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band and moves a short distance through the lattice
before being retrapped as Brs™.
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The Anderson-Rickayzen equations of motion for a superconductor derived within the random-phase
approximation (RPA) are used to investigate the collective excitations of superconductors. A spherical
harmonic expansion is made of the two-body interaction potential ¥ (k,k’) and a spectrum of excitations
whose energies lie within the energy gap 2A is obtained. These excitations may be characterized by the
quantum numbers L and M involved in the potential expansion. For an L-state exciton to exist, the L-wave
part of the potential must be attractive at the Fermi surface. Odd-L excitons have unit spin and may be
considered as spin waves. For s-state pairing in the superconducting ground state, the plasmon mode
corresponds to the L=0 exciton whose energy is strongly modified by the long-range Coulomb interaction.
For a general potential several bound states may exist for given L and M. If the L-wave potential is stronger
than the s-wave part of the potential, the system is unstable with respect to formation of L-state excitons.
In this case, the ground state is formed with L-state pairing, special cases of which are the p-state pairing
considered by Fisher and the d-state pairing proposed recently by several authors for the ground state of
He? and nuclear matter. Corrections to the Anderson-Rickayzen equations are discussed which lead to a
new set of exciton states if the L-wave potential is repulsive. These excitons are interpreted as bound
electron-hole pairs, as opposed to the particle-particle excitons present with an attractive L-wave potential.

I. INTRODUCTION

N the original theory of Bardeen, Cooper, and
Schrieffer! an approximation to the ground-state
wave function of a superconductor was obtained by a
variational calculation. Basic to the theory is Cooper’s
result? that if a net attraction exists between the par-
ticles, the Fermi sea is unstable with respect to the
formation of bound pairs. The BCS ground-state wave
function is formed from a linear combination of normal
state-like configurations in which particles are excited
to states of low energy above the Fermi surface. In all
of these normal configurations, the single-particle states
are occupied in pairs (kt, —k{), so that interactions
other than those between pairs of electrons of zero net
momentum and spin are neglected. The theory leads to
the single quasi-particle excitation spectrum given by
Ey= (ex®+Aw2)}, where ¢ is the Bloch energy measured
with respect to the Fermi level and Ay is the energy gap;
that is, 2A represents the minimum energy required to
* This work was supported in part by the Office of Ordnance
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1175 (1957).
2 .. N. Cooper, Phys. Rev. 104, 1189 (1956).

excite a pair of quasi-particles from the ground state.
The quasi-particle excitations are fermions and no
boson excitations appear other than the phonons.

This independent quasi-particle approximation has
been surprisingly successful in explaining the thermo-
dynamic properties as well as the acoustic and electro-
magnetic absorption, the nuclear spin relaxation, and
the Meissner effect observed in the superconducting
state. The derivation of the last has been criticized
because it is not strictly gauge-invariant. This is
primarily due to the neglect of residual interactions
between particles in states —k and k’>%2k. These inter-
actions give rise to a set of collective excitations (bosons)
and lead to a gauge-invariant description of the
Meissner effect.

For the investigation of these collective excitations,
Anderson® and Bogoliubov, Tolmachev, and Shirkov*
have used a generalized time-dependent self-consistent
field or random-phase approximation (RPA). Their
work shows that in the superconducting state, the
plasmon frequency and the plasmon coordinate in the

3 P. W. Anderson, Phys. Rev. 112, 1900 (1958).

4 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, 4
New Method in the Theory of Superconductivity (Consultants
Bureau, Inc., New York, 1959).
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long-wavelength limit are essentially the same as in the
normal state. They have also suggested the existence of
the exciton modes lying within the energy gap which
we investigate in the main body of this paper. A
thorough discussion of the generalized RPA has been
given by Rickayzen,’ who used it to derive the complex
dielectric constant of a superconductor and the Meissner
effect in a gauge-invariant manner. The BCS quasi-
particle states |a) and |8) do not satisfy the continuity
equation; that is, {a|V-j+5|8)#0. When collective
modes are included, the current and charge density
operators j and p are decomposed into a sum of indi-
vidual-particle operators and collective operators. A
virtual cloud of plasmons surrounds each quasi-particle,
producing a back-flow current which leads to over-all
charge conservation of the excitation. Therefore, the
continuity equation is satisfied within the generalized
RPA. This condition is sufficient to guarantee a gauge-
invariant form of the electromagnetic response kernel.
Tsuneto® has applied Rickayzen’s analysis to the
problem of the surface impedance at finite frequency.
While he finds that a precursor absorption exists for
frequencies below that of the gap, his results, when
applied to lead and mercury, predict an absorption
which results from exciton states in the gap which is an
order of magnitude smaller than that observed by
Ginsberg, Richards, and Tinkham?” in these materials.
The origin of the observed peak is uncertain at present.

In this paper we interpret the exciton mode in the
superconductor as a bound pair of quasi-particles whose
center-of-mass [ (r14r2)/27] propagates with momentum
7iq. The exciton spectrum is investigated through the
generalized RPA equations of motion proposed by
Anderson in the form introduced by Rickayzen involv-
ing the quasi-particle operators yx of Bogoliubov® and
Valatin® rather than ¢, the usual electron operators.
In these equations we make an expansion of the inter-
action potential V (k,k’) in terms of spherical harmonics.
It is found that excitons may be characterized by the
approximate quantum numbers L and M describing the
symmetry of the states with respect to the relative
coordinate r;—r,. The existence of an L-state exciton
(corresponding to the p, d, f, - - - excitons) is dependent
on Vi being negative, where V' is the L-wave part of
V (k,k’). The plasmon state corresponds to an s-state
exciton whose energy is greatly increased by the long-
range Coulomb interaction.

To obtain solutions to the Anderson-Rickayzen
equations, we take matrix elements of the equations
between a state with one collective excitation and the
ground state which has been renormalized so as to
include the zero-point motion of the collective modes.
The results give two sets of solutions Ara(q) and

5 G. Rickayzen, Phys. Rev. 115, 795 (1959).

6 T. Tsuneto, Phys. Rev. 118, 1029 (1960).

7D. M. Ginsberg, P. L. Richards, and M. Tinkham, Phys. Rev.
Letters 3, 337 (1959).

8 N. N. Bogoliubov, Nuovo cimento 7, 794 (1958).
9 J. G. Valatin, Nuovo cimento 7, 843 (1958).

1051

T'zar(q) which correspond to what Anderson has termed
odd and even solutions. We show that the A z(q) modes
are unphysical and that the 'z (q) modes correspond
to the exciton states. The quantum numbers L and M
are found to be exact in the limit of zero center-of-mass
momentum 7%g. For larger ¢, states of different L are
mixed, although the mixing is small for ¢£:<<1, where
£ 1is the coherence length. The magnetic quantum
number M, however, remains a good quantum number
for all ¢ if the potential has no crystalline anisotropy.
The exciton energy for the ¢=0 case is plotted as a
function of the L-wave coupling constant g;, defined by
gr.=—N(0)V/4mr, where N(0) is the density of states
in the normal phase at the Fermi surface. For gr> g,
the excitation energy proves to be imaginary and the
implications of this with respect to the original BCS
ground state are discussed. The M0 exciton may be
considered as transverse collective excitations since
they do not couple with a longitudinal field. In the
general case if the ground state is formed from Lo, M,
pairs, the Lo, M, exciton becomes the plasma oscillation.

In Sec. II we discuss the generalized RPA from a
diagrammatic point of view. Solutions for the collective
excitations are obtained in Sec. III. In Sec. IV we
consider corrections to the Anderson-Rickayzen equa-
tions which lead to a new type of exciton state closely
related to exciton states occurring in insulators.

II. EQUATIONS OF MOTION

We consider a system of electrons interacting via an
effective two-body potential ¥, whose matrix elements
in the Bloch state representation are given by

(k1'7k2l [ 14 | klykz) = %{ V<k1ak1,) + V(ka,kzl)}
X Ok +ko, ki’ +ky'.

2.1)

This potential arises from both Coulomb and phonon
interactions between electrons and will be discussed in
detail below. The Hamiltonian is expressed in the
Heisenberg representation in terms of the operators
¢k and ¢y, which create and annihilate electrons in
Bloch states of momentum % and spin ¢. They satisfy
the usual Fermi anticommutation relations. The single-
particle Bloch energies ey, measured relative to the
Fermi energy Ep, are assumed to be of the form
(%2k2/2m)— Ep. The Hamiltonian of the system is
given by

H=Y excwicwot’s 2 Vik k+q)
k.o

k,k’/,q,0,0"

(2.2)

Xck+q,vTCk'~q’ ,G'Tck' ,o'Ck,oe

In the generalized RPA one studies the time evolution
of bilinear operators of the form

0" (@) = ctatTcwa’, (2.3a)
bictq(— @) = C_x—qiCit, (2.3b)
pro (@) = Ciey g0 Cxo, (2.3¢)
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F16. 1. The two
vertices occurring in
the full equations of
motion for byt (q). In
the linearized equa-
tions only vertices
with certain values
of p’ and q’ are re-
tained.
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which create excitations with a fixed total momentum
7iq. It is helpful to consider the full-time development
of these operators as being built up from the infinitesimal
change of the operators in a time interval &/; for ex-
ample,

dbit (,t) =bi' (q,t4+61) — b’ (q,t)
= (1/ih)[H, by' (q,t) Jot.

In the absence of the interaction V, the commutator
reduces to (extq— €x)bx'(g,f) so that except for a phase
factor, the operators are independent of time. We call
any operator u,' an eigenoperator if its time dependence
is given simply by a phase factor. The equation of
motion,

(2.4)

[H et ]= 1Quptd,

for the operator guarantees that u,f, when applied to
an eigenstate |8) of H, creates an eigenstate |a) of H
with an excitation energy 7%Q,. From the Hermitian
conjugate of (2.5) it follows that u, has the inverse
effect of u.'. That is, while u,' adds energy to the
system, . subtracts energy, so that u," and p, may be
thought of as creation and annihilation operators of
excitations of the system. A knowledge of the eigen-
operators and their eigenenergies allows one to calculate
dynamic properties of the system as well as the thermo-
dynamic functions.

In certain cases the state p.'|8) may vanish iden-
tically; for example, if p.' creates pairs of fermions in
states already occupied in |B8). Another example is if
the operator p,.' scatters excitations already present in
the initial state, in which case u,' vanishes when applied
to the ground state. Both cases will be dealt with in
the next section.

In the presence of the interaction V, the commutator
(2.4) is complicated by the presence of terms involving
four single-particle operators (¢ and ¢’s). Therefore, the
bilinear operators &', b, and p are no longer eigen-
operators of H and one must include products of four,

(2.5)
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six, . . ., etc., single operators to form the u,'’s in
this case. The question arises whether there is a con-
sistent approximation in which the eigenoperators are
represented as linear combinations of the bilinear
operators &', b, and p alone. Consider a typical term in
the commutator arising from the interaction potential

V(0,0 @)eptoe—p—gnile_pacpn,bi (@) ]
=3V (0, P @) {crqratic—p—anTepuctwidp,irq
—Cierat CpratTCi—gnTeptdy i} (2.6)
This expression is shown in diagrammatic form in Fig. 1.
In the diagram, time is increasing from right to left with
the incoming particles in states k4-q4 and —kj entering
from the right. The first term on the right-hand side
of (2.6) is represented by Fig. 1(a) in which the inter-
action, represented by a dashed line, scatters the spin-up
incoming particle to k=4 gq-+q'4, creating a particle and
a hole in states —p’—q'} and —p'|, respectively. In
Fig. 1(b) the analogous process for the spin-down
particle given by the second term in (2.6) is shown. If
at time ¢{=0 a pair of single particles is excited, at time
6¢ there is a finite probability that a particle-hole pair
has been created from the background of particles in
the Fermi sea, with the incoming particles scattering to
new states. In the next interval of time a similar process
may occur involving any of the four excitations, and in
general the “bare” incoming particles will create a com-
plicated cascade of excitations leading to a decay of the
initial state. In the generalized random phase approxi-
mation one keeps only those terms in the commutator
which conserve the number of excitations allowing for
both forward and backward propagation in time (see
below). This procedure corresponds to a linearization
of the equations of motion by replacing two single-
particle operators in each term by a c-number given by
the expectation value of this pair of operators with
respect to a fixed state. If this state is chosen to be the
BCS ground state, defined by

l¢o>=£1[uk+vkbk*(0)310>, 2.7)
where |0) is the state with no particles present, con-
servation of momentum and spin leads to nonzero
average values only for the operators b:(0), bx(0), and
prs(0) =#ny,. In terms of the parameters u#x and vy,
these averages are

<5[’0]bk1(0) J¢0>:<¢0 I bk(o) ll//())*:%k‘l)k, (2.8&)
(ol nxe| Yoy =vi. (2.8b)
The parameters #y and vy are given by
=~ (14ex/Ex)?}, (2.9a)
1=+ (1—ex/Ex)?, (2.9b)
where
Ex=+(a2+A2)3, (2.10)
and Ay satisfies
Ay
Ax=2 V(kK)—. (2.11)
K 2B,



EXCITONS AND PLASMONS IN SUPERCONDUCTORS

This prescription gives a unique linearization of the
equations of motion since for ¢ 0 there is at most one
pair of operators with zero total momentum and spin
in each term. The terms retained within this approxi-
mation are shown in Fig. 2.

(1) As shown in Fig. 2(a), the conventional particle-
particle scattering vertex arises from the first term in
(2.6) when p’=k. The factor of 1 in front of V is
cancelled by the term in the interaction with spins
opposite to those in (2.6). This cancellation of the
factor of $ occurs in each vertex.

(2) Another possibility, shown in Figs. 2(b) and 2(c),
is for the scattered incoming particle to enter a bound
state with the other incoming particle, the outgoing
excitations being the particle-hole pair created from the
sea. This possibility is allowed for in the linearization
by including the finite average (o|dx'(0)|¢0), which
may be regarded as the amplitude for the pair to enter
the ¢=0 bound state, which is macroscopically occupied
in |¢o). Since a finite fraction of all the electrons occupy
this bound state in the superconducting state (corre-
sponding to the finite fraction of helium atoms occupy-
ing the £=0 state is superfluid He?), the small fluctu-
ation ~N* in the number of pairs N described by (2.7)
leads to no difficulties in a large system. Notice that in
Figs. 2(b) and 2(c), the incoming pair of particles is
transformed into a particle-hole pair by the interaction.
Therefore, b1 (q) and px,(q) are coupled in the equations
of motion.

(3) In addition, there is the possibility that the
scattered incoming particle enters the bound state with
the particle created from the sea, leaving the hole and
the other incoming particles as the outgoing excitations,
as shown in Figs. 2(d) and 2(e). Due to the presence
of the bound state, the incoming spin-up particle in
Fig. 2(d) is transformed into a hole in the state of
opposite momentum and spin. In the next instant of
time the inverse process may occur. It is clear that the
equations of motion are simplified if one introduces
“quasi-particle” operators vyx,I which are the proper
linear combinations of particle and hole creation opera-
tors to account for these processes. The appropriate
transformation, introduced first by Bogoliubov and by
Valatin, is
(2.12a)

(2.12b)

'YkOT =yt — UkC—kl,
Vit =il Fvickt.

For mathematical simplicity we will follow Rickayzen
by expressing the final linearized equations in terms of
quasi-particle variables.

(4) The exchange contributions to the single-particle
lines are shown in Figs. 2(f) and 2(g). As is well known,
they lead to an anomalously low density of states at
the Fermi surface in the normal metal unless a screened
interaction is introduced. This point is discussed below.
The exchange self-energy vertex can be accounted for,
along with process (3), by the quasi-particle trans-
formation (2.12).
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F16. 2. The vertices retained in the full linearized equation of
motion for byf(q). Vertices f, g, /, and  were neglected by Ander-
son and by Rickayzen. The particle-hole excitons are obtained
only if the interactions shown in % and ¢ are included.

(5) Finally, the unscattered incoming particle may
enter the bound state with the particle created from the
sea, leaving the hole and scattered particle as the out-
going excitations, as shown in Figs. 2(h) and 2(i). As in
process (2), the pair of incoming particles is trans-
formed into a particle-hole pair by the interaction. In
the limit ¢ — 0, process (2) is more important than (5)
in forming the plasmon state. Since the momentum
transfer is always %q in the former process, the large
matrix element of the Coulomb interaction 4we?/q
dominates the latter vertex in which the momentum
transfer 7q may assume any value. Anderson and
Rickayzen have neglected processes (4) and (5), sug-
gesting that their effect is primarily to renormalize the
single-particle energies and the effective interaction.

The terms occurring in the linearized equation of
motion for py,(q) are shown in Fig. 3 and bear a close
resemblance to those shown in Fig. 2. In the conven-
tional RPA for the excitations in the normal state, only
the polarization vertex [Fig. 3(b)] is retained. The
so-called exchange scattering correction shown in Fig.
3(a), when combined with the polarization vertex,
approximates the time evolution of px(q) by graphs of
the type shown in Fig. 4. In the limit ¢ — 0, the exchange
correction to the plasmon frequency vanishes. Since
matrix elements of the equations of motion are taken
with respect to RPA eigenstates, two pairs may be
spontaneously created from the vacuum and may
interact with the incoming excitations as in Fig. 4. This
process may be viewed as a propagation of the excita-
tions backward in time, familiar in the Green’s function
formulation of the problem.
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Fic. 3. The vertices retained in the full linearized equation of

motion for pkt (q). Vertices a, ¢, and f were neglected by Anderson
and Rickayzen.

In the generalized RPA for the superconducting state
the presence of the bound state gives rise to the vertices
represented in Figs. 3(c), (d), (g), and (h), so that an
incoming particle-hole pair can be transformed into
either a pair of particles or a pair of holes. Therefore, the
operators bif(q) and bxyq(—q) are coupled by the
density operator pi,(q). The vertices occurring in the
time development of by (q) are identical to those in
Fig. 2 except that all arrows are reversed and the
momentum q is replaced by —q.

We turn now to the question of screening. Within the
random-phase approximation to the normal state, the
screened interaction line is represented in the limit of
small wave-vector ¢ by a sum of diagrams of the form
shown in Fig. 5. Rickayzen has shown that the dielectric
constant is essentially unaffected by the pairing corre-
lations occurring in the superconducting state. It is
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casily scen that the vertices 2(b), 2(¢c), and 3(b) arc
automatically screened within the RPA through the
presence of the polarization vertex [Fig. 3(b)] in the
linearized equations. For example, when the vertex 2(b)
is followed in time by a series of vertices 3(b), the effect
is to replace the bare interaction line in 2(4) by the
screened line shown in Fig. 5. Therefore in vertices
2(d), 2(c), and 3(d), the unscreened interaction Vp
must be used. The potential Vp is given by

dret |2
Vo(q) =—F— (2.13)
q2 Q22— (qu)Q
where % is the energy of the excitation involved. Also,
v,* is the bare electron-phonon interaction matrix ele-
ment introduced by Bardeen and Pines and w,* is the
bare phonon frequency. It is essential, however, to
introduce the interaction screened by the dynamical
dielectric constant in the remaining vertices since it is
impossible to replace the bare interaction line by the
screened line through an iteration of vertices occurring
in the linearized equations. The screened potential is of

the form
e?
V(k, k+q)= (2.14a)

)
‘ZQK(q,‘Uk,q)
where the dynamical dielectric constant is given by

k(Qwi,q) = 1447 tion (Quwi, o) T-47ae (¢ 001, )

~1— (0 wk, k2 ¢ (2.14D)
Here, fiwk, = €xyq=€x and &, is the electronic screening
wave number. In a more complete treatment involving
coupled equations of motion for the electrons and the
lattice, the energy #wy,q would presumably be given in
terms of the quasi-particle excitation energies.

For simplicity, we neglect the vertices shown in Figs.
2(h), 2(i), and 3(a). We also neglect the exchange self-
energy correction since it simply renormalizes the
single-particle energies. With these approximations, one
obtains the equations first given by Anderson:

LH,b:(q) 1= (ext€rrg) 01’ (@) +Vn (@)p (@) (s0xtt4a4 s o) +Axpict ()

[Hpbirq(— @ ]= — (extext)biro (— @) — Vi (Qp(@) (scvrct-241cs gVictq) — Apicqi (@) — Arsqprt ()

LH,pxt (@) ]= (ercpq— e)pit (@) + (21— 014 ¢) Vi (@Qp (@) +Axbi’ (§) — Akt qditq (— @)

[Hp g1 (@)1= (ex—exrg)p—sxqt (@) = (02— 2kt ) VD (@0 (@) = Abiyq (@) +Ascpodi’ (@)

FArtgpi—qi (@) — (1= 08— Vi ) 1w V(KK )Pt (q),  (2.152)

— (== v ) V (kK )bxrsq(—q), (2.15b)

Fouxve 2w V(KK )b (@) =2t kg 2w VKK )b io(—a), (2.15¢)
Ftrrqtire 2w VIEK)bw (@) —won i V(KK )bwo(—q). (2.15d)

The density operator p(q) is given by

P(q) = Z k,o ck-}»anCkm

As mentioned above, the equations can be con-
siderably simplified by transforming to quasi-particle

variables, The Anderson-Rickayzen equations are then:

LA y+qo it ]
= (ExrqtE)Virqo v+ Vo(@)m(k,q)e(q)
—3l(k,0)Ax(q)+37(k,q)Bx(q), (2.16a)
10 J, Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
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LH,yerqryio]
=~ (ExrqtEx)viraryo— Vo(@)m(k,q)p(q)

—3l(k,@)4x(q)—3n(k,q)Bx(q), (2.16b)
LH vira,o Yre]= (Bxrq— E)Vira,o Yo (2.16¢)
The coherence factors are defined by
1(k,q) = stticy o+ ViVictq (2.17a)
m(k7q) :ukvk+q+vkuk+q, (217b)
n(K,q) = Uilhicrq—Vilictqs (2.17¢)
(K, Q) = 1y g — Vi1, (2.17d)
and the three collective variables are
Ax(@)=—2w V(K )b (@) —bryq(— )]
= *Zk' V(k)kl)[l(k’; q) <7k’+q017k’1T
—'Yk’+q17k’0)+ﬁ(k’,q)
X (Yrrsqovro— v yipq) ],  (2.18a)
Bu(@)=2w V(kK)[0w(q) +biyq(—a)]
=2 w V(K[ (K, @) [ywtaolyin’
+'Yk’+q17k'0]“m(k,:‘I) (’Yk’+q0T’Yk'o
Fyi1fyeq) ],  (2.18b)
P(q):zk,v Pka(q)
=2 wlmK,Q) (viroo v v qryio)
Fuk,q) (verqo v ot vt g ] (2.18¢)

From (2.16c) we see that half of the normal mode
operators are of the form 7iyq'vxer, Which has the
eigenvalue Eyyq—Eyx. These operators describe scat-
tering of excitations already present in the initial state
and vanish when applied to the ground state. Since we
will always take matrix elements of the equations of
motion between the ground state and an excited state,
these quasi-particle conserving operators may be safely
neglected.

III. SOLUTIONS OF EQUATIONS OF MOTION

For the analysis of the plasmon and exciton modes
at temperature 7'=0 we begin with the Anderson-
Rickayzen equations of motion (2.16) for the pair
operators Yiyqo vrl and yeperyro. It must be kept in
mind that the equations have been linearized with
respect to the ground state involving s-state pairing
between electrons of opposite spin and momentum, as
our results depend critically upon this fact. The col-
lective variables defined by (2.18) are substituted into
the equations in order to obtain them in a form involving
only the Bogoliubov-Valatin quasi-particle operators:

CH vt oo vt ]
= (@) vty + Vo (@m(k,q)
X2 w m(k', Q) (’Yk’+q0T’Yk'1T+’Yk'+q1’)’k'o)
+3 (k)2 VKKK, (yirqovied
—vtraywo) tin(ka) 2w V(kk)n(K,q)

X (virqo et Fyerqryio).  (3.1a)
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F1e. 4. A typical
diagram retained

<7
==
within the random-
phase approximation

i
K'+qt !
| f
to prs(q) in the nor- k'1> < k+q )

<>
mal state.
Kt

LH yitaryo]
= —vi(@)yrrqryro— Vo (@)m(k,q)
X2k m(K Q) (Y g0 v+ verrqaryeo)
+3 (k@2 e V(KK q) (yirgqo v
—ywrarywo) — 30K, V(KK )n(kK,q)

X ('Yk'+q0Jr'Yk’1T+’Yk'+q1’Yk’0)- (3.1b)

Those operators u. (g) are now considered which are
linear combinations of the bilinear products of v;’s and
vir!’s appearing in the two equations of motion (3.1),
and which create one elementary excitation of type a.
Thus we desire

kot (@) :Zk[ﬁ”d(k:q)7k+q0T7kIT+xa(k)q)')’k+ql7k0];
(3.2)
with
HNaT(q) [0>= [ﬁQa(q)+W0]MaT (q) l 0): (33)

where |0) is not the original ground state of BCS, but
the renormalized ground state with p.(q)|0)=0. The
quantity 7#Q.(q) represents the energy of the excitation
created by the operator p,f(q). The elementary excita-
tion u.'(q) may be any one of the three types involved
in the theory: a pair of excited quasi-particles in scat-
tering states, a plasmon, or an exciton.

From Eq. (3.3) and the discussion of Sec. II, we have
[H .t (q)]]0)=72.(q)ua’(q)|0). Since the commu-
tator [H,u,'(q)] is related to the time derivative of
Lot (q), the matrix element of u.'(q) between the
ground state |0) and the state |1(q,a)) containing one
excitation of energy 7#Q.(q) must have the time de-
pendence exp[iQ.(q)¢]. Now, Eq. (3.2), expresses
kot (q), within the RPA| as a linear combination of the
bilinear products yiyqoyi’ and yiyqyxo, so that we
may write the inverse transformations as

Yiroolviat=2e[ fo(k, Dus’ (O + fo(k,us(— )], (3.42)

Yiraryeo= 2 sl g8 (K, Qust () +Zs(k, Qus(— @) ]. (3.4b)

Taking matrix elements of Eq. (3.4) between |0) and
|1(q,a)) and using the orthonormality property of the
excited states, we find

(1(qe) I'YH—qOTYlelO)
=25 fo(k,)(1(q,0) | st (@) |0)
= fu(k,q) exp[iQa(q)¢],

(1(a,0) [ Yirqryro| 0)=ga(k,q) exp[iQa(q)t].

The solution for the exciton mode dispersion relation
is dependent on taking matrix elements of the equations

(3.5a)
(3.5b)
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F16. 5. The random-phase
approximation to the screened
interaction line.

308

1

of motion (3.1) between the states |0) and |1(q,a)) and
using the relations (3.5a) and (3.5b) so that we obtain
a set of c-number equations. The resultant system of
linear equations may then be solved for the normal
mode frequencies and the transformation coefficients f
and g.

By taking matrix elements of (3.1), we obtain:

[7Qa(Q) —vi(@) Ifa(k,q)
=Vo(@)m&k,QXw m, Q[ f.(K,q)+g.(K,q)]
+3H &)X VIK)I(K, @) f (k') —g.(k',q)]
(kX w VKK )n(k,q)
X[ faK,0)+g.(K,q)],

[7Qa(@)+v:(q) Jga(k,q)
=—Vp(@mk Q2w mk Q[ f(K,0)+g.(K,q)]
+3 & w VkK)I(K,q)[ fa(k',q0)—g(k',q)]
—nk,@Xw VkK)nk,q)
X[fa(k',@)+g.(K,q)]. (3.6b)

From (3.6) it is evident that an explicit form for
V (k,k’) must be chosen in order to proceed further. As
emphasized in the foregoing, the BCS ground state
about which the Anderson-Rickayzen equations have
been linearized is one involving s-state pairing. Thus in
the absence of crystalline anisotropy, the ¢ — 0 solu-
tions must transform according to the irreducible
representations of the full rotation group, i.e., the
spherical harmonics. Because of this fact, we expand
the two-body potential V(k,k’) in terms of spherical

(3.6a)

1
Aru(@)=V. 2 nlkg)——
O T (g = ey

BARDASIS AND J. R.
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harmonics. The coordinate system is chosen so that q
lies along the polar axis with § and ¢ the polar and
azimuthal angles of the wave vectof k’ and © and &
the analogous quantities for k. If { is the angle between
k’ and k, the use of the addition theorem gives

V(kk)= go Vi(kk) Y 10($) ‘

:gﬁ Vz(k,k’) Zl: l Ylm(g"p)*ylm(@,(p)’ (37)

where _
Vi(k,l')= (4n/2141)3V (B, F).

A further approximation is made in setting V;(k,k") =V,
a nonzero constant, for |e| <#iw. and zero otherwise.
The quantity 7w, is the average phonon energy of the
order of the Debye energy. We define the coupling
constant gz, by

g1=—N(0)Vr/4x.

The BCS coupling constant is related to go by
g2o=—N(0)V/4r=N(0)Vpcs>0.
It is convenient to introduce three new variables

A (@) =2k n(k, @)V, Y 1 (6,0)*

(3.8)

X[ (ka)+gk,a)], (3.92)

Tin(@) =2k 1k, Q) ViV 1 (6, 0)*
X[f(k,q)—g(k,@)], (3.9b)
Z(@=Vo(@Xxmko[f(ka+gkq)], (3.9¢)

where the subscript a has been dropped from both sides
of the equations for simplicity. Equations (3.6) then
express the transformation coefficients f and g in terms
of the new variables A, T', and Z. By substituting these
expressions into the defining relationships (3.9), we
obtain the following coupled integral equations to
determine the eigenfrequency Q(q):

{2Vk(q)7n (k) q)Z (q) YL;M* (07 (P) + vk (q)?’l/ (k’q)l;: YLM* (0; §0)

XY 1m(0,0)Aim () +72(q)! (k,q) ?: Vi (6,0)Vin(9,0)Tim(@)},  (3.10a)

Tru(q)=V I(k,q)
= e (e

{272 (q)m (k,q)Z(q) Y*L (0, 0) +12(q)n (k,q) IZ V¥ (6,0)

XYlm(eyW)Alm(Q)‘*—Vk(q)l(k;q) ZX: Y*LM'(oa ‘P) Ylm(e) @)le(q)}y (310b)

Z()=Vp kQ)———
(@) («D%m( q)[ﬁﬂ(q)]2—-vk(q)2

From these three equations it is immediately seen that
one good quantum number for the description of an

{2vi(@)m(k, @) Z (@) +vi(q)n(k,q) ZZ Vim0, 0)Arm(q)

(el (a) Vim0, ) Ten(@)}. (3.10¢)

excitation is the magnetic quantum number M. In the
sum over k, the angular integration requires m= M, as
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the only ¢-dependent quantities involved are the

spherical harmonics. Thus, M is a good quantum

number regardless of the center-of-mass momentum 7%q.
(1) ¢ — 0. Case

In the case of zero center-of-mass momentum, Egs.
(3.10) give L as an additional good quantum number.
This follows since neither the coherence factors nor the
energy vik(q) of the quasi-particle pair are dependent
on the polar angle in this case. The angular part of the
sum Y_x then reduces to

f YLM’|< (0, QD) Ylm (0, <p)dwk= 3Ll5Mm-

The sum X is converted into an integral by letting

Sy — [0/ (20)*] f dk Kdo,

where the volume v of the normalization box is taken
as unity. The radial integrals over % are all of the form

o fa(k,O)b(k,O)---
e d (= (0)

Bdk,  (3.11)

where each of the quantities @, b, ¢, -+ - is one of the
coherence factors, the energy »,(0) of the independent
quasi-particles, or the excitation energy #Q. The inte-
gration over the magnitude of k is replaced by an
integration over the Bloch state energy e, as measured
from the Fermi surface, by setting

k*dk= (m/h?)*(2Er)tde=2nN (0)de,  (3.12)

where we have made the approximation of a constant
density of states. The approximation leads to an error
of order %w./Er=10"%. The integrals I,...° are only
performed over the region —#%w.<e<#w. since the
potentials V; have been set equal to zero outside this
energy band. Using (3.12), Egs. (3.10a) and (3.10b)
for the ¢ — 0O case are written as

A=V iln®)ALy—Vilnan'TLu
=lim Z(Q)2V Lm0, (3.13a)
q—0

—VilwolAra+ 1=Vl
= lirré Z(Q)2V Llpin’ 0.  (3.13b)
q“)

From these equations it is seen that the direct Coulomb
interaction 4me?/¢? involved in Z(q) only appears for
the L=M=0 state. It will be shown below that this
state has a solution corresponding to a plasma oscil-
lation with the usual plasmon energy

Q=1 (4mne?/m)i~10 ev
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F16. 6. The L-state exciton energy in the limit ¢ —0 as a
function of the Z-wave coupling constant gz, where s state pairing
in the ground state has been assumed. The solid curve is based
on the Anderson-Rickayzen equations while the slightly higher
dashed curve includes the effect of the vertices shown in Figs.
2(h) and 2(z) for go=0.25. For gr>go the L-state exciton energy
isimaginary. If gz is the largest coupling constant, the linearization
should be carried out with respect to L-state pairing in the ground
state.

and lies far above the gap 2A~10~% ev. In this section
only the M 40 cases will be considered, in which the
right-hand sides of Eqs. (2.13) become zero. Since the
integrand of Ijq;. is odd about the Fermi surface
within the constant density of states approximation,
Ts01" vanishes and there is no coupling between the A
and T' modes. The excitation energies for the L0
modes with zero center-of-mass momentum are then
determined by the conditions:

(1=V I, 0)=0, (3.142)
1=V I,9)=0, (3.14b)

Setting x= (%Q/2A) <1 in the integrals I,,® and I,;»°
and using the definition (3.8) of the coupling constant
g1, Egs. (3.13) become:

1 1 arcsiny
(_—_ =—-( )(1—962)% (AL mode),
x
gL & (3.152)

1 1 X arcsinx
__w)=_—, (3.15b)
g g/ (1—a}

Values of x= (%Q/2A) are plotted as a function of the
left-hand sides of these equations in Fig. 6. The plot
shows that when gp becomes larger than g, the fre-
quency € of the I'ny mode becomes imaginary, indi-
cating that the system is unstable when described by a
ground state formed with s-state pairing. Therefore, if
gr is the largest coupling constant present, the ground
state should be formed from pair functions having
L-type symmetry. The pair spin function is singlet or
triplet depending on whether L is even or odd, since
the wave function describing the exciton state must be
antisymmetric on the interchange of all coordinates of
the quasi-particle pair involved.

(ALM mode),

(PLM mode) .

(I‘ LM mode) .
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The growth of the I' 3 modes for gz> go also indicates
that the Azy modes have no physical existence. As is
seen in Fig. 6, a Apy exciton cannot exist unless gz, > go.
However, when such a coupling strength is reached,
the corresponding I'zy exciton is unstable so that the
system decays before the Ary mode can come into
existence. Figure 6 also indicates the 2L-fold M de-
generacy of ¢g=0 L-state excitons.

It should also be mentioned that a continuum of
scattering state solutions is obtained from (3.14b) cor-
responding to the vanishing of the denominator of the
integrand. One such state exists between two successive
unperturbed levels, Ex+ Ey;q. Although the energy of
a scattering state solution is unaltered from its value in
the absence of interactions, its wave function is strongly
modified since each particle is surrounded by a de-
pletion of the same type of particle leading to the
backflow picture mentioned above.

(2) q Finite Case

From Eq. (3.10) it is seen that L is not strictly a
good quantum number for the case of finite g since the
coherence factors and »x(q) now have a polar angle
dependence. Because of the complexity of this de-
pendence, the sum i cannot be carried out exactly.

BARDASIS AND J. R.

Aru(q)= VLfdw{Z(t—W)% Imn'Z(q) YLM*Y10+[((47T)’[,,,2°+(

SCHRIEFFER

We approximate

wk-q R
€k4q = €xT +——,
m 2m
by
€k+q—5k+ﬁﬂ; (315C)

where B=7%v,q, u=cos, and v, is the velocity of a
particle at the Fermi surface. This leads to an error of
order ¢/kp<<1. The integral I... are of the same form
as those in the ¢=0 case. To perform the angular
integral, we expand the denominator of the integrand

_ 1 fa(k,q)b(k,q)~--
@2m)EJd (2P —ri(q)?

in powers of B. This procedure is valid so long as
B<#Q2—2A. The integrals over £ are then of the form

Top..=Top.. O plap.. - p gy 24 -, (3.17)

with superscripts indicating the powers of 8 involved.
Keeping terms through order 8% and using the relations

cosf=pu= (47/3)¥V10(6)

Bdk,  (3.16)

and

=3 (4m/5)Y 50(6)+ (4/3)¥ 0o,
the equations for A and I' (3.10) become

vn )Y00+ ( )[vn I/20]

cos=

T 5
X2 YLM*VJMAZM(q)'i-(?) Inain' Y10 20 Yiar*ViuTa(q) ), (3.18a)
P p

1

Pru(@=Vr f dwl 2[( (A7) poin+

Ar\ }
+ (?) Inain' Y10 2 Yiar® VZmAZM(q)‘F[ ( (4m)A+
7

With the relation

fdw Yl;;;n3*Yl2m2Yl1m1=|:

2hL+1) 2L+
47 (213+1)

) 2 74w\ ?
[hﬂlm2) Y00+§(-5—) Traim® Yzo]Z(q) Yia*

(4m)t
1,22 ) Yoo
3

2 s4m\?
+3(—5—) [ul’2yzo] 2 Vi Vil (q) } (3.18b)
1

] C(h,lz,ls; ml,m2>m3)c(l1;l27l3 ’ 0:0:0);

where the C’s are usual Clebsch-Gordan coefficients,* Egs. (3.18) become

Aru(q)= VL{ ( ) V,,mZ(q)aLlaMoﬁ—((szr)‘an"%—(

2 74m\?
SCC(OLL; 000)A e () +§(~) Lo

)7 )Zz:[éhr(ZL—{—l)
) 5(21+1)

7 [47r(2L+1)
+( )]ﬁ(llu - [

3(20+1)
4r(2L+1)

241 7
] C(0IL; OM M)

JZC(ZZL s OMM)C(2IL; 000)A L (q)

]C(UL;OMM)C(UL;OOO)FLM(q) , (3.19a)

11 Refer to M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957).
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(4m)}
"’"‘?;“"Iiifllm )6] 0 a0 +‘ (

(4
T ( (AP T, 0T

I'a(q)= VL.‘ 2[ ( (4m)H o

21+1
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) ]l le26 L‘ZBAIZ]Z(q)

) ;
) ,222) > [———] C(0IL; OMM)C(OLL ; 000)T 1.2 (q)
3 1 L47(2L41)

L 4”)1 22[ D) §C(21L-OMMC21L 000)T
{(5) 2 | cmomncen ot

(el

As in the ¢ — 0 case, the Coulomb field represented by
the presence of the Z(g) term does not couple into the
equations of motion except for the longitudinal modes
M=0. Discussion of this case is deferred and the
transverse cases M #0 are now considered. For a given
M #0, Egs. (3.19) represent a set of 2V linear simul-
taneous equations in Azy and I'zy, where N is the
number of terms present in the spherical harmonic
decomposition of the two-body interaction (3.7). It
follows that for a given set of V1’s the normal mode
frequencies of the system may be obtained by setting
the determinant of the coefficients of the Aza’s and
Tra’s equal to zero. Once the frequencies have been
obtained, the Ary’s, T'La’s, and the transformation
coefficients f and g may be determined.

For simplicity we consider the case for which all but
two of the V' 1’s vanish. It is assumed that the two-body
potential consists of a term V, corresponding to the
BCS parameter and another, Vi, representing the
angular dependence of the interaction. Since M has
been taken as nonzero, it is seen that the simplified V,
and V, potential allows the modes to be characterized

1 1
2(————
g1 £o

(g£0)*=30x°

3(2+1)
4r(2L+1)

]C(1lL;OMM)C(IZL;OOO)ALm(q) . (3.19b)

by a quantum number L within the approximations of
the calculation, due to A¢u and I'oa vanishing identi-
cally for M 0. Thus, we may speak of a p-, d-, - - -state
exciton when the additional term in the potential has
L=1,2 .- type angular dependence.

If the potential contains s- and p-wave potentials,

V(kK)=VV*(0,¢)V00(0,D)
+V1V1,41%0,0)YV1,11(0,8), (3.20)

the dispersion relations obtained from (3.19) are found
to be

[A1,41(q) modes], (3.21a)

1
—I_/—_= ([Vnﬁo_*_%'lvnﬂ);

1

= ([vlzo—*_%;]vlﬂ),

1

[T1,41(q) modes]. (3.21b)

We discard the A mode since it does not exist if the
system is stable. The dispersion relation (3.21b) for the
I'y,11(q) mode, when rewritten in terms of explicit
expressions for the integrals 7,;2* and I,;2? becomes

) 2x arcsinx

2(3x2—
2(9+22) +—-—

1—x

where x=7%Q; ,1/2A<1. This dispersion relation is
plotted in Fig. 7 for two values of g, with go=0.25.
From the figure, it is seen that the curve intersects the
origin for g1=go. For a value g; <g, there is a minimum
value of x=wx, given by (1/g1—1/g0)=xm arcsinx,,/
(1—%,2)} in agreement with the results of the last
section for the ¢— 0 case.

(3) The s-State Exciton

The above discussion was restricted to that of the
transverse, M 0, excitations in which the Coulomb
interaction term Z(q) did not enter into the equations

6)

- (3.22)
arcsing ’
arcsinx+ $axt——-
o) (1)}

for Arx(q) and T (q). Before discussing the M =0
cases, it should be emphasized that the equations of
motion (3.1) which are the basis of this paper are those
linearized by Anderson about the BCS ground state
based on s-state pairing of the electrons. As Anderson®12
has pointed out, it is the s-state exciton which corre-
sponds to a plasmon excitation, due to Z(q) coupling
into the equations of motion.

The L=0 mode is considered in the ¢— 0 limit.
Because of the singular nature of the direct interaction,
it is not possible to set ¢=0 in the calculation, so that

12 K. Yosida, Progr. Theoret. Phys. (Kyoto) 21, 731 (1959).
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9 g — 0 case:
8 (1= Vol,)Too=lim Z(q)2Volsam’.  (3.23)
7 q—0

a8 From the definitions (3.5) and (3.9) an expression for

gﬁ Z(q) is obtained:

-4

Fa Vo(g) :

g Z(q) = { (_‘) IvmnOAIO (q)
3 1—87Vp(q) Tym®+Lm2/3) L\ 3
2 ) (47‘_)%
1 + ( (4r) 4 hamd+ Ihﬂlmz)roo (q)

o I 2 3 4 5 6 7 8 9 10
qéo
F16. 7. The p-state exciton energy as a function of momentum
q for go=0.25 and g:=0.24 or 0.25. The parameter £, is the co-

herence length ~10~* cm. Notice that the exciton states are
strongly bound only for ¢='> &,.

the limit ¢— 0 must be taken. For our starting point,
we consider Eq. (3.13b) for the I'g(q) mode in the

Inain® (Tngtn®+Ingn/3) Vot (Lom®+Lrm#/3) (1= Vol 1)

2 /4m\*}
+5(?) [thm2P2()(q) ]. (324)

Since the L=0 mode excitation energy is being con-
sidered, only the T'po(q) term in (3.24) need be used in
substituting for Z(q) into (3.23). Rearrangement of
terms then gives:

1=1lim 87V »r(q)
q—0

Since Vp(g)~1/¢% Eq. (3.26) indicates that in order
for the limit to be finite, the terms in the numerator
which are independent of ¢ must vanish:

(Tnoum®)?Vot+-Lm®(1—VoI,2") =0. (3.26)

The validity of (3.26) is shown by considering the

explicit form of the integrals involved:
iwe QN (e) A2/ E

I,,,,2°=f ———de (3.27a)

hoe (FQ)2—4E2

hoe N(e)A/E
o[ SOVE,
s (7Q)'—4F?

- mf.: N(e)‘ (ﬁg)Z’E

+?Az((m)21— 4F (ﬁ;)z) ] %

hoe  N(e)4AE d]
f_hwc HOL(RQP—4ED)]

|

vV,
2A 1
=_{ _._+1,,20}, (3.27b)
rel Vo

where the BCS integral equation! for V), has been used
to obtain the first term on the right. With the use of

}. (3.25)
1_" I/OIM20

these relations, (3.26) becomes:

2A 1 fwe N(€)A/Ede
-V0( -—+Lz2)ﬁ9 [
7 Vo oo (AQ2)2—4E?
thwc N(G)AZ/E

(1 - Vo[yﬂ)de = 0
roo (HQ)?—4F2

With the validity of (3.26) established, (3.25) reduces
to

. 87Vp (q)
1=Ilim {

q—0 3

Vﬁ[hﬂlmolhﬂl7n2+lvm22 (1 - VOIVZQ)
1= Vol '

(3.28)

To determine the existence of a plasma oscillation for
the L=0 mode, (3.28) must have a solution for
x=(%Q/2A)>>1. Under this condition the term V[,;:
in the denominator is much less than unity and may be
dropped. The integrals involved in (3.28) are evaluated
for #>>1 so that, to order 1/x2, (3.28) reduced to

2

1= —-7r—VD (q)g2NV (0) £¢2. (3.29)
6x2

Using Vp(q)=4me?/¢* and e2£?N (0)= (3/27%) (hw,/24)?,
where w,2=4mne?/m, (3.29) gives @=w, so that the exci-
tation frequency of this mode is the plasma frequency.



EXCITONS AND PLASMONS IN SUPERCONDUCTORS

(4) The L=1, M=0 Mode

To complete the investigation of the collective states
present when only the V, and V), terms are kept in the
potential expansion (3.7), we must determine the dis-
persion relation for the I';o(q) mode. Setting M =0 is
(3.19b) we obtain two simultaneous equations involving
T'oo(q) and T';0(q). There is no mixing of these modes in
the equations. The T'g dispersion relation gives the
plasma frequency as discussed above while the I'io(q)
mode dispersion relation becomes

1/Vi= 1,0+ 21,12). (3.30)
In Sec. III (2) we found the dispersion relation for the
T'141(q) modes to be

1/ Vi= T2 +31,2). (3.21b)
Thus the T';o(q) dispersion relation can be obtained by
letting ¢ — qV3 in (3.22), indicating that for a given
wave vector q the excitation energy of the longitudinal
T'10(q) mode is raised above that of the transverse
Pl:hl(q) modes. )

IV. CORRECTIONS TO THE ANDERSON-RICKAYZEN
EQUATIONS

We consider here the terms in the linearized equations
neglected by Anderson and Rickayzen. For simplicity
we treat these terms only in the q— 0 case. In the
equation for &'(q), the terms shown in Figs. 2(h) and
2(i) were neglected. They contribute the factor

—UxVk Zk’ V(k,k') (AkI/ZEk')
X (vwd el +ywryws)  (4.1)

to the right-hand side of (3.1a) in the limit q¢— 0,
while the negative of this factor is added to the right-
hand side of (3.1b). The exchange scattering vertex
shown in Fig. 3(a) was neglected in the equation for
prs(g). Its contribution,

Zk' Ck'+qafck’vl:V(k,,k)vk+q2_ V(k+qy k’+ q)vk2]) (42)

vanishes as ¢ — 0 and does not affect the energy of the
exciton states in this limit. The inclusion of (4.1) adds
the term

1A S V(K k,)Ak’( L
= K fwtgw)

k K

(4.3)

to the right-hand side of (3.6a) and the negative of this
term to the right-hand side of (3.6b). Introducing the
variable

A
Re=Y E—“wk,k') (fotgw), (4.4)

1'G

one finds the M %0 exciton states satisfy the set of
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F1c. 8. The energy of the L-state particle-hole exciton as a
function of the L-wave coupling constant gr with go=0.25. For
g.>0 the particle-particle exciton described by Figs. 6 and 7 is
bound while for gz, <0 the particle-hole exction is bound. In the
absence of the direct interaction Vp, the s-state exciton is essen-
tially a bound particle-particle (and hole-hole) pair. With the
inclusion of long-range Coulomb interactions, the s-state exciton
becomes a plasmon described as a particle-hole pair.

coupled equations:
2Ey
Toiy=TriuV5d —
& (AQ)2—4E?
Ax ) #Q

—RiuVy Z(— —_—
T \E,/ (h0p—4Ee

Ax 7Q
Riny=TruVL Z(—)——‘——"
P \E,/ (h0y—4aEe

2A¢2
—RiuV5 ) ————— .
k Ekl:(hﬂ)z—‘lEkZ]

*.5)

Setting the determinant of the coefficients equal to zero,
one finds the dispersion relation

1 1
(-—+I,,,,z°) (—— 1,120) + (Tnan?)?=0, (4.6)
Vi VL
or

( 1 + arcsinx ) ( 1 1 = arcsinx)
gr x(1=a9¥/ \g, g (1—a)t
(arcsinx)?

1—xa2

=0, (4.7)

for the energy of the I'zyr exciton. The modification of
the q— 0 exciton energy given by (4.7) is shown in
Fig. 6 for go=0.25 and is seen to be small. A new type
of excitation follows from (4.7) for g;<O0, that is, a
repulsive rather than attractive L-wave interaction
between electrons. The energy of this state is shown in
Fig. 8 as a function of — gz, for go=0.25. From the form
of the coherence factors entering the dispersion relation
it appears the new state should be interpreted as a
bound electron-hole pair in close analogy with the
exciton states occurring in insulators. This interpreta-
tion is consistent with the fact that the electron-hole
interaction is attractive when the corresponding elec-
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tron-electron interaction is repulsive. Thus the electron-
hole exciton arises solely from the terms neglected in the

Anderson-Rickayzen equations.

V. CONCLUSIONS

While we have approximated the Lth spherical
harmonic of the two-body interaction by a separable
potential, Vo(kk)=—Vy for |ex|, |ew|<fw. and
zero, otherwise, in general, if the potential is independent
of crystallographic orientation, the numbers L and M
remain good quantum numbers for the excitations in
the limit q— 0. For a nonseparable potential, i.e., if
Vi(kK') is not of the form ¢, (k) ¢r*(k’), there may be
more than one exciton state for a given L and M. While
the excitons should give a negligible contribution to the
specific heat, it may prove possible to observe the

J.
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thermally-excited odd L excitons (spin waves) by
magnetic-resonance techniques. Since the precursor
infrared absorption observed in Pb and Hg by Ginsberg,
Richards, and Tinkham may be due to creation of
excitons, it would be interesting to carry out an explicit
calculation of the absorption coefficient for a thin-film
geometry in an attempt to reconcile the difference
between Tsuneto’s prediction and experiment. We are
at present calculating the infrared absorption due to
hole-particle excitons.
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