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FIG. 11. Model of the A center showing the unpaired electron
which gives rise to the spin resonance, in the Si-Si molecular bond.
The associated electrical level is at (rI., 0.17 ev). —

strain field is presented in the preceding paper. ') These
data we consider sufFicient to establish that the oxygen
is properly placed in the model of the A center.

V. SUMMARY

In these papers we have discussed the detailed prop-
erties of the Si-A-center spin resonance and the 12-p,

infrared band. On the basis of both macroscopic and
microscopic correlations, it is concluded that these are
properties of the same defect. It is, moreover, concluded

that the previously proposed model for the Si-A cent. cr
correctly described this defect.

The Si-A center is then a vacancy associated with an
oxygen atom as shown in Fig. 11. The oxygen bridges
two of the dangling bonds of the vacancy and the re-
maining two bonds form a molecular bond. This molecu-
lar bond can, provided the Fermi level is high enough,
trap an extra electron in an antibonding orbital. This
state we have previously" shown to be the (E,—0.17 ev)
level of Wertheim" and Hill."

We have previously" drawn conclusions concerning
the mobility of the lattice vacancy. These conclusions
were contingent on the identification of the Si-A center
and another center (Si-E) as containing a vacancy. In
this paper we have seen that the Si-A center does have
a vacancy as previously proposed. In a subsequent
paper" we will show that the Si-E center also incorpo-
rates a vacancy. The identihcation of these centers
being established, we can conclude that the silicon lattice
vacancy is mobile under the conditions of the irradiation
experiment.
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The s-particle distribution functions (s=1, 2, ~ ~ ) of classical equilibrium statistical mechanics are deter-
mined for a crystal, as power series in the temperature. They are obtained by solving Bogolyubov's
functional differential equation. From the distribution functions, the thermodynamic functions of a crystal
are computed as power series in the temperature. The leading terms in these series are the usual classical
results which are customarily derived by assuming that the potential energy is a quadratic function of the
particle displacements. The further terms, which depend upon the nonquadratic or anharmonic terms in
the potential, provide corrections to the usual results, which become more important as the temperature
increases. If only a few terms in the series are used, the results will be valid at temperatures low compared
to some characteristic temperature of the crystal, e.g. , the melting temperature. Since they are based on
classical mechanics, the results are valid only at temperatures high compared to the Debye temperature.

The series expansions of the distribution functions and thermodynamic functions may be viewed as the
low-temperature analogs of the virial expansions, which are low-density expansions. As in the case of the
virial expansions, all the terms are determined explicitly in analytic form, but their actual evaluation is
difBcult.

1. INTRODUCTION

'HE properties of a classical mechanical system in
thermal equilibrium are expressible as multiple

integrals involving the canonical distribution function

*This paper is based upon a report with the same title, Research
Report No. HT-6, Institute of Mathematical Sciences, New York

of statistical mechanics. ' If the system consists of a
large number of interacting particles, the evaluation of

University, August, 1960. This research was supported in part
by the Air Force Ofhce of Scienti6c Research of the Air Research
and Development Command.

' This is so provided that the energy is the only measurable
integral of motion of the system. See, for example, R. M. Lewis,
Arch. Ratl. Mech. Anal. 5, 355—381 (1960).
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these integrals is exceedingly dificult. For a gas at low
density Ursell2 and Mayer' have evaluated them and
obtained the virial expansions of the thermodynamic
functions. This suggested to us that it might be possible
to obtain a corresponding expansion in the opposite
extreme of high density. We first observed that such an
expansion could be obtained from the low-temperature
expansion just as the high-temperature expansion can
be obtained from the low-density (virial) expansion.
Therefore we have determined the low-temperature ex-
pansion. We find that in this expansion the particles
are associated with a mechanical equilibrium configura-
tion. This configuration becomes a crystal lattice as the
number of particles becomes large. Thus our results
provide expansions in powers of the temperature, of the
distribution functions and thermodynamic functions of
a crystal. These expansions are useful at temperatures
low compared to some characteristic temperature of the
crystal, e.g., themelting temperature, but high compared
to the Debye temperature, since they are based on clas-
sical mechanics. Although the coefFicients in these ex-
pansions are all determined explicitly in analytic form,
their actual evaluation is difIicult, as is that of the
coeKcients in the virial expansion.

Instead of evaluating integrals, we seek the s-particle
distribution functions (s=l, 2, ) from which all
properties of the system can be found. For them Bogo-
lyubov4 has introduced a generating functional which
satisfies a certain functional differential equation. This
equation was first solved by Zumino' in terms of a
power series in the density from which the virial expan-
sion of the distribution and thermodynamic functions
was obtained. The corresponding nonequilibrium equa-
tion was solved in a similar way by Lewis. ' In this paper
we solve the equilibrium equation in terms of a power
series in the temperature and from it we obtain our
results. The form of our solution was suggested by a
consideration of the asymptotic evaluation, for low
temperature, of the integral defining the generating
functional. Although this is not a practical method of
obtaining the series expansions, it has been carried out
for the first term of the partition function. ~ This con-
sideration suggests that our expansions are asymptotic
rather than convergent.

Previous calculations of the thermodynamic proper-
ties of crystals on the basis of classical mechanics are
equivalent to the asymptotic evaluation of the integral
representing the partition function. Therefore they are
actually low-temperature calculations, although this has
not always been pointed out. It appears to be compu-

' H, D. Urseli, Proc. Cambridge PhiL Soc. 23, 685 (1927).' J. E. Mayer, J. Chem. Phys. 5, 67 (1937).
4 N. N. Bogolyubov, ProMems of u Dynumica/ Theory in Sta-

tistical Physics, translated by E. K. Gora (Providence College,
Providence, Rhode Island, 1959).

" B. Zumino, Phys. Fluids 2, 20 (1959).' R. M. Lewis, J. Math. Phys. (to be published).' W. Pressman, Ph. D. thesis, New York University, 1960
(unpublished).

tationally difficult to obtain more than the first term
by this method, or to obtain the distribution functions.
However these quantities are determined by our
method.

The first terms in our expansions of the pressure and
the internal energy coincide with the results of the
usual classical theory of a crystal. In that theory the
potential energy contains only quadratic terms in
the coordinates. Our further terms involve the non-
quadratic or anharmonic terms and provide corrections
to the usual results. The corrections become larger as
the temperature increases. At temperatures high com-
pared to the Debye temperature, the results of the usual
quantum-mechanical theory of the thermodynamic
properties of a crystal agree with those of the usual
classical theory. This is because both these theories are
restricted to quadratic potential energy functions. If a
nonquadratic potential were employed in the quantum-
mechanical theory, its results should coincide with ours
at temperatures high compared to the Debye tem-
perature.

In the next section we derive the functional diGer-
ential equation. In Sec. 3 we solve it for the generating
functional. From the generating functional we deter-
mine the s-particle distribution functions in Sec. 4 and
obtain an expression for the mean value of any function
of the particle coordinates. In Sec. 5 we apply the
formula for mean values to the calculation of the ther-
modynamic functions. In Sec. 6 we apply the results to
a crystal. In Sec. 7 we derive the equation of state of a
crystal up to linear terms in the temperature, and in
Sec. 8 we calculate the internal energy of a one-dimen-
sional crystal up to quadratic terms in the temperature.
These calculations involve circulant and generalized
circulant matrices which are discussed in the appendix.

2. DEMVATION OF THE FUNCTIONAL
DIFFERENTIAL EQUATION

Let us consider a classical mechanical system of S
identical interacting monatomic particles in a region of
volume V. Although we are primarily concerned with
particles in three dimensions, we find it convenient to
peroiit the number of dimensions to be an arbitrary
positive integer e. This enables us to examine readily
the mathematically simple one-dimensional case. To
represent the position of a particle we introduce a skew
coordinate system with e linearly independent basis
vectors N~, , N„spanning a parallelopiped of volume
v. Then the (skew) coordinates of the point $'Nr+
+gng are $1 . . . $n

J et g„= (P„', ,P„") denote the position of particle v

and let %($r, ,$,) be any function of the coordinates
of s particles. Then the statistical mechanical mean 4
of 4 in a "canonical ensemble" is defined by

@X)der ~ ding.
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Here X) is defined by ful expression for J by solving this equation. To this
end we assume that the potential U is given by

(2.2)

(2.10)U=l Z p(s, -r,)+Z~(~;)The function U(pi, ,g~) is the potential energy of the
system, H=kT where k is Boltzmann's constant and
T is the absolute temperature, and

i.j =.1i'
I a

—!1//))!'/dg

BX) 1
= —-&[2p. (4—8.)+P-(6)].

» v=i
(2.11)

Each of the E integrations in (2.1) and (2.2) (and in
integrals throughout this paper) is to be taken over the
m-dimensional parallelopiped defined by

Here p, (P) = Bp(g)/»P and P (P) = BP (P)/»P
To derive the functional differential equation we need

only set s= 1 in (2.8) and differentiate it with respect
to $i . We then obtain

0(P(r, n= 1, , //, . (2.4)

The volume of this parallelopiped is V= r"v. %e shall
take /=7" and then V=PVv. Hence v is the specific
volume of the system.

We now introduce the s-particle distribution functions

g, defined by

8 8J

»h" f)n($i)

zr

~[K p. (~ -~,)+~.(~)]
0 g v2

xII&(gdg, " dP
v=2

g,(p„,p,) = ndP. +, dP~, s =1, , X (2.5)

Here p(g) is a pair interaction potential and P(P) is an
external potential. From (2.2) and (2.10) we obtain

2.3

In terms of g„ the mean value of 4($i, ,$,) is given

by the s-fold integral

1 6J
=—tl-(~ )

»~(~)

X(E—1)

%g,dpi .d$, . (2.6)

Thus mean values can be computed with the aid of the
functions g, . In order to determine them we introduce
their generating functional J[p]. It is closely related to
the one introduced by Bogolyubov4 and is defined b

The second form is obtained by permuting the integra-
tion variables and by making use of the fact that S is
a symmetric function. With the aid of (2.8) for s=2,
we obtain from (2.12)

8J 1 5J i
+-~.(~.) +-!"..(~ -~.).(~.)

»~-~.(~)» .(~)» ~

6 J
»n(8 ) ~n(6) (&—~)! ~

(2.8)

If we set ))—= 1 in (2.8) and compare the result with (2.5)
we see that

(x—s) !
g. (~," ,~.) = (2.9)

&v!

Thus the functions g, are generated by the functional
J[&].

Although J[))] is given explicitly by (2.7), tha, t
expression for it is inconvenient because it involves E
integrations where E is very large. Therefore we shall
now show that J also satisfies a functional diGerential
equation. Afterwards we shall determine a more use-

J depends upon the "independent function" i)($). By
functional differentiation of (2.7) s times with respect
to g, we obtain

J[1]=1, 7[0]=0. (2.14)

We may obtain an integrated form of (2.13) by
multiplying it by an arbitrary function f($i) and
integrating with respect to $i. In the first term we
integrate by parts and assume that g is so chosen tha, t
the boundary terms vanish. The result is

6J 6J— a.(~.) ~.+- ' ~(~)~.(~)»~(&)» &»~(~)
82J+- ! a(r)p-(~ b)~(~.)- david ))——0,

»~(~ )~~(~ )

n =1, , e. (2.15)

X— d$~
——0, n=1, ,n. (2.13)

»~(r )~.(b)

This is the functional differential equation satisfied by J.
From the definition (2.7) of J, we also obtain the
"boundary conditions"
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3. SOLUTION OF THE FUNCTIONAL
DIFFERENTIAL EQUATION

given by
(3.6)

In this section we shall derive a useful expression for
the functional J/qj which is valid for small values of 0.
We first attempted to do this by applying the Laplace
method of asymptotic expansion to the integral (2.7)
which defines Jfq7. In this method, one expands the
exponent U(pi, ~,$~) about a minimum point

(~i) '~4) (J4''')J&).

This leads to a series for J$q] in non-negative integral
powers of 0. In this series the coeKcient of 0& involves
the function q($) and its derivatives of order up to 2 p,
evaluated at the minimum point. Although this method
yields the general form of the terms in the expansion,
it is not convenient for their complete determination.
The method makes no explicit use of the expression
(2.10) for U and thus leads to unnecessary complica-
tions. Therefore we turned to the functional di6erential
equation (2.15) and attempted to solve it in terms of a
power series in 8. The Laplace method supplied us with
the general form of this series. By inserting this form
into (2.15) we were able to determine the series com-
pletely. The details follow.

We begin by defining the functional

We shall now take (3.6) as an assumption and show
that it is indeed a solution of the functional differential
equation (2.15) and the "boundary conditions" (2.14).
In so doing we shall determine all the coefficients
Abi" b, &» in (3.3).

It is convenient to begin by defining the functions s":

s"="(V.) II nh")
@=1
pQv

(3.7)

Hy functional difFerentiation of (3.1), we obtain

and

N

=2 ~(~ —~,) II.(~.),
'~(~)

(3 8)

Here, 8($) is the e-dimensional Dirac delta function.
Corresponding to the three terms of Eq. (2.15) with

J replaced by J', we define three quantities, Q", E,
and P

82JO

=Z'(~ -~,) E'(r.—'.) II "(~-) (39)
~n(b)&n(h)

J'L"3=IIn(v, ). (3 1)

J' depends on 1V vector parameters y„= (y„', ,y„") as
well as on the argument functions(P). We also introduce
a differential operator, L, defined by a power series in 8:

fQ-=- '.(~)-
~~(&)

v=1 ()Pvv=1

= —z c.(~.) rr "(~,) = —z (3.10)

X=1++8"L„.
p=l

Here L„ is a differential operator of order 2 p, defined by

2p

I.„=QAbi ~ ~ &»bD "biba; +=1,2), (3.3)

~-= ~(r)I.(&)
~~(~)

v=1 v=1

82JO

=E O(~,)~.(v, ) II "(v.) =E '.(v,) ; (3 »)

Dbl b8=
8+bi 8 yb

(3.4)
'-= o(~)..(~ ~.).(~.)- &4'6

'n(hi)~n(6)

For convenience, we have introduced vector indices of
the form b=(v, u) ranging over the index set A defined
by the conditions: 1~v~X, and 1~o;~e. Thus A
contains mlV points. In (3.3) and throughout this paper
we employ the summation convention with respect to
repeated indices of this kind which are to be summed
over A. If we define Lo= 1 and L„=0for p&0, then we
may write

(3.5)

=2 II n(v-)4(v. ) 2 v-(v. —v-)
V=1 CO+V @=i

pgy

(jU(y)z-"r-=P '
v=1 IQ1+v

(3.13)

=2 s" 2 v-(v. —v.) (3 12)
v=1 p, =i

QQV

Let U(~) denote U(yi, ,y„). Then from (3.11),
(3.12), and (2.10)

In terms of the above definitions the general form It is not difficult to show that the operator L and the
Of the series resulting from the Laplace method is functional diGerential operator commute whenapplied
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to IQ. Hence, if we insert the trial form (3.6) into the
functions. l differential equation (2.15), we obtain

By simple manipulations of the indices the last two
equations may be rewritten in the' forms

1
LQ + LER—+P j=0, at y„=I„.

8

2'—1

(3.14) L„,(Sa) = P Sbl ~ ~ btttabtAb] ~ ~ bt
t=2

If we use (3.5) in (3.14) and equate coefllcients of each
power of 8 to zero, we obtain

L„,Qa+L„(Ra+P )=0, at y„=I .

tt=O, 1, 2, . (3.15)

If we use (3.10) and (3.13) in (3.15), it becomes

N Bs" N tt'—PL„, +PL„l s ——l=O, atp„=I„;
v=1 B'rva v=1 ( B'yva )

tt =0, 1, 2, . (3.16)

In order that (3.16) be satisfied, it is sufficient that for
every s(y) and for all tt in A,

—L„ 1(s,)+I.„(sU,) =0, at y, =I„;
tt=0, 1, 2, . (3.17)

Here U, = BU(y)iBy. , and s.= Bs/By. .
We now set tt=O in (3.17) and since s is arbitrary we

obtain, for all a in A,

tt =2, 3, ; (3.22)

2'
L„(sV.) =s g Abl" b, &&'Uabl

s=l

2p 2p—1

+sbl p SAbi be~a~ Uab2 be+ p sbl bt
t=2

l
A bi be t"' Uab t~l be+ U.L„(s);

e=t+1 E t)
tt= 1, 2, . (3.23)

We insert (3.22) and (3.23) in (3.17) and equate to
zero the coefficient of each derivative of s, since s is
arbitrary. We obtain, for p, =2, 3, , and all a in A,

2p

p Abl b, t")Uabl ~ b =0, at "r„=I„;
s=l

2p

P SAbl" bel»Vab2 b, =0, at Pv=Iv;
s=2

U, =O, at V.=I' (3.18)

Thus (Il, ,IN) is a stationary point of U. This agrees
with the result of the Laplace method where (Il, ,IN)
was not only a stationary point but was actually a
minimum. Let us now determine the coefficients in I.„
so that (3.17) is satisfied for tt=1 2 3 . Since the
order of differentiation in (3.3) is immaterial we see
that without loss of generality we may assume that
Ab~ "b,(» is symmetric, i.e., invariant under permuta-
tion of the subscripts, Then it is easy to show that

$$
lAbl b, '&'V bt+1

e=t+1 E t)

—Sbl . bt8abtr4 bi bt " =0 I at V.=I.;

t=2, 3, , 2tt —1. (3.24)

Here 5b& bt is a symmetry operator defined as follows:
If {P1, ,Pt} denotes a permutation of the'numbers

{1, ,t}, then

Abl b, ~»Dbl b, (sU)

lsb, "b,Ub,+," b.. (3.1~)
t=Q (t&

1
Sbl ~ ~ btCbl bt =—Q Cbp1 bpt

t! &
(3.25)

2te e—1 tv@'l
L„(sV.) =Q Abl b, ' ' Q l

lsbl
8=1 t=o E tJ

&(Uabt+1 ~ ~ ~ be+ UaLte(s)' , tt= iv 2v ' ' '. (3.20)

Furthermore,

The sum in (3.25) is to be taken over the t!permutations
of {l, ,t} The symmetr. y operator appears in the last
of Eqs. (3.24) because sbl b, is inva. riant under per-
mutations of its subscripts. It does not appear in the
first term of that equation because that term is already
symmetric in {bl bt}.

For tt = 1 and every s(y) and all a in A, (3.17) becomes

2'—2

I„ 1(s.) = p Abl" bet"—'&sabl
Ll(sU, )—s,=0, at y„=I„. (3.26)

os 2

&~bl. ' ' '»s ~»J ' ' "» b ) l&+»'{-1(ttt—&)

s=l

tt =2, 3, (3.21)

If we insert (3.23) for tt=1 in (3.26), we obta. in for
every s(y) and a.ll a in A,

s[A b"'U„b+A b, "&V b.]+2sbA b, &'1U„, sB„b0,b-
at q.= Ivv. (3.27)



STATISTICAL F QU I LI B R I U M OF CRYSTAL i027

From this it fo]lows that for all c in A

A 5"'U,b+A b, "'U,b, 0——, at y„=I„
2Ab, &'&U, =8 b, at y, =I,.

tlute solution of the functional diGerential equation
(2.15) and the "boundary conditions" (2.14), and we
have completed the calculation of all the coefficients
in L. For convenience we list the coeKcients of L2.

A "'= 2—Ub~bcM8a

From the second equation we see that

(3.29)

(3.30)

Thus the coeKcients for p= 1 are determined.
In order to solve (3.24) for the higher order coef-

ficients, we first change t to (t 1) in t—he last of these
equations:

I.et (M,b) be the inverse of the matrix (U 5), i.e. ,

M,bUb, = tt„. If we multiply the first of Eqs. (3.28) by
Mq (and sum over tb) we obtain

Ablb2b354 = (1/24)t Mblb4M5253+M5254Mblb3

+Mb3b6Mblb2),

A 515253 l2 U555657$2MbibbM5256M5357

+Mblb5M52b3M5657+Mb2bbMblb8Mb657

+M5355Mblb2M56575,

A blb2 —8 U53b453 U5556b7(2Mbib5M52b8Mb3b7

)(, Mb4b6+MblbbMb258M5354Mb6bl

+2Mbib3M5253M5455M56575
—

4 Ub3b4b5b6Mbib3Mb2b6Mb4b5)

A c = —Mca Uab] b2A bib2 Mca Uab] b2b3

)(A byb2b3 —McaUabib2b3b4A bib2b3b4

(3.35)

( s
tAbl bt t"l

U. abt+ P ~

IAbl. b, " Uabt bs
s= t+l l t 1$—

—Sbi . .bg ibabg iAbi bg 2'& ') =0)

For the calculation of the internal energy of the
system we shall have to apply L2 to the function U(y)
at y„=I„.This yields

t =2tt, 2tt —1, , 4, 3. (3.31)
L2U= (1/24)Ql+ (1/8)Q, . (3.36)

If we multiply this equation by M„and carry out the
symmetrization operation, we obtain

3Mblb2M53batVZ 5556J& t3.3

1 2a ps
Abl ~ ~ bt ict"t=~ —— p ~

. ~McaUabt ~ ~ bsAbl ~ bs"
s=t+1 kt 1l Q, = Ubg b b Mb, b Mb, b (3.38)

j t—1

+ Q Mcb, Abl bs lbs+l ~ bt l
"

t(t—1) =l

t=2p, 2p —1, . 4 3; p=2, 3,

From the first two equations of (3.24), we obtain

2p

Abls'&'= ——', Q SMcaUab2 ~ ~ ~ b,Abl ~ ~ ~ bs"

4. DISTRIBUTION FUNCTIONS AND MEAN VALUES

We shall now use our solution of the functional dif-
ferential equation to obtain useful formulas for the
distribution functions g, and the mean values %. From
(3.1), we obtain, by functional differentiation,

gsJO

and

2p

Ac" =—P McaUabl ~ ~ 5 Abl ~ ~ ~ b

s=2

p=2 3~ 'ti (3 33)
N s

v1, ~ ., vs = i tbt = 1 0)gvj ' ' ' vs

tt =2, 3, . (3.34)

Equations (3.32), (3.33), and (3.34), give all of the
coe&cients of L recursively for @=2,3, -. We recall
that Lo= 1, but for p, = 1, 2, ~, the operator L„contains
no term without a derivative. We could have included
such a term in the definition (3.3) of L„and all equations
except (2.14) would have been satisfied. It is easy to
see that the "boundary conditions" (2.14) are satisfied
if and only if these terms are all zero.

The preceding calculations show that (3.6) is indeed

In (4.1) the summation is taken over all integer values
from 1 to N of the indices vi, , v, except those
values where two or more indices are equal. By analogy
with (2.9) we define g,' by

gsJO

(X—s)!
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(1V—s)! )8LJO

X. 8&(q,) aq"(g.),„=i„,, =i

=[Lgc jvv=iv

Then from (2.6) and (4.3)

f
O'Lgc'dpi dpc i

„„=I„

L 4g, 'd(i d$,
4 - Vv=Iv

From (4.4) and (4.2) we obtain

Now from (2.9) and (3.6) we obtain Thus the internal energy, E, of the syst, em is

E=H =6+U= (U+nX8+p 8aL„U)f~„=r, (.5.6)
@=2

a 0 a
I' =8 lnQ =——lnQ.

8V 2V Bv
(5 7)

Here Q is the configuration integral, given by Q=o~g
since the volume element in skew coordin. ates is ed'.
Then using (2.3) for g we have

a E 1 IaU—lnQ= ——g
—'

i e
—""i dpi dpbi

ao v 8 ~ ao

This equation expresses E as a power series in 8.
According to a well-known formula of statistical

mechanics, the scalar pressure, P', of the system is given

(4 3)

(1' s)!—
4= L

r v1 ~ ~ v v

(w)

+(v.„",v..) . (4 5)
—7v =Iv

Ã 1)aUi
(5.8)

ii 8 L a~ ),.

+= [L+(vi,",v,~)] .='. (4.6)

Equation (4.6) may be considered the main result
of this paper. It shows that the statistical mechanical
mean of a symmetric function 0' can be obtained by
applying to it the differential operator L.

If 0' is a symmetric function of its iV arguments, then
we see from (4.5) that

BU
P=———L

v g Vv =Iv

The fact that U depends upon v results from the fact
that p does. The interaction potential p($,—$,) is
actually a function of the interparticle distance which
is proportional to the length of $;—$, multiplied by v'ia,

as we see from dimensional considerations. Thus (5.7)
yields

5. THERMODYNAMIC FUNCTIONS

The total energy of the system of particles is given by

1 BU 8 0 BU
+——Li +

Ov v Lit Bv —Vv=iv

(5.9)

II=G+U.

BU
=—[U.g, I ——0.

8'y, Ov ~„=I„Bv
(5.10)

(5.1) In order to evaluate Li(aU/aii) we observe that by
(3.18)

Here the potential energy, U, is given by (2.10), and
the kinetic energy, G, is given by

N 2

G=P —.
V=l 252

(5.2)

P, is the momentum and m is the mass of the i th particle.
By the well-known theorem on "equipartition of
energy, "the statistical mechanical mean of G is given by

G= rbÃ8/2 (5.3)

Now from (3.3), (3.29), (3.30), and (3.18),

Since U is a symmetric function of ($i, . ,PA'), we see
from (4.6) that

U=[LU(q) j,„=i„=[U+8L,U+p 8aL„Uj,„=i„. (5.4)

Hence

BU' 1 82 BU 1 8
Ll ———M,b ~ab Uah

Bv 2 8+~8+b Bv 2 Bv

1 a(U)=—Tr (M), at y„=I.. (5.11)
2 Bv

Here a(U)/ao denotes the derivative of the matrix
(U) = (Uab), (M) = (Nab) and "Tr" denotes the trace
of a matrix. In order to simplify (5.11) we shall make
use of the following theorem.

Theorem I.et Q= (q;b). be a nonsingular matrix
which depends di6erentially on a parameter v. Then

L1U +a Ua+~bc Ubc —2IrIcbUbc 2rbIi
v

at 7„=I„. (5.5)

Q1T
I Q

'—I=—log detQ.
do) do

(5.12)
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Proof. Let

and denote
d—

q;& by q, A,
.'.

Let Q, q be the cofactor of q, q. It is well known that

Q-'= ( ')= (detQ)-'(Q'),

By matrix multiplication we obtain

T„C=Q c,.„=Qn, gqI, „' (detQ——) 'Q Qt„qg,'

= (detQ) '—detQ =—log detQ.
d8 dV

This proof was suggested by Walter Pressman.
With the aid of this theorem, and (5.11) we obtain,

from (5.9),

18V 0 0 8
P = —— +—— —ln det(U)

iV Bv v 2)V Bv

(5.13)

Equation (5.13) is the equation of state of the system.
It gives the pressure I' as a function of the specific
volume v and the temperature 0. The term of order 8
involves only the determinant of the matrix (U) rather
than the inverse matrix, and therefore it can be evalu-
ated easily.

All the thermodynamic functions of the system can
be computed by the usual thermodynamic methods
from E given by (5.6) and P given by (5.13). For
example, the coef6cient of thermal expansion ~=eye '
= ke&v ' can be obtained by differentiating the equation
of state P=P(8,v) with respect to 8 for P= constant.
This yields v&= Pe/P„and thus—

The first term in (5.16) agrees, for n=3, with the clas-
sical law of Dulong and Petit. The term 20L2U will be
calculated, for a special case, in Sec. 8.

0. APPLICATlON TO A CRYSTAL

Thus far our results are associated with a mechanical
equilibrium configuration of the system of X particles.
This configuration is given by a stationary point
I1, , I& of the potential energy U. So far we have
made no assumptions about the magnitude of E. For
large X we expect that this configuration will approxi-
mate a lattice, and the results will describe a crystal.
We shall now' apply our results to this case. We base
our analysis on the premise that the thermodynamic
functions are independent of the nature of any forces
at the surface of the crystal as well as of the shape of
the crystal, provided it is sufficiently large. Of course
w'e exclude consideration of surface phenomena.

In order to obtain a nonzero pressure and to confine
the system to a 6nite region it is necessary to apply
external forces to the surface of the crystal. There are
many ways in which these forces can be specified. We
shall choose a way for which the mechanical equilibrium
configuration is exactly given by a finite lattice up to
and including the surface particles. This requirement
also can be met in several ways, and we choose one for
which the mathematical analysis is simplest. It consists
in surrounding the system by periodic replicas of itself
which interact with it. We assume that the interaction
between two particles is negligible beyond. a certain
finite distance. Therefore for a suSciently large crystal
the eQect of the replicas is felt only on a surface layer
and this eGect becomes relatively negligible for large E.
Mathematically, we introduce the replicas by assuming
that if the coordinates of the S particles are
j= 1, , E; then each particle has images at (,+rK
for all vectors E with integer components.

Let p{r) be the interaction potential energy of two
particles a distance x apart. The length r of the vector

t u is given by

r=( Q u npPg~)l.
a,/=1

In terms of the coordinates $, the interaction potential
can be written as

kPe/vP„. —

When (5.13) is used in (5.14), it becomes

(5.14)
(6.1)

2%k —kv(8/8v) ln det(U)

2w'O'U/8~'
+0(8). (5.15)

Then the energy of the system of E particles interacting
with each other and with the periodic replicas is given
by'

Similarly, the specific heat per particle at constant
volume c„=X 'Er kX 'Eq is, from (5.6), —— (6.2)

c.=nk+klV '(Q p81' 'I.„U},„=r„.
$4=2

(5.16)
g This expression is correct only if v is so large that the inter-

action of a particle with its own images may be ignored. We shall
apply our results only in the limit 7 —+ ~.
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n

2 2 P(E'—6)
~1 2i'

(6.4)

In the present application of the general theory of the
preceding sections the interaction energy in (2.10) is
given by (6.4) and therefore the pair interaction
potential p($) is given by (6.3). In the limit, r b ~,
all the terms in (6.3) with KWO vanish. Thus

llm p(E) =7 (5)—=4(r)
g~co

(6.5)

We note that the function p(P) is even and periodic with
period ~:

p( 5) =p—(k);

and for all vectors J with integer components,

p(P+ rJ)=p(&).

(6.6)

(6 7)

In the absence of body forces such as gravity, the
external potential function P($) in (2.10) would be zero.
However if p(p) were zero, the matrix (U,b) would now
be singular and its inverse (M b), which was introduced
after (3.28), wouM not: exist. In order to avoid the
mathematical complexity which this would entail, we
allow P to be diferent from zero unt. il the end of the
calculation when we let P tend to zero. We shall assume
that P($) has the following properties: For all vectors
J with integer components,

Here, and in the following sections I, J, K, etc., denote
(2b-dimensional) vectors with integer components. In
(6.2) K is to be summed over all values of such vectors.
(6.2) can be simplified if we introduce the function p($)
defined by

(6.3)

Then (6.2) becomes

Ill Scc. 2 wc introduced skew coordinates, $. I ills now
enables us to describe each point of a lattice by the
condition that $ be a vector with integer components.
We shall show that wit. h p and P as defined in this
section, this lattice is a mechanical equilibrium con-
figuration. Thus let (II, ,I~) be an arbitrary ordering
of the N lattice points in the parallelopiped defined by
(2.4). Then these points satisfy the condition (3.18) for
mechanical equilibrium, because for each a= (n, v) in A,

U.= P p. (I„—I„)=QX.(J)=0. (6.11)

The last equation is valid because X(j) is an even
function and therefore X (() is an odd function:
X (—$)= —P, (f). Such a lattice represents a crystal
with one particle per unit cell, and this is the only type
of crystal which we shall consider.

I—(Il I2 . . . In) (7.1)

where Ii, I2, are any integers in the set {1,2, , r).
5 contains N=7." distinct vectors. At the end of the
last section we introduced an arbitrary ordering
(I.. .Ib, ) of these vectors. If we now set y„=pl„, we
can write U(y) = U(yi, ,y~) in the form

U(7) =
2 2 p(ri "rz)+ P—P(ri) (7.2)

'7. THE EQUATION OF STATE OF A CRYSTAL

Ke shall now' use the preceding results to calculate
the first two terms in the equation of state (5.13) in
the limit of infinitely many particles.

To this end, let 5 denote the set of vectors I which
give the position of the 3 lattice points in the paral-
lelopiped defined by (2.4). Thus 5 is the set of n-dimen-
sional vectors of the form

(6.8)
I, J, inS

I&J
I inS

P and all its derivatives except the unmixed second N w et U&& denote ~'U/~'r& ~&& l»=l Then by
differentiation of (7.2) we obtain, with the aid of (6.3),
(6.7), and (6.9),

=go ——const. (6.9) Uzz-=Pa+ Z p (J); (7.3)

These conditions are met, for example, by a periodic
function P(() which, in a neighborhood of )=0 has the
form

p-p(J); «P
Ugly ~ ———p p(J K); JAK. —

(7.4)

(7.5)
P (P) = 2POL(P)'+ ' ' '+ (P")'] (6 10)

In deriving (2.15) we assumed that the function

P($) was so chosen that the boundary terms in the
integration by parts vanish. Now we see that this will
be so if P($) is periodic in the sense of (6.7) and (6.8).
For p(g) and P($) are periodic, and therefore U is
periodic in each of its arguments $1, , $~ and
bJ/farl((I) is periodic in (I. From this the vanishing of
the boundary terms follows if P is periodic.

Here 5' denotes the set 5 with the vector I= (r, r, ,r)
omitted.

The calculation of the equation of state will require
the calculation of the derivatives of the functions p(P)
and X($) with respect to w. The infinitesimal change in 11

implied in these differentiations refers to a change in
the over-all scale of the crystal lattice. This is most
easily analyzed by equating the basis vectors I, which
define the crystal lattice, to scalar multiples of vectors
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of 6xed length and direction. Thus we let

uex=cG')~) 0!=1) ' ' ') 'p. (7.6)

If we now let P($) ~ 0, (7.14) becomes

G-p(X)=Z)-p(J)[1 —e "]. (7.16)

If the vectors m span a parallelopiped of volume 1,
then the constant c satisfies

J&0

From (7.8) we see that

From (6.1) we see that
cn

Here
&(~)=~[ g(~)]=~[ (~)]

~-p(k)=r-p($)4'[r(E)]+r-(t)rp(k)4"'[r(&)) (717)

Thus
(7.8)

G-p(X)=2 [1—e "]J«
g($) =c 'r($) =[ p w, wp$"$p]:

n, g=l
(7.9)

)& {r p(J)g'[r(J)]+r (J)rp(J)g"~[r(J)]}. (7.18)

From (6.3) we see that

The external potential P($) de6ned in Sec. 6 is inde-
pendent of v.

In order to calculate the term BU/Bv in (5.13) we
make use of (7.2) and (7.10). Thus we have

8 U(y) 1 a U(y) 1

88 sc" Bc 2~c" I, J In 5I &J

XP g(yr » K—)4'[—cgh' v K—)].—(7.11)

At y, =J„(i.e., at yr I) this bec——omes

Equation (7.15), with G given by (7.18), is the
equation of state of a crystal up to and including terms
linear in 8. It involves the first, second and third deriva-
tives of the intermolecular potential p(r). The distance
from the origin to the lattice point K is r(K) and. r,
is essentially the derivative of r in the direction of the
basis vector u .

Let us now specialize the result (7.15) to a cubic
crystal. The lattice will be a cubic lattice if the m are
mutually orthogonal unit vectors. In this case (7.9)
becomes

(7 19)

BU —2 g(K)4'[cg(K)]
88 2SC" l ~«

Then r =c'r 'P, r,p=c'r 'b
p

c'r 'P/P, a—nd (7.18)
(7.12) becomes

The matrix (U) appearing in (5.13) is the matrix
(U,q) which, in the present context, is the matrix
(U~x P). The term (1/111') ln det(U) which appears in

(5.13) has been calculated asymptotically for r —+ ~
in the Appendix. The result is, from (A.31) and (A.32),

1—ln det(U)
E

tl

ln detG(x) dx'
(2m)" ~ .

r —+ ~. (7.13)

Here G(X) =G(x', ,x") is the matrix of order n with
components G p(X) given by

G.p(X) =Pob.p+Q X.p(J) [1—e
—'~ x]. (7.14)

Jy-'0

If we differentiate (7.13) with respect to v, by dif-
ferentiating under the integral sign, and insert the
result. together with (7.12) into (5.13) we obtain, in the
limit v- —+ ~,

0 0
P r(K)y'[r(K)]+

2RV I~« 2(2m)"

r
XJ ~l

—ln detG(X)dx' dx "+0(8'-'). (7.15)
Bv

G p(X) =P [1—e '~'x]{c'r '(J)P'[r(J)]b p

+c'r '(J)[P"'[r(J)]—r '(J)P'[r(J)]]J~JP}. (7.20)

From (7.19) we see that if $ is a nonzero vector with
integer components, the minimum value of r for such
$'s occurs when one component of $ is &1 and the
others are zero. In this case r = c. The next largest value
of r is r = v2c. We shall say that the interaction extends
only to nearest neighbors in the cubic lattice if p'(r) and
p"'(r) are negligible for r ~ V2c. In this case the only
terms in (7.20) which survive are terms for which J has
all components zero except one, the remaining com-
ponent being &1. For v= +1, +2, , ~e we intro-
duce the 2n vectors P„:P„~=O if nA

~

v ~, P.~=+1 if
n=v)0, P„=—1 if n= v~ and v(0. Then P„P.p
=b pb ~„~, r(P„)=c, and (7.20) becomes

n

Gp(X)=c Q [1 e *"
v = N

v&0

X{4'(c)+[cd"'(c)—4'(c)]&.~.)}&.p

n

=2c P [1—cosx']

X{&'(c)+[cQ"'(c)—P'(c)]b .}b p. (7.21)
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From (7.21) we see that G(X) is a diagonal matrix. Thus

n n

detG(X) =g 2c(p'(c) P (1—cosx")+ (1—cosx )Lcg&" (c)—Q'(c) 1).
n=l v=1

(7.22)

n

4"'() 2 (1- ")+ 4'"()(1—o )
8 n—ln detG(X) =—+—g ——

Bv fg, 'P o.=l

v=1

1Z

g'(c) P (1—cosx")+$cp&'&(c)—g'(c)](1—cosx )

From this equation we obtain by differentiation

(7.23)

With the aid of (7.23) we see that for the cubic lattice with nearest-neighbor interactions, the equation of state
(7.15) becomes

n

Q"'(c) P (1—cosx")+c$"&(c)(1—cosx')
v=1

dx' .dx"+0(g').

(7.24)
v=1

For the three-dimensional case, zz=3 and (7.24) involves a triple integral.
Fo«potential which is quadratic in the neighborhood of r= z, p(r) = rzr'+b, the integral in (7.24) can be evalu-

at:ed explicitly and (7.24) becomes
&= —(c/~)e'(~)+0(&') (7.25)

Thus the linear term in & is absent. In fact, if p(r) is quadratic for all values of r, the configuration integral can be
evaluated explicitly. Then P is linear in |i and is given by (7.15), (7.24), or (7.25), without the remainder term
0(e'). Of course such a potential is unrealistic since it becomes infinite at large values of r whereas actual potentials
tend to zero.

If we set zz= 1 in (7.8), (7.9), (7.15), and (7.16) we obtain the equation of state of a one-dimensional crystal:

S

z j~'"(j)D-- j 3

j4 (j~)—,t dx+0 (8').
j=l

P P"&(jv)$1—cosjx]
j=l

(7.26)

Here s is the smallest integer such that for j)s, g'(jv), p&2i( je) and g&'&(jv) are negligible, and we have defined

p(r) for negative values of r by the equation p( —r) =p(r). Equation (7.26) agrees with the equation of state for
the one-dimensional crystal obtained by Pressman, ~ by asymptotic expansion of the configuration integral. For
s= 1, we have the case of nearest neighbor interaction, in which case (7.26) becomes

~ ~'"()
P = —4 '(z') —— +0(0').

2 4"'(~)
(7.27)

As a check on our computations, we have also obtained the result (7.27) by asymptotically expanding, with

respect to 0, the equation of state derived by Gursey. He obtained, in closed form, the partition function and

equation of state for the one-dimensional case with nearest-neighbor interactions.
I,et us now calculate the coefficient of thermal expansion ir for the general crystal. By using (7.12) and (7.13)

in (5.15), we obtain
sz'kv

2zz'k —
~l

~

—ln detG(x) dx' dx"
(2zr)" ~ . ~ .az

-+o(o).
Q ((1—zz)r(k)y'Lr(k)g+r'(k)y&ziLr(k) 1)

(7.28)

' P, C~iirsey, Proc. C:ambridSe Phil. Soc. 46, 182 (1950)r.
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For a cubic lattice with nearest neighbor interactions, (5.14) and (7.24) yield the simpler result

kcek Ir 7r

z = [(rb —1)cy'(c) —c'y"' (c)]—' ——+
2 2(2v.)""

P"' (c) P (1—cosx")+cg&"(c) (1—cosx )
v=1

e=l t2

P'(c) P (1—cosx")+$cP'2'(c) —p'(c)](1—cosx )
v=1

For a one-dimensional crystal, when interaction with the s nearest neighbors is taken into account, (5.14) and

(7.26) yield
S

& j&'"(jv)31—cosjx]
S k

~=[—v 2 j'4"'(jv)] "— dx+0(8).
j=l 4~~ .

P P"'(jv) t 1—cosjx]
2=1

(7.30)

If, in theone-dimensionalcrystal, onlynearest-neighbor expressions in the last column are the values of the
interactions are included, (7.30) becomes functions at y„=I,= v, v= 1, , cV.

&4 '"(v)
K= +O(8).

2vLy ' (v)]'
(7.31) U-= 2 v"'(v. v~)+0—"'(v.) =lb+ 2 I "'(i), (8 4)

8. THE ENERGY OF A ONE-DIMENSIONAL
CRYSTAL

U...=P p "(y. y,)+P "—(y.)=0,
7+6

(8.5)

We shall now calculate the coefficient of 8' in the
expansion of the internal energy E of a crystal. From
(5.6) we see that this coefficient is 12UT ran=I . 12U is

given by (3.36), (3.37), and (3.38) in terms of the ele-

ments 3f,b of the inverse matrix. Because of the diffi-

culties of calculating the inverse matrix and evaluating
the sums in (3.37) and (3.38) we shall restrict our con-

siderations to the case of a one-dimensional crystal.
Before the calculation is completed, we shall further
limit it to nearest-neighbor interactions.

We begin by specializing (6.1) and (6.3) to the case
m=1. In this case r= TeiPT and TuiT =v. If we define

p(r) for negative r by the equation g( r) =p(r), then—
(6.1) becomes

U--=2 c'"(v. v~)+P"'—b-)= 2 v'"(j), (8.6)

(8.7)U-b= -v"'(v- —vb) = -v"'(~—t),

U-b= -u'"(v. -vb) = -u'"(o-t),
U-.b= —u"'(V--Vb) = -i "'(~—&),

U..b» V"' h"=V~) -"V'( =ot)

(8.8)

(8.9)

(8.10)

Q,=P U ...(M )'+ Q (4U, bM M b

(81) I ah
ahab

It is clear that all derivatives of U with three or more
distimct subscripts are zero. It follows, then from (3.38)
that

Since E=r"=r, (6.3) becomes +U,.bbLM„Mbb+2 (M,b)'] ). (8.11)

From (2.10),

(8.3)

From (8.4) and (8.7) it is easy to see that (U,b) is a
real, symmetric, circulant matrix: U,b= C, b, C~~= C;
C =C . Such matrices are discussed in the Appendix.
It is not difficult to show that the inverse of a circulant
is also a circulant. It follows„ then, that

8.12M.b= h b, h +~= h. ; h, =h, . (
By differentiation of (8.3) we obtain the following

formulas which will be needed in the calculation. The lf we insert (8.12) in (8.11) and make use of (8.6),
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(8.9), and (8.10), we obtain

X—I X—1

~o=ho' Q p'"(j) 4h—o Q p'"(j)»S j=l

+ 2 p'"(j)(ho'+2k']

=4K "'(j)(ho—h)'.
j=l

(8.13)

But, by changing t to —t we see that

p (hc, —h, d.,)(h,+~h, ;)=0. (8.18)

Therefore, by adding the term (8.18) to (8.17) we
obtain

1 cr

Q&= 12 Z P (j)P '(~)
g c V=1

XQ(h „—h, „)(h;—h)(h; —h;). (8.19)

Here s is the smallest integer such that for j)s,
g'( jv), p &'& (jv), p "&(jv), p &"(jv) are negligible.

In the expression (3.37) for Q~ we note that Ub~bobo

is nonzero if and only if it is of the form U „=U,
=U„,. Thus if we consider U „Ubdd and the eight
similar expressions obtained by permuting the sub-
scripts, and make use of the fact that 3f b=3Eb„we
obtain

Q,=3 P U.„Ub~PS.,M~M. b

a, b, c, d
a&c, bWd

+2MccMadMbd+2Mdd MbcMac+2McdMcdMab

+4McdMacMbd+4McdMbcMad] (8 14)

If we use (8.12) and (8.8) and observe that p&'&($)

is an odd function, while all quantities are periodic
functions of the indices, (8.14) becomes

Q~= 6 2 p"'(a —~)p"'(b —d) L(h.—.)'h.-b
a, b, c, d

agc, bgd

It will be observed that the expressions (8.13) and
(8.19) for Qo and Q~ both involve only differences of
the h's. This is important because of the fact that for
pp ——0, the matrix (U,b) is singular. Hence it is not
surprising that in the limit Pp ~ 0, the elements h; of
the inverse matrix become infinite. However every
difference (h, —hb) tends to a 6nite limit and we are
thus able to obtain a 6nite result for the internal
energy. %e shall carry out the details of the calculation
only for the case of nearest neighbor interactions (5=1).

In this case we see from (8.4) that

Cp ——U, =Pp+2p&'& (1),

and from (8.7) and (8.2) that C~ ——U.+~,.———p&'&(1)
= —v'p "& (v). All the other C's are zero. In the Appendix
we have calculated the inverse matrix for this case.
From (A.24) and (A.25) we see that the elements of the
inverse matrix are given by

h = LC~(& r')(—1 r")]—'L&'+&" ']
+2h,~h, .hb~+2h, dhb, h d]. (8.15)

We now set j =a c, I=y —c, v=b d. (—8.15) bec—omes

Q&=61V P p~ ~(j)p~ ~(b)h&t h&h; & „+2k&+„h; &]
v, j, t

&0, v&0

r=n+(n' —1)*'; n=—

j=0, 1, 2,

Cp Po=1+
2v'y ~'& (v)

Cg ———v'y &'& (v).

(8.20)

S

= 121V 2 p'"(j)p'" (~) 2 hcLhc(h'+c- —»+c+ )
j,V=I t

From (8.20) we see that we may write

r=1+o, o ~ 0 as Pp —+0. (8.21)

+2h~+. (h; c
—h;+~)]. (8.16) By expanding to order o', we obtain

r j+rNj—
If we change t to —t in one-half of the term with co-

efficient 2, this becomes

8

Q =121V 2 p'"(j)p"'( ) 2 I h-'(h-. —h+.)
j,v=1

—h, (h,+„—h, „)(h;+,—h, ,)]
8

=121V 2 p"'(j)p'"(~)

XP (h, ,—hc~,)Lh,-, (h, ,—h,)+h,h,+;]. (8.17)

1V(1V—1)=2+1Vo+ j(j—1V)+ o'+ . , (8.22)
2

(r r—1)(1 rÃ) — 2goo+. . .

It follows from these formulas that

(8.23)

We now insert t.his result in (8.13) for k=1. If we

fj(j 1V) k(k iV)]---
h~ hb = Lv Q~o~(v)]- —+0(o). (8.24)
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then let P() ~ 0 (s —«0) and N ~ ~ we obtain

4 ("(s)—Qs~ p~ —+ oo.
[0")(s)j'

(8.25)

The 8 term in (8.30) provides a correction to the one-
dimensional law of Dulong and Petit, c„=k. This cor-
rection depends upon anharmonic terms in the potential.

APPENDIX. GENERALIZED CIRCULANT MATRICES

Similarly, if we insert (8.24) in (8.19) (for k= 1), and
let P() —«0, we obtain

Here

3[&("(s)7
1 Ji

2[4")(s)3'
(8.26)

N—1P[—(t—1)(t—1—N) —(I+1)(t+1—N)]'-
t,=1

X[(t—1) (t—1—N) —t(t —N) j
[—8t'+ (12N+4) t'

@~3 t=l
—(6N'+41V) t+ (Ns+N')] (8 27)

2[4(s)( )js
Q~ g~ oo. (8.28)

We now insert (8.28) and (8.25) into the expression
(3.36) for LsU, and the latter into the formula (5.6) for
E. In this way we obtain

y(4) (t))
+0(mls). (8.29)

8 [4")(s)j'

Equation (8.29) gives the internal energy per particle
of a one-dimensional crystal with nearest-neighbor
interactions and with lattice-spacing e. The first term
is the value of the potential energy per particle when
all particles are at the lattice points. The first two
terms can be obtained by evaluating the configuration
integral if U is a quadratic function. The next term
involves anharmonic or nonquadratic terms in P and
hence in U. To check our analysis, we have also derived
the result (8.29) by expanding asymptotically the ex-
pression for E given by GQrsey. ' Peierls" has calculated
the energy of a three-dimensional crystal through terms
in 0' but his results for the 0' term involve infinite series
which have not been evaluated.

From (8.29) the specific heat per particle c„=kN 'E()
ls

If we carry out the indicated summation, we obtain,
in the limit 1V ~ ~

To perform certain computations we find it con-
venient to generalize the ordinary notion of a matrix
(C;,) in two ways. The first generalization consists in
letting each element C,; of (C;,) be a matrix, say of
order m, rather than a scalar number. Then if
i, j= 1, , r, (C;;) is a block matrix of order mr. Such
matrices are in common use. In particular, the notion
of block multiplication is well understood. The deter-
minant of a block matrix is simply the determinant of
the ordinary matrix obtained by writing out all the
blocks in their appropriate locations. The use of block
matrices was suggested to us by Bernard Friedman.

%e obtain a second generalization by permitting the
indices to be vectors I and J rather than scalars i and j.
Thus we de6ne the set 5 of e-dimensional vectors, I,
of the form

I= (I' Is I") (A.1)

Here I', Is, are any integers in the set (1,2, ,r).
Then S contains X=7." distinct vectors. A quantity
(Crq) depending on two vector indices which range
over 5, will be called a generalized block matrix. For each
fixed I and J, Cl J is a matrix of order m. If the Svalues
of the vector index are orderedxin some arbitrary but
definite way, (Cq~) becomes an ordinary block matrix
of dimension mX= mv. ".If now the vectors are re-ordered
in any way, this corresponds to a permutation of the
rows, and the same permutation of the columns of that
matrix. Since these permutations leave the determinant
of the matrix unchanged, we can define the determinant
of a generalized block matrix to be the determinant of
the block matrix corresponding to any ordering of the
indices.

(Cr J) will be called a generalized Toep/i ts matrix if

Crq ——Cr ~ for all I, I in S. (A.2)

It will be called a generalized circulant matrix if, in
addition, for all vectors E with integer components,

~r+,z= Cr. (A.3)
These definitions reduce to standard ones when m= m= 1.
In that case there is a well-developed theory of Toeplitz
matrices, including a useful asymptotic formula for the
determinant as w —+ ~." Our purpose here will be to
obtain a generalization of this formula for generalized
circulant matrices.

To this end, let P = exp[2irir/r$, where r is an integer.
Then P'= 1 and P= 1 only if r= kr for some integer k.
If r/kr, then P/ 1 and

[4'"(e)2 0(4) (s)
c„=k+k8 — +O(8'). (8.30)

6[4"'(s)1' 4[4"'(s)7
=0. (A.4)

"R. Peierls, Quantum Theory of Solids (Oxford University
Press, New York, 1955).

"U. Grenander and G. Szego, Toeplits Iiofms end Their Appli-
catioas (University of California Press, Berkeley, California, 1958).
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It follows that

P exp[2rrirj /r j=rb„i„
j=l

=r if r=kr (for some k)

=0 if rWkr (for all k).
(A.5)

Hence, if J, E, and E are vectors with integer com-
ponents,

rl T

exp[2miJ. R/rg=g ( P exp[2m. iJ"R"/r))
JinS v=1 Jv=1

Then
A g G(2rr J——/r). (A.14)

(UDU*)rx= Q Ureter(U*)err
JinS

We iiow introduce the matrix function G(X) defined

by

G(X) =G(x', .
,x")=Qg Bg exp[—iR.Xj. (A.13)

We also define a generalized block-diagonal matrix,
D= (Arly, rr), where

=g r8 g...rrv r "hr——r,,rr (A. .6)
v=1

f 2irJ )= P G~ (;-exp
J'in S

' 2x'i
J (I E)—

Here 81,J is the generalized Kronecker delta. Thus

=1 if R=7E (for some E)
~z,.x =0 if RWrK (for all E).

(A.7)

Let d&» denote the identity matrix of order p. We
introduce the generalized unitary matrix (Urz) where

U r=rir "i2 exp[2miJ R/r]d(~i; J, R in S. (A.S)

Then if U* is the Hermitian adjoint, (U*)rri=Uri. r,
and from (A.6)

(UU )BM Q UBJUMJ
JinS

= r "Q exp[-2~iJ (R—M)/r)8™
JinS

27ri
=+Brr P r "exp J (I E R)— —

8 JinS

Q BR'(r K R),rL 2—B—I rr+rL C—I K. —
R L

(A.15)

Thus UDU*=C and D=U*CU. For m=1, the AJ's
are the eigenvalues of the matrix C.

Since detC= det D=g r;„sdetAr, the foregoing
results enable us to obtain an asymptotic formula for
the determinant of C for large v. ..

—ln detC= —P ln deter
S y~ JinS

Thus
=8~-~,p&( '=~a, ~&( '.

U US U+U y (mN)

(A.9)

(A.10)

1
-

p2sJ~ I
2m'"

(2~). r;. s ( r ) Er)
(A.16)

CJ+rx CJ. (A.12)

It follows that, for I, J in 5, C= (Cr J) is a generalized
circulant matrix.

For each value of the e-dimensional vector E with
integer components, let 8~ be a matrix of order m. We
shall assume that B~ is the zero-matrix unless the
components of the subscript E'= (E', ,E") satisfy
the condition k&K"&k; v=—1, , e; where k(r/2.
We now set

Cr ——Qr, Bz+.r.. (A.11)

The summation in (A.11) is over all values of the
integer vector I., but in eGect every summand but one
is zero. Thus the CJ s are the periodic continuations of
the BJ's: For all vectors E with integer components,

lim —ln detC=
r—+oo Q

ln detG(X)
(2~)"

&(dx' dz"; r"=A (A.17).
This is the desired asymptotic formula.

At the end of this section we shall apply the above
formula to the calculation of the equation of state of a
crystal. Before doing that we shall calculate the inverse
of a particularly simple circulant matrix of the ordinary
kind (m=rr=1). It is not difTicult to show that the
inverse is also a circulant matrix. Let C= (Cr r), where
Cr is de6ned by (A.11), the B's are real numbers, and
the only nonzero B's are Bo and B i=Bi. If H= (hr r)-
is the inverse matrix, the equation CII= 6(N) may be
written

Cl

0
CH =Cl

0
0

0
0
0

0
1
Cl

0
0

~ ~

~ 1 —C'
~ 0 1
~ 0 0

0
0
0

1
Cl

1

0

Cl

hN 3

hN —2

1 hp

0 hl
0 h2

hN —1

hp

hl

hN 4

hN —8

hN —2

hN —2

hN —1

hp

hN —5

hN —4

hN —8

h2

h3

y (N)

hN-2
hN —]

hp

(A.18)
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—C'hp+2hi=Ci '. (A.20)

The next E—2 equations are given by

h,+, C'h;+—i+h; =0; j=0, 1, 2, , iV 3. (—A.21)

These last equations are second order, linear, homo-
geneous, finite difference equations with constant coef-
ficients. The general solution of them is

Here C'= —Cp/Ci. Since C is real and symmetric, H is
also real and symmetric as well as circulant. Thus
h;=h;+g and

h;= hg;. (A.19)

Multiplication of each row of C by the first column of
II leads to E equations, the first of which may be
written

Then the 8's are matrices of dimension m= e. Since the
interparticle potential function p(r) becomes negligible
for large r, we may assume that there is an integer k
such that 8~ is the zero matrix unless the components
of the subscript E= (E', ,E") satisfy the condition
—k &E"(k; v=1, ~ ~, m. For suSciently large r, we
certainly satisfy the condition k(r/2.

Now we define C~ as in (A.11).Then for EWO

For E=O,

Cp ——Bp ——Pie'"'+Q(I~ p(J))

h, =A,r& +Agr &' (A.22)
J in S'

Here r and r ' are' the two roots of the characteristic
equation

(A.23)

and A~ and A2 are arbitrary constants. When these
constants are determined by the boundary conditions
(A.19) and (A.20), the solution becomes

h =[Ci(r—r ')(1 r~)] '$r'+—r~ ']
j= 0, 1, 2, , E '; (A.24)

where
r =u+ (n' —1)**; n =C'/2 = —Cp/2Ci. (A.25)

We shall now apply our asymptotic theory of cir-
culant determinants to the results of Sec. 7. The matrix
(U) = (Ugx ~) introduced in that section can be writ ten
in block form (Cqqq) where for each fixed J, E, Cgx is
the matrix of dimension m= n, [Uqx"~]; e, P = 1, , n
Now for E/0, set

&x(—~i-e(E) )

The set 5' is defined after Eq. (8.4). If we compare
(A.28) and (A.29) with (7.3), (7.4), and (7.5) we see
that for each fixed J, E, the e-dimensional matrix
[Uqx &] is given by

(Uzx')=CJ x. (A.30)

It follows that the matrix (U)=(UJx ~) of dimension
nE= m7." introduced in Sec. 7 is a generalized circulant
matrix, and we may apply formula (A.17):

1 7P

lim —ln det(U) =
g—+oo g (2~)"" . ln detG(X)

)&dx' dx". (A.31)

Here G(X)=G(x', ~,x") is the n-dimensional matrix
function,

G(X)=Bo+Q8 e '

(A.27)


