiltonian. As a result the
numerator has an even Dirac structure, so that in
the denominator we may neglect y-p compared to s,
and the spin orbit term «-E. The integral with respect
to k is trivial and yields

2a H—E
<n P ( In
3mrm? ry

0=~

) (H—E)p

>, (3.25)

where |n) is the Schrodinger eigenstate of energy E of
the nonrelativistic Hamiltonian H. Adding Egs. (3.21)
and (3.25) yields AEF(3)=L'+(Q’ in the form

2m ry

AEF(3)=4/’:¥ (j 2 )(n]zeVM[n)
_372:”2 ln( ;E)(H-—E)p n> (3.26)

It is now easy to show that AEr(3) is gauge invariant.
The first term in the above expression is manifestly
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invariant. In the second term, the combination H—E
is gauge invariant, as is (H— E)p|n)= (H—E) (p+.) | n)
where X is any constant vector. This completes the
proof that to the required order AEr=AEr(1)+AEr(2)
+AEr(3). By Egs. (3.5), (3.7), and (3.26)

[4 m
P P 2ry
e 1 v
-——a',“.(l—}———

m 6 m?

11
AEp= 3 }(ﬁ |1eV2A | )

94

+_
4

)

9%y,

n|p-(H—E) In

3wm?

p n> (3.27)

ry

We have observed previously that the second term
in this expression is the expansion up to V2/m? of the
second order magnetic moment form factor. Similarly
the first term is now recognized as the V?/m? term in a
corresponding expansion of the charge form factor, in
which the fictitious photon mass, which is required in
the form In(\) to make this term finite in the scattering
approximation, is replaced by In(2 ry)—5/6,'% in agree-
ment with the connection formula of French. [Equation
(3.27) is independent of ry, which could be assigned
any value.] When binding is properly taken into
account, as it is here, the infrared divergence, charac-
teristic of the scattering theory, disappears. The above
expression is the exact analog of the formula for the
lowest order Lamb shift. The external potential now
includes the nuclear magnetic dipole as well as the
Coulomb part, and the magnetic moment interaction
is represented more accurately by the presence of the
our(V2/m?) (0A,/dx%,) term.

It must be emphasized that this expression does not
correctly represent the shift in the hyperfine structure
to order a(Za)? his, but is only suited to be substituted
into the formula for A= (8AE;—AE;)/[a(Za)? his].

Schwartz!6 has treated this problem nonrelativisti-
cally in a calculation analogous to Bethe’s original
nonrelativistic calculation!” of the lowest order Lamb
Shift. Independently of the present work, Schwartz
has obtained the coefficient of In(Ze) and an expression
equivalent to the third term of Eq. (3.27) for the low-
energy part.

4. EVALUATION OF THE FLUCTUATION ENERGY

We will now evaluate the gauge-invariant terms
which have been isolated in the preceding section. Let
us consider the first term of Eq. (3.27) which we label

15 J. French and V. Weisskopf, Phys. Rev. 75, 1240 (1949).

16 C, Schwartz, Bull. Am. Phys. Soc. 3, 404 (1958). I wish to
thank C. Schwartz for communicating his results.

17 H. Bethe, Phys. Rev. 72, 339 (1947).
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AE¢ to indicate its origin in the charge form factor.
—a/8 1 11 |

P L
4r \3 Zo 18

{—m(o lieVeny - AM[C)+—<C

M>} 1)

In this expression we have retained those terms which
contribute to the hyperfine splitting. The first term
takes the form

—as8 1 11\ 1 ¢
AEca-———( In—4—)——o-u)
3 Za 18/ m?3m
X f vi(x) - vyidx, (4.2)
1,8 1 11
Alc.,=—(—ln—+——
4r\3 Za 18

1 V2(¢22(’) YiE(r)
(mZa)? ¥22(0) ¥:2(0)

~3
(ln————l——) (4.3)
87r 3 Za 1

whereas the second is given by

g T8 11
Cb___(s ) —( 4nZa)(C|3(x)| M), (4.4)

- 1
Alcz,——-(z In2—3) 1n—+—) (4.5)

Za 18

As a result
1 16 1 11

Al¢= A[0a+AICb=—(7——— InZ) (ln————l——) . (4.6)
T 3 Za 48

A comparison of Egs. (2.13), (2.14), (4.1), and (4.6)
justifies the remarks immediately preceding and fol-
lowing Eq. (2.14) by proving the equivalence of the
two methods.

We correspondmgly label the second term of Eq.
(3.27) AEy, since it originates in the magnetic moment
form factor. Recalling that the V2/m? in this term
contributes only when the potential is magnetic, we
rewrite it as

<)

1 _ 1
+—<01m-vm41M>+—<Mlim-vm41c>]. @.7)
m m

- €
AEM=a/47r[<C,—(1+%V2/m2)o-B
m
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The term containing (V2/m?)e-B is easily treated; only
large components are retained and ¢-B is replaced by
its S-wave part=2%¢-ué(x). Comparison with Egs.
(4.2) and (4.3) above indicates that this term con-
tributes —1/(8x) to AI. To evaluate the term
(e/m){C|o-B|C), we express the matrix elements in
terms of large and small components. For the small
components the nonrelativistic expression suffices, but
the Dirac form, ¢y, correct to order (Ze)? is required
for the large components:

o - aQ (4
(O ZoBlc)=r [or o Buuix

a op \Fe op
-2 f (—4, ——(r-B(-——t/z)dx. (4.8)

4ar 2m m 2m
The first term of this expression contributes (1/2x)
X (3/16+1n2) to AI, and the second (1/47)(7/16—1n2).

The net contribution from the first term of Eq. (4.7)
is thus

e
—a-B
m

Alya= (1/47)(5/16+1n2). (4.9)

After the Dirac algebra has been performed, the last
two terms of Eq. (4.7) take the form

afl Zo
AEMb=—-—[-—- fl,bo’ -eAM X yv—pdx
4rlm? 7

1 Za
e ¢V2—1I/de]. (4.10)

m? 7

Comparison with Egs. (4.1) and (4.5) reveals that the
second term of this expression contributes (1/2r)
X (3—21n2) to AI, whereas the first yields (1/8r)
X (5—81In2), for a net contribution given by

Alzry= (1/87) (17—16 In2). (4.11)

The total

Alyr=AIyot+ALny
= (1/4x)[8+ (13/16)—T7 In2].
The only term which remains to be evaluated is the

last one of Eq. (3.27). It represents the contribution
due to the presence of a soft photon in the intermediate

(4.12)

state and will be denoted by AEg.
— 2 H—E
AEg= <n p-(H—E) ln( )p n> (4.13)
3wm? ry

Expressions of this sort are usually evaluated by
inserting a resolution of the identity belonging to H.
In the present case, where H is the Hamiltonian for a
hydrogen atom, the resulting sum-over-states involves
a sum over the discrete bound states of the atom, and
an integral over the continuum ionized states. However,
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Schwartz and Tiemann® have recently obtained an
integral representation of the corresponding term in
the lowest order Lamb shift, and we will apply their
method here. The derivation will be presented in some
detail, as an illustration of the method, and because
certain integrals appear that are of interest for other
calculations, and which are evaluated numerically.
We rewrite Eq. (4.13) in the form
")

1 K
+K{n|p*|m)+— In—n|[p-,[p,H]1]| ) } (4.14)
2 ry

20

K
- dk k<n
3rm? Ko { >fo

AEg= lim

1
| A ———
H—E+k

Quantities which vanish as K — o« are dropped. As
usual we will retain only those terms which are linear
in the nuclear moment. Since

|ny=|C)+|M), H=HC+H", E=E°+EY,
e DR G e

— —> [ S
"Pa—err | pHU—EC—l—]sz >

1
—{clpo———— (HM_FEM
< P H"—EC’+k( )

1
X——B|C).
HC—EC-+k
The term involving H¥ vanishes. This may be seen by

taking a momentum representation where it has the
form

.l o 2 o (92— q1)i(q2—qu);
[ram|gen(Fr

(4.15)

1
—531';' #a]‘hf (q®)dqdqs,

which vanishes upon angular integration. We may
therefore rewrite Eq. (4.14) in the form

20
lim
3rm? Ko

x 1
x{—zf <C‘p--——————————p M>kdk
0 HC—EC+F
3 1
—EMf <Clp-——————p C>kdk
0 (HC__EC'_,_k)?

i1 K
+K<n|p2m>+—1n—<ﬁ1[p-,[p,ieAJ]1n>}. (4.16)
2 ry

AEg=
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The last term has been written in relativistic notation,
since in this form the contribution of the matrix element
to AI was evaluated for Al¢ [Eq. (4.1)].

It is convenient to transform the second term on the
right-hand side of Eq. (4.16) to put it in a form similar
to the first term. For this purpose we note that

fK kdk p|C)
0 (HC’ E0+k)2

1
= lim{ ——f <Clp-—-—-————4’mx C>kdk
0 HC—EC+Fk

+K<01p-imx{6>—<01p210>}, (4.17)

since p=14m[H,x]. Therefore

kdk
o
3um? K"“’{ < 0 —EC+Fk

X (2p| M)—imxEM|C))
+K ((n|p*|n)— E*(C|p-imx|C))

AEg=

1 K
—f——ln—(ﬁ](—ie)VZAln)-!—EM(Clp?lC)}. (4.18)
2 ry

To obtain Al s we note that the coefficient of K is state
independent. This is easily proven by applying the
virial theorem to (#|p?|#) and retaining terms linear
in the nuclear moment (i.e., evaluating

(n|[H,p-x]|n)=0)

and by noting that EM(C|p-imx|C)=3mEM(C|v -x|C)
=3mEM, The coefficient of In(X/ry) is obtained from
Egs. (4.1), (4.3), and (4.5). Also (C|p*|C)= (mZa)*/n
Writing | M)= (EM/ry)|u), we therefore obtain

kdk
o o(elp [
3w (mZa)? K 0 —E°+k

X(i—; u>—imxlC))

1 16 K 1
—-~[7——~ an]ln————,
27 3 ry 2«

Al g=———

(4.19)

where A( )=( )es—( )is-
The integration over %, has been introduced as a

device for evaluating AEg given by Eq. (4.13). How-
ever one easily recognizes that the first term of Eq.
(4.14) is the expression for the level shift which one
obtains from the nonrelativistic theory. The term
proportional to In(K/ry), which appears subtracted off,
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correctly yields the contribution to A proportional to
In(Za), if one sets K=m. The term linear in K, which
is also subtracted off, is of order aE™, if one sets K=m.
As is characteristic of lower order terms, it is state
independent.

To proceed with the evaluation it is convenient to
scale out all powers of Za and work with dimensionless
quantities. For this purpose we choose the unit of
length= (1/mZa), and scale (k,HC,EC) — ry(k,HC,EC).
All quantities are then expressed in atomic units.
Since we will deal only with S states, we normalize
Ya(r) to So° ¥a2r%dr=1, so that

Y15=2 exp(—7);

Vas= (1/V2) exp(—7/2)(1—1/2). (4.20)
Then
ALs=[2/Gm)] lim A7—[1/(2x)]
X[7—(16/3) In2] InK—1/(2x), (4.21)
where '
K 1
== <C|P‘m
X (2p|uy—Lix|C))kdk. (4.22)

The heart of the method is to evaluate the quantity
[v)=1/(HC®— E°+Fk)|w) by considering the differential
equation (H®—EC+k)|v)=|w), and noting that the
inner product appearing in Eq. (4.22), when expressed
in a position representation, has the form of a Laplace
transform. Writing

P(1/7%) fa(r) exp(—1/n)

1 du, 1
= ,~‘(2 I
HC—EC+} dr 2

where ¥=(x|C), u=(x|u), and 7 is the unit vector in
the radial direction, we obtain

~¢) (4.23)

= f dk k f “erinfu(r)dr.  (4.24)
Inserting the expressions (4.20) for ¢, yields
K
Ji=2 f dk kF(2), (4.252)
0
—2 f kBRI )], (4.25h)

where fu(p)= S5* exp(— #7) fa(r)dr, the Laplace trans-
form of fa(r).
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The problem of evaluating Als is now reduced to
the problem of obtaining the functions f.(p). We will
show that f satisfies a first order linear differential

equation and is thus obtainable by quadrature. From
Eq. (4.23)

v
(HO— BB/ 1a(0) exp(——)
n
du, 1
=7’(2~‘;-+5ﬂ[/n). (426)

In atomic units E,°=—1/#? and HC=—V2—2/r, so
that

ffn"(r)—Z(1+£)f,.'(r)+(2+$—kr)fn(r)

du, 1
—_— erlnr3(2__+—r¢n), (427)
dr 2

or
(—p2+2;‘[’+k)f,.'(p)+2(2—2p+1)ﬂ.(p)

® du, 1
=— f e“”e”"r:‘(Z——-l——n[/,,)dr
0 dr 2
=—n1Q.(p).

In going from (4.27) to (4.28) we have imposed the
boundary condition f,(0)=0. Since Q(p) is a known
function, fa.(p) is obtainable by quadrature. Using a
formula from the elementary theory of differential
equations,!® we obtain

(4.28)

Ant-1/n— p)tra—2
(An—1/n-4p)tt2

P (\a—1/n4p") it

X‘[onst An+1/n— p/)1M1

jn(i’)= -

nQa(p)ap!, (4.29)

where A= (k+1/n?)%. Since f.(p) is a Laplace trans-

form, it must be analytic in the right-hand half plane
of the complex variable p. We therefore set const
=Aa+1/n, since f.(p) would be singular at the point
p=Ant1/n otherwise. To obtain J, given by Egs.
(4.25) we require f,(2/#) and
kfy (1)=—2v20,(1). (4.30)
The latter expression is obtained directly from the
differential equation (4.28) by substitution.
Inserting Eqgs. (4.29) and (4.30) into Egs. (4.25), we

18 See for instance H. Phillips, Differential Equations (John
Wiley & Sons, New York, 1934), p. 39.
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may write Eq. (4.21) in the form
4 (B+1nDE g\ 2\ A—1/n\1*
3 K=o Jy, A\2—1/52) \\+1/n
Ml/n )\"‘1/”‘*‘? b72N
[ (=) De-to-1/m)
2/n )\+1/ﬂ"‘?
1 1 16
XQn(P)dP——Qz(l)K—-—[F_ ln2]
37 2 3
1
XInK——. (4.31) -
2w

Q.(p) is defined by Eq. (4.28). The indicated inte-
gration yields

1 6 12Inp/2+20 24

Ql(p)=[?2+p3= pr ;;], (4.32a)
1 5 12lnp—4 12Inp+23 15

Qz(?):-[ +—+ + ] (4.32b)
P P ?° 2p°

so that Q(1)=—27/2.

Due to the presence of the forms 1/p% 1/p% and
In(p) in Q, the analytic expression (4.31) is considerably
more complicated than the corresponding expression
for the Lamb shift treated by Schwartz and Tiemann.?
As a result, it is not convenient to expand the integrand
in a series, integrate term by term, and sum the series
numerically, as they do. The numerical work which is
required here, however, is still not very difficult.

In order to carry out the limiting process indicated
in Eq. (4.31), we separate the integral over % into two
parts. One part is finite as K — c and is evaluated
numerically. The other part is integrated analytically
and combined with the other K-dependent terms to
yield a finite result. For this purpose we write

Alg=N+A4—1/(2x), (4.33)

where

4 w M/n 1
vt an ]
31 Yin %n N—1/n2

“Givn) bgoim) e

() i)

x[xﬂ‘— (p—i)z]enwdp, (4.34)
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and

A=lim

K—

(K+1/n2)}

4 M/
{ —A f A2\ f dp
3r Jin 2/n

ol () G

><[A2— ( p—i)z]on@)%zc

1 16
— 7———In2) an}. (4.35)
2w 3

1
N—1/n?

I

N was evaluated on the Nevis IBM 650 computer and
found to be —0.944-0.02. The integration and limit
process indicated to obtain term A4 are fairly straight-
forward, though somewhat lengthy. One obtains from
Egs. (4.33), (4.34), and (4.35)

Al s=—0.94:0.024-[4/(37) ]
X[ (5845/32—4/9)+ (75—1/2) In2
—10 In2+ (5/6)x2]—1/(2x).  (4.36)

5. COMPARISON WITH EXPERIMENT

Writing AI=AIp+AI¢+Aly+Alg, the respective
contributions from the polarization energy, charge form
factor, magnetic moment form factor, and soft photon
intermediate states, we have from Eq. (2.13), (4.6),
(4.12), and (4.36)

AI=—[1/(10)J[7— (16/3) In2]
+(1/m)[In(1/Ze)+11/48][7— (16/3) In2]
+[1/@r)](8+13/16—7 In2)

+[—0.94£0.02—1.126—1/(27)],

AI'=3.4040.02. (5.1)

We now substitute the computed value of AI into
the theoretical formula [Eq. (1.4)] for R, the ratio of
the hyperfine splitting in the 2.5 state to the hyperfine
splitting in the 1S state. Recalling the argument of
Sec. 1, showing that (c;—c1)e?= Ala(Za)?, we obtain

Ru=3[1+5 (Za)*—[5/ (167)](Za)*a
+(3.4-£0.02)a (Za)*+0 (e2m/M) ],
or
R =21(1.000 034 5--0.000 000 2).

In this last expression the uncertainty is due to the
o?m/M terms, estimated to be 0.2 ppm. They are of
three kinds. One is a cross term equal to (15/8) (Za)*m/
M =0.05 ppm, which arises from the Breit correction
[Eq. (1.1)] and the reduced mass correction [Eq.
(1.3)7] when the ratio R is formed. The second is the
dipole interaction in second order perturbation theory,
found by Schwartz® to be —0.085 ppm. The third is a
recoil effect which Sternheim? is currently calculating
by means of the Bethe-Salpeter equation.

18 M. Sternheim (private communication).

ZWANZIGER

The experimentally determined ratios for hydrogen?
and deuterium? are

Rexp (FI)=2(1.000 034 6-£0.000 000 3),
Rexp(D)=23(1.000 034 2-0.000 000 6),

and are evidently in satisfactory agreement with the
theoretical value noted above.
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APPENDIX A: WAVE FUNCTIONS

The following hydrogen atom wave functions are
required.

1. The 1S and 2S5 nonrelativistic Schrédinger wave
functions of the electron in a Coulomb field. We denote
them by ¢,=(x|C),

Y1= (8*/m)* exp(—pr),
[ =(B%/8m)* exp(—pr/2)(1—Br/2),
B=mZa.

They are the S-state eigenfunctions of the nonrela-
tivistic Coulomb Hamiltonian HC= p?/2m— Za/r, with
eigenvalues E¢=m(Za)*/2 and m(Ze)?/8, respectively.
It is important for this calculation that these wave
functions satisfy ¢.'(0)=—gy.(0), so that |¢./(0)]?
and Y. (0)¢,'(0) are state independent.

2. The 1§ and 2§ nonrelativistic Schrodinger mag-
netic wave functions. They are the corrections, linear
in the nuclear magnetic moment, to the ¢, given above,
due to the perturbing Hamiltonian

1[3o-xy-x ] (A3)
- ag: . o
8mm v? r? ¥

(A.1)
(A.2)

e
HM=—qg-yj(x)+
3m

Writing H=HC¢+H™, E=EC+EM, and
+| M), then | M) satisfies

(H°—E°)|M)= (EM—H™M)|C),
(€| My=o0.

As argued in Sec. 2, we require only the S-state part,
denoted by (E.Y/ry)u,, of the magnetic wave functions
Y =(x | M):

u1=%¢1<0>e—ﬂr(

lm=1C)

and

1
p +21n2,6r+(2'y—5)—!—2,87), (A.4)
r

1
u2=z¢z<o>e-*ﬂf[ﬂ 2 1Br -+ (2y—3)—Br Ingr

/4

—(7—14—3)3 -12) @)

20 J. W. Heberle, H. A. Reich, and P. Kusch, Phys. Rev. 101,
612 (1956).

2L H. A. Reich, J. W. Heberle, and P. Kusch, Phvs. Rev. 104,
1585 (1956).
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where y=0.577215---. The value of v is not needed
for this calculation.

3. The 1S and 2S Dirac Coulomb wave functions.
Except in the case mentioned below, they are every-
where used in the nonrelativistic limit where the large
components are ¥, and the small components are
(o-p/2m)Y . To evaluate the contribution to Al from
Eq. (4.8), the large components ¢, are required at the
origin correct to order (Za)?. The exact large-com-
ponent wave functions are

Yr1=Cie P17 (Brr)?, (A.6)

2521‘

), (A.7)

where Bi=mZa, Bo=m(—5/2)}, s=[1— (Za)?Jt—1,

B 1—[2(s+2)}

342s
B8 222 (2+s)
x T(2s5+3)
2=ng 2s+3 1+[2(s+2)]%|‘1+(ii%)%].
wT(2s+3) 2(6s+2) L 2

4. The 1S and 2S Dirac magnetic wave functions in
the nonrelativistic limit. The large components are
given by y¥,” (only the S-state part given above is
needed) and the small components by (o-p/2m)y .M
+ (o eAM/2m)Y.,.

5. In Sec. 4, atomic units are used and wave functions
are normalized to Jo® ¢.2%dr=1. To obtain the ap-
propriate wave functions, simply set 8=1 and multiply
by (4)* in the above expressions. The quantity Q.(p)
is easily obtained in terms of these wave functions from
its definition in Eq. (4.28),

0

du,
On(p)=n"% f e et "r3(2—dr—+%r¢n). (A.8)

0

The result is given in Eq. (4.32).

APPENDIX B: ARRANGEMENT OF THE NUMERICAL
WORK AND A TABULATION OF
TWELVE INTEGRALS

- The problem at hand is to evaluate the double
integral N given by Eq. (4.34). The method will be to

IN HYDROGENIC ATOMS 1141
transform the integral by successive changes of variable
so that the Riemann sum may be conveniently per-
formed numerically. For this purpose we require finite
limits of integration and an integrand which is finite
throughout the region of integration.

We introduce the new variables y=1/x#\ and

w0 () Com)]

-1 1
=tanh™? (P /n) —tanh™? (—) ,
A 2N

so that
4 2 pldy
3r ndJdy
o [eznyu._ 1 —Znyu(l—yz)] sech®u
<[
o (1+4y tanhu)*
XQn(pn), (B.1)

where Q.(p) is given by Egs. (4.32) and

1 ny(14y tanhu)

D B tanhu-+2y--4? tanhu

(B.2)

Writing Q(pr)=Ra(pn)pn2and u= (1— v)/v, we obtain
4 2 iy Ly
Ne—u [ Za- [ 5
37T n vy y2 0 22
[e2mvs—1—2nyu(1—y?%)] sech'n
(14y tanhu)?(tanhu4-2y+4-y? tanhu)?
XRn(pn),

(B.3)
where

6 121n(p/2)+20 24
Ri(p)= (1J| ’ 1 ),
1

24 E
5 12Inpa—4 12Inpst23 15
R2(1>2)=(1+ + 4 )
P2 o P 2pat

Setting y=s(1+41v)/(s+v), we obtain finally

12
N=Z I,-,

r=1

(B.4)

where

1 1 [e2nve—1—2m,yu(1—9?)] sech®u[s(14+v)+s+v]S-(1—s)?
I,=f dsf dv
0 0

(B.5)

s2(s+v)2(142) (1+y tanhu)?(tanhu+2y-4-y? tanhu)?
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Tasik I Values of the integrals I,, defined in Eq. (B.5), obtained on an IBM 650 computer using a trapezoidal rule
with successive meshes M; (10X10), M2 (20X20), and M; (40X40).

I, M, M, M Mo— M, Ms—M. (Ms—M3)/3
1 —0.29507 —0.25004 —0.23577 +0.04502 +-0.01427 +0.00476
2 —0.22373 —0.26506 —0.28173 —0.04133 —0.01667 —0.00556
3 —0.14677 —0.16035 —0.16398 —0.01358 —0.00363 —0.00121
4 +4-0.10713 +0.11272 -+0.11406 -+-0.00559 -+0.00134 -+0.00045
5 —0.15987 —0.18377 —0.19123 —0.02390 —0.00746 —0.00249
6 +0.60672 +0.51345 -+0.48331 —0.09327 —0.03014 —0.01005
7 -+0.80816 -+0.93612 +0.98841 +0.12796 +0.05229 -+0.01743
8 —1.35946 —1.46159 —1.48915 —0.10213 —0.02756 —0.00919
9 —1.17292 —1.21873 —1.22975 —0.04581 —0.01102 —0.00367
10 -+0.45511 +0.46687 +0.47018 +0.01176 -0.00331 +0.00110
11 +1.38185 +1.55795 +1.61338 +0.17610 +0.05543 +0.01848
12 —0.94981 —1.00758 —1.02095 —0.05777 —0.01337 —0.00446
N —0.94865 —0.96001 —0.94322 —0.01136 +0.01679 +0.00556
n,=1 for r=1-35, n,=2 for r=6—12, of 2, the error is expected to decrease by a factor of 4,
y=s(1+2)/(s+v), u= (1—2)/, so that for monotonic convergence the successive
4 —12  40—241n2 48 —241np differences should decrease by a factor of 3. This is in
ST=-—(—2, , — - v P fact what is observed for each I,. Making a rough
3w 4 4 ¢ P extrapolation, we take the best estimate for I, to be
10 16+481n2 184—961n2 120 M3+ (M3—M,)/3, with an estimated error of (1/3)
T T 7 » o ’ ;4—’ X (Ms—My). The accurately known Bethe logarithm?
for the 15 and 2S5 states was expressed in terms of /s,
481Inp —961Inp and I and I, and the estimate of error for these
2 3 ’  integrals was verified. The first difference M,— M, for
? P

and
1 y(1+4y tanhu)

;_ tanhu--2y-y? tanhu

The I, were evaluated on the Nevis IBM 650 com-
puter using a trapezoidal rule for each variable s and .
Three successive runs were made with meshes M,
(10X 10), M, (20X 20), and M3 (40X40). The results
are given in Table I.

The error inherent in the trapezoidal rule has the
form a(As)?+b(Av)?, for increments As and Av. Since
the increments in the three runs decrease by a factor

N=3"1I,is fortuitously small. We take N = —0.944-0.02
which generously estimates the error.

The values of 7, may be useful in other calculations
involving soft-photon intermediate states. The con-
tribution of these integrals to the 15 and 2S hyperfine
splitting is

13 12
EMa(Za) (=3 I,) and EMa(Za) (T I,),
r=1 =6

respectively.
2 J. Harriman, Phys. Rev. 101, 594 (1956).



