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Approximate Calculation of Nuclear Binding Energy*
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The binding energy, size, and shape of 6nite nuclei are studied using a method which tests the "local
uniformity" assumption. This assumption implies that the properties of 6nite nuclei can be obtained from
those of infinite nuclear matter. The energy is computed using as a trial wave function an amplitude- and
frequency-modulated plane wave; this permits the use of nuclear-matter results in a straightforward manner.
The calculation gives a binding energy which is too low, a radius which is too small, and a nuclear surface
which is too diffuse. Several possible corrections to this result are examined.

even-state forces have ranges' in the triplet and singlet
states of 0.5 f and 0.7 f, respectively; the longest-range
force, the weak tensor odd-state force, has a range of
1.25 f, ' The falloff distance of the nuclear density
appears to be independent of mass number for heavy
nuclei, with the 90-10 distance (the distance over which
the density falls from 90% to 10% of its central value)
approximately 2.5 f. The fact that the nuclear density
varies slowly over the range of nuclear forces suggests
that the properties of the nuclear medium within any
small region of the nucleus should not be very different
from those of an infinite medium of the same local
density.

In the Brueckner approach' the nuclear forces and
the pair correlations which they induce are described in
terms of the Ematrix. This is an integral solution of the
Schrodinger equation for a pair of nucleons inside the
nucleus, and hence depends upon the medium in which
the two nucleons find themselves. For an in6nite
medium, the presence of the medium results in a density
dependence of the E matrix. Brueckner, Gammel, and
Weitzner2 have obtained the spatial form of the E
matrix for an in6riite medium of arbitrary density. They
6nd that the longer-range parts of the E matrix differ
only slightly from the unmodified nuclear force, indi-
cating that the relative wave function of the two
nucleons is not greatly distorted by these parts of the
force. The short-range part differs markedly from the
force because of the hard core assumed io the nuclear
force. This result shows that the correlation distance,
i.e., the characteristic range of the distortion in the
relative two-nucleon wave function, is very short. Con-
sequently, it is found that only the contribution of the
hard core, with its very short range, has a significant
dependence on density. Because of this, it seems
reasonable to assume that the E matrix is sensitive only
to the local density.

It is basic to the Brueckner procedure that the nuclear
medium be smooth and regular, since clustering is
specifically neglected. In an infinite medium it has been

I. INTRODUCTION

' 'N recent years great progress has been made in
& - understanding the gross properties of nuclei in terms
of the two-body forces between nucleons. A natural
starting point on this problem has been an investigation
of the properties of uniform nuclear matter, that is, of
an in6nite medium of nucleons which can attain equi-
librium if the Coulomb repulsion is neglected. The
binding energy per particle and equilibrium density of
nuclear matter have been successfully calculated by
Brueckner and co-workers. ' Saturation was obtained at
a density which is only slightly higher than the central
density found in electron-scattering experiments. In
view of the approximations which are necessary to make
the calculation manageable, and of the limitations in-
herent in any approach in which only the 6rst term in a
series is retained, the close correspondence with obser-
vation is quite remarkable. It does indeed suggest that
the salient features of nuclear matter can be under-
stood in terms of the two-body forces observed in scat-
tering experiments, and that only two-body correlation
sects are significant in the nuclear wave function.

One might now attempt to extend this approach to
obtain a description of finite nuclei. A method which
uses the infinite-medium results has been suggested by
Brueckner, Gammel, and Weitzner. ' This method is
based on an approximation' which we shall call the
"local uniformity assumption"; it is the purpose of this
paper to investigate this assumption using a very simple
model. 4

The physical feature which underlies the local uni-
formity assumption is the observation that the range
of nuclear forces is small compared to the observed
falloB distance in 6nite nuclei. The all-important central

*This research was supported in part by the U. S. Atomic
Energy Commission under contract with the University of
Maryland.

f National Science Foundation Predoctoral Fellow, 1959—60.
' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

(1958), hereafter called I, and references therein.
' K. A. Brueckner, J.L. Gammel, and H. Weitzner, Phys. Rev.

110, 431 (1958), hereafter called II.' This approximation has been used in a calculation of the spatia
dependence of the imaginary potential. See G. L. Shaw, Ann
Phys. 8, 509 (1959);L. C. Gomes, Phys. Rev. 116, 1226 (1959).

4 See L. Wilets, Revs. Modern Phys. 30, 542 (1958), for a revie
of previous work on the nuclear surface.

s J. L. Gammel and R. M. Thaler, Progress sn Elementary Par
ticle and Cosmic-Ray I'hysics (North Holland Publishing Com-
pany, Amsterdam), Vol. V.

w 6 We shall see in Sec. II that a more appropriate measure is the
mean square radius, which is somewhat longer.
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shown that many-particle correlation eGects, or clusters,
make negligible contributions to the binding energy. In
extending the method to Qnite nuclei one would also
assume, as a working hypothesis, that many-particle
clusters are unimportant and that, as in the infinite
medium, two-body correlations determine the many-
body wave function.

We describe these hypotheses together as the "local
uniformity assumption. " We assume that (a) the E
matrix, and hence the two-body correlations, at a point
io the nucleus are determined only by the local density at
that point, and (b) that cluster effects are not important.

II. METHOD

In the Brueckner approximation the total energy of
an A-particle nucleus is

where T,= —(5'/2ns) 7';s is the kinetic energy operator,
E,;= (r,r;~E~r,'r,') is the coordinate-space represen-
tation of the E matrix (the operator E is a matrix in

the spin-charge space), V,@=(e /r, ,)L(1+r„)/2]
&&L(1+r„-)/2] is the Coulomb potential, and Cs is a
determinant of single-particle wave functions:
4'p =det+;. These functions can be determined by
solving a modified Hartree-Fock equation' ' in which

E;;determines the single-particle potential. In principle
E;, depends upon +,, so that there is a complicated self-
consistency problem if this dependence is retained. In
the procedure proposed in II, the coordinate-space de-
pendence of E;; is obtained by Fourier-analyzing the
momentum matrix elements of E. These in turn are
obtained from a study' of infinite nuclear matter at the
corresponding density. Thus E;; is 6xed, and the re-
maining equations involve the ordinary Hartree-Fock
self-consistency condition, complicated by the fact that
E;; is a function of the local density.

We shall adopt a method which uses directly the
results for infinite nuclear matter. However, rather than
solve the very complicated integro-diGerential equations
which determine N;, we shall replace 4, by a simple
trial function X;. In this way we can obtain analytic
forms for the energy and examine explicitly the various
surface terms that arise in finite nuclei. One can obtain'
the modified Hartree-Fock equations for N, by mini-
mizing Eq. (1) with respect to variations in 0;. Thus
we may expect that the energy which we obtain using
our arbitrary function X, will be an upper limit to the
energy which would be found by a correct Hartree-Fock
procedure.

The spatial form that we shall choose for X;(r) is an
amplitude- and frequency-modulated plane wave:

X (r) —f(r)elk~ (r) ~ rt. +, '(2)
' K. A. Brueckner and D. T. Goldman, Phys. Rev. 116, 424

(1959).

(l; and r); are spin-charge functions). This is a natural
generalization from the uniform plane waves of the
infinite medium, ' and should be a reasonable approxi-
mation for heavy nuclei. The amplitude modulation
(which we choose to be real) represents the spatial
density distribution in the nucleus; since the modulation
factor f(r) is independent of the state i, the density is
simply

p(r) =~f'(r), (3)

f 3
Tp 'd'r — kp'(r——) p(r),

52m

(8T).=
k'

t 1(d

pl dr)
(6)

3 5' 4 dp 1 r'(dp)'
(8T)g, ~d'r — k p'(r) -r +

5 2ns 9 dr 27 p (dr)

Wave functions of this general form have been used pre-
viously. See for instance, P. Gombas, Acta Phys. Hung. 3, 105
(1953); W. Wild and K. Wildermuth, Z. Naturforsch 9a, 799
(&954).

9 S. D. Drell and K. Huang, Phys. Rev. 91, 1527 (1953),
especially Appendix C.

provided fd'rf'(r) =1. The frequency modulation (de-
pendence of k, on r) is intimately related to our use of
the local uniformity assumption. Since we wish to treat
the nucleus at every point as a nuclear medium having
the local density, we must associate a Fermi momentum

kp(r) with each point. Hence, the individual values of
k;, which are distributed uniformly between ki=0 and
hi=kg, must likewise depend upon the local density.
The functions X,(r) do not form an orthogonal set, but
one can show, using the methods of Drell and Huang, '
that the lack of orthogonality causes a negligible error
for large A.

To determine the dependence of ki on r, we observe
that

k p(r) = E(3~'/2) p(r)]'. (4)

This result includes the fact that each state X,(r) is
occupied by four nucleons, and is obtained by replacing
sums over states by integrals over momenta. The im-

position of periodic boundary conditions leads to the
form

k;(r) = (n,/n p) k p (r),

where n; and np are integers. Hence, k, (r) has the same
spatial dependence as kp(r), and is proportional to
p1(r); the wave number decreases, and the wavelength
increases, as r increases toward the less dense tail of the
nuclear wave function.

We can now compute the expectation value of the
kinetic energy using our trial function X,(r) and Eq. (3).
There are three types of contributions, and we write

P') =&o+ (~7').+ (5T') I,
where
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To facilitate discussion of the exchange term, we sepa-
rate E into components which are diagonal in spin and
isotopic spin:

K= Q KazPB'Pr',
S,T

(8)

where I's and I'T' are projection operators on the spin
and charge states, respectively. Thus

Po ', (1 e; (—r—,)-, —
Pi =-'(3+~' ~~)

and similarly for I' T'. The spatial representation of
EsT satishes

(r'r~ I
Ksr I

r''r~') = ( 1)'+'—(r.r—~ I
K»

I
r~'r'') (9)

since the two nucleons must have a symmetry under
space exchange which is opposite to their symmetry
under spin-charge exchange. If one now exchanges the
variables of integration in the exchange term and uses
the known symmetry properties of singlet-triplet states
under exchange of coordinates, one finds that the ex-
change term is exactly equal to the direct term. This is,
of course, a consequence of the built-in symmetry prop-
erties of the K matrix, as expressed in Eq. (9).

If we now assume that all spin-charge states are filled
(closed shells), the sums over spin and charge can be
easily performed. The result is

To is the average over the nuclear density of the kinetic
energy of a Fermi gas. (8T)~ is the correction to this
arising from the frequency modulation which accom-
panies a change in the Fermi momentum. (8T), is the
correction arising from the amplitude modulation. This
latter term has the form often used4 in the statistical
model. It has been shown by Berg and Wilets, "using
some solvable examples, that it overestimates the
surface energy; from our viewpoint this is a manifesta-
tion of the deviation of our trial function from the true
wave function.

The nuclear force contribution to the potential energy
is

where

R= (r,+r;)/2, r=r, —r, , etc.

This is only an approximation since the 8 function arises
from Galilean invariance, i.e., invariance under velocity
transformations. Translation invariance implies that
(r; r; I

K
I
r, ' r ) can depend only on R—R', r, and r',

but does not specify the functional dependence on these
variables. In nuclear matter the E matrix is translation-
invariant but is rot Galilean-invariant, since the two
particles are moving in a momentum-dependent po-
tential. This causes (k,k;IKIk k, ') to depend on the
total momentum k;+k, =k +k,'. The Fourier trans-
form of (k;k;I K

I
k k/) is thus not local in the center-

of-mass coordinate. (One can, of course, see this in
coordinate space also, where the single-particle potential
is nonlocal. ) However, it was found in I (and assumed
in II) that the dependence on the total momentum is
weak, so that Eq. (11) is expected to be a valid
approximation.

By making use of our assumption that the range of the
two-body force is small compared to the nuclear falloff
distance, we shall expand the amplitude- and frequency-
modulation functions about the two-particle center of
mass. Keeping terms of order r',

r Rdf(R) 1 r'R'+(r R)'df(R)
f(r') =f(R)+ +-

2E. dE. 8 E.' dR

t'r R) 'd'f(R)
+ ' . (12)

& R) dR'

In the product f(r,)f(r;), the term of order r cancels out.
After performing an average over the angles of R and
using Eq. (3), we And

r' 1 d Inp(R) 1 d' lnp(R)
X 1+—— +— +. (13)

12 R dR 2 dR'

Similarly, if we expand k;(r;) about the center of
mass, we find, to order r',

S,T 16

For the spatial dependence of the E matrix, we assume
that

(r,r, IKIr r )=()(R—R')(rIKIr'),
' R. A. Berg and L. Wilets, Proc. Phys. Soc. (London) A68,

229 (1955);R. A. Berg and L. Wilets, Phys. Rev. 101, 201 (1956).

(K)=2 P dr, dr.dr, dr. f(r )f(r.)e—i(ki. r7+k'.
& r()

;&g J

X(r r;IKIr r )Xe"(~i"i'+"~"i"f(r'')f(r/), (10)
where

(25+1)(2T+1)K=+ EST,

k; r; r.Rdk, (R)
eiti(r;) r; —eik;(8) r;f I+~

k, 2R dR

1r'R' (r R)'dk (R—) 1 t(r R)'d'k (R).+-
8 dR 8( R) dR'

1 fk; r; y
' (r Rq ' pdk, (R) q

'

84k;) (R) ( dR )
If we take the product of the two plane waves, drop
those terms which are linear in R and hence vanish upon
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integration over R, and use Eq. (4), we obtain

(k R)(r R) d lnp(R)
eiki(ri) rs ed(i'(rj) ~ ri —eiK. Reik r 1+&

3E dg

1 t'r R)'——(k R)'i
1S ER)

If we now insert Eqs. (13) and (15) into Eq. (10), we
find

(K)= Vo+ (8V)f+ ((')U).,

where Vo is given by Eq. (18),

R d lnp(R)
(bV)f= Jl doRA (p(R)V(p) i—((k s)),

9 dR
d lnp(R) '

X +' ' (15) din(R) '
L((k s) )..+-,'(k's )..j

135 dR
(21)

where
f

(k,k;t K(p) ~krak;) =—J' d'rd'r' e '~'(r ~K(p)
~

r')e'~

e is the "normalization volume" which is conventionally
used to define the momenta k;. Thus v is related to the
Fermi momentum by

4m A—k p' ———.
(2~)' 3 4

Comparing with Eq. (4), we see that

1/a=A 'p.
Therefore,

Uo
—— d'R A—'p(R) U(p);

this is just the average over the nuclear density of the
potential energy of a uniform medium. V(p) is related
to the energy per particle (excluding Coulomb energy)
of a medium of density p by

3kkp' 1'+—U(.)
5 2m

Hence, the leading terms in the energy can be com-
bined to give

Eo ——To+ Uo ——
, t doR p(R)Eo(p) (20)

This is just an average over the nuclear density of the
energy of nuclear matter.

%e have suppressed the dependence of k and E on
R, i.e., k=—k(R), etc. Before inserting these into Eq. (10),
it is convenient to examine the form of the leading term
in these expansions. Using Eq. (11), the leading term is

Uo=2 Q t d'Rd'rd'r'A 'p'(R)e ')"

X(r lK(p) Ir')e'"'". (16)

This can be simply expressed in terms of the nuclear-
matter results of I in the following way. In a medium of
uniform density the potential energy is

V(p) =2 P (k,k, ~K(p) ~k,k, ),

with s=r' —r, and

(r').
(1)V) = d'R A 'p(R) V(p)

1 d lnp(R) 1 do lnp(R)X— +-
E. dE 2 dE'

We have performed the integrals over the angles of R
in order to simplify the expressions. In (()V), we have
used the fact that (r~K(p) ~r') is Hermitian, so that

av ~ av'

The averages in Eq. (21) are functions of the density
p(R), and are defined by

(g(k r,")):
2A 'p(R) P "d'rd'r' e '"'(r~K(p) ~r')e'" "g(k r,r')

i(j

V(p)
(22)

Thus g(k, r,r') is an average, weighted by the effective
potential (r~K(p) ~r'), over coordinate space and over
the filled states of the Fermi sea,

(I)V)t is a correction arising from the nonlocality of
the E matrix. If the E matrix were local, i.e., if
(r

~ K(p)
~

r') =K(p; r)() (s), (()V) t would vanish. This is a
consequence of the fact that for a local E matrix there
is no dependence on the momentum of the particles.
Because of the nonlocality (k;k,

~ K(p)
~
k;k;) does

depend upon k, and k, . (5V)f is the energy correction
which rejects the variation of these momenta over the
range of the nonlocality. Ke shall see shortly that this
correction is small compared to (8V),.

(8V), is a correction due to the variation in nuclear
density over the range of the nuclear force. This is
analogous to the classical surface tension, which arises
from a nonuniform distribution of particles. It is
reasonable physically that (()V),/Vo is of order ((r/t)'),
where t is the nuclear falloff distance. (This will be seen
in the specific example discussed below. ) On. the other
hand, (bV)r/Vo is of order (krso)', where so is the range
of the nonlocality. LThis follows most simply from the
observation, based on reflection invariance, that (8V)t
must be an even function of kp and of so.)
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If we use the results of II, the "mean square radius""
of the effective potential is (r'),„=3.5 f' while the range
of the nonlocality is less than 0.2 f. From electron scat-
tering experiments" the nuclear falloG distance is ap-
proximately 2.5 f. Finally, kp—1.3 f ' at the central
density. Thus, (k&se)'&0.068 while ((r/t)'), =0.56.
Hence, we expect (5V)r/(8V). 10%; in fact, it turns
out to be considerably smaller than this. O

LLI

.20

III. CALCULATION

One couM obtain the minimum energy consistent
with the trial function Eq. (2) by setting 8(E)/8p=0.
This would yield a differential equation for p(R) which
would require numerical solution. '" We shall instead
assume an analytic form for p(r) which depends on two
variational parameters. " These will determine the
radius and fallo8 distance of the distribution.

A convenient form is the "generalized Gaussian""

FERMI

2.0

F ERMIS

6.0 8.0

FIG. j.. Comparison of the generalized Gaussian function,
Eq. (23), with the Fermi distribution p'0$1+e & '&~ g ', for A = 150.
The parameters are chosen to give the same half-density distance
c=5.73 f and falloff distance t=2.5 f.

p(R) =ps exp) —(R/Re) "]. (23) while the 90%-10% falloff distance is

This is a very general form which encompasses the
observed Gaussian shape of light nuclei and the Fermi-
type density of heavy nuclei having a large central
region of constant density.

All the integrals which we need can. be evaluated in
terms of gamma functions provided only that V(p) is
represented by a polynomial in p (of arbitrary integral
or nonintegral order). In fact, the general integral which
we encounter is

I m= d'R Rs[p(R)]

10) 1(n.

(ln10)""—
~

ln—
)

Rs

3.08R, ) 0.715
+ "

I (28)

Electron scattering experiments" indicate that, for
A&100, these parameters are c=r~A: with rj=1.08
&0.02 f while t=2.5~0.3 f, independent of A. These
values imply the relations

po" (Rs") "+"'" (q+3)
ii

Rs= (1.08A &+0.30) f,

I—1.33A &—0.35,
(29)

The normalization condition

d'R p(R) =A, (25)

for large A. For heavy nuclei e 7. In Fig. 1 the gen-
eralized Gaussian distribution is compared with a Fermi
distribution having the same values of c and t, for
A = 150.

The Coulomb energy is

implies that

po=
(4~/3)Ro'r (1+3/ts)

The radius at half-maximum density is

(V.)=Z "d'r'd'r~ f'(r')f'(r')
(26)

e' ~1+rs;y (1+r ps
&& ( I ( )

—exchange. (30)
Ir;—r(( 2 i E 2

c= (ln2)""Rs ——Rs(1—0.368/n+ ) (27)

"It should be noted that this radius does not have the usual
physical interpretation as a mean square interaction radius, since
the X matrix is nonmonotonic. For a nonmonotonic function
(r ), has no such simple interpretation, and can indeed be negative.

's R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).
"The electron scattering experiments which have been per-

formed' thus far can determine only two independent density
parameters, such as the half-density radius and the falloB distance.

'4 The use of this function was suggested to one of us (L.S.R.)
by Professor F. Villars in connection with an investigation of the
nuclear symmetry energy,

The exchange term can be calculated, "but it is found
to be quite small (of the order of several tenths of Mev)
and shall not be included in our further considerations.
Since

(1+r&,q f 1+r»y Z(Z —1) Z'

'&2'~ 2 ) t. 2 j 2 2

"H. A. Bethe and R, F, Bacher, Revs. Modern Phys. 8, 82
(1936),
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1 ( Z) ' t' /p(ri)/p(rs)
E,=(V,)——

I

—
I

e'
~ d'r d'r

2&A)

Z p ~rI
=

I
4' e—

I
rtdrr p(rr) ~

rs'drs p(rs). (31)
A)~p

This can be computed exactly, using Eq. (23), for n= 1,
2, and 3. Letting E,= s (Ze)'/R, //, the effective radius is

density. We can determine (r'), using the results of II,
where it is shown that the long-range part of the E
matrix, which is predominant in (r ), , is nearly inde-
pendent of density. Using II t especially Figs. 3 and 4
and Eq. (54)] we find (r'), =3.5 f'. To estimate the
averages which occur in (BV)f, we have represented the
E matrix by a product

(rIXIr')=[X(r)+E(r')] expL —(s/sp)s], (35)

R,r//R p 96/2——5 =3.84 for n = 1
= —', (2s-) '—1.50 for n =2

=-,'{
I

1—P)~]r (5/3) }-'=1.21 fol fS=3.
(32a)

where s= r' —r. The results of II indicate that so—0.15 f.
We find —i(k s) = (k. s)', = (3/20) (krsp)' and (k's')
= (9/20) (kpsp)s, droPPing terms of order (kpsp)'. These
results are independent of the form of E(r).

For large e we may make use of the fact that the ex-
pectation value of the long-range Coulomb potential is
insensitive to the shape of the density function p(r)
Thus, we perform an expansion of /p(r) in which the
leading term is simply a uniform sphere. Using Eq. (23),
this is just a Taylor expansion about e= ~ or, more
conveniently, about 1/n= 0:

p(r) =pp expI —(r/Ro) "]

TAB&K I. Individual contributions to the energy per particle.
Column A: general form using Eq. (23). Column 8: values ob-
tained with the observed nuclear shape, Table II, Column A.
Column C: values obtained by minimizing the energy; the corre-
sponding shape parameters are given in Table II, Column B.The
numerical values of the Coulomb energy in Columns 8 and t"
were obtained by interpolation using Eqs. (32a) and (32b). The
coeKcients /r; are given by Eq. (34). The coeKcient un' is given
by am'=as —/'/(k'/2m)(3/r'/2)&. Energies are measured in Mev/
particle.

A

JRO (1)
=pp u(Rp —r)+I' (1)—3(r—Rp)+OI I (33)

n (n')
where

N(Rp —r) =1, r(Rp
=0, r) Eo

and /'/(r Rp) is the —Dirac 8 function. Also I"'(1)
=Ldi'(s)/ds], i ——0.577. Using this expansion and the
expansion of I'(1+3/n), we find

I"(1) f' 1 q-
R,rr=Rp 1+ +OI —

IEn') )

=R I'I 1+—
I

for n —+ po. (32b)
n

(3) ///a (1) 8/n

e2pp'"+
I

—
I

oapp
A (5) i,2)

(3 l
3/e

+
I I

/r4pp4/3

C7)

(eT), v7/s aR (p1)
rI 2+- Ip,

A 2/a A ( I)
(ST)f 3 5' /b 7/3) —""(3''

A 52/a 25 (5) ( 2 )
(bV), /b+1 (r')„F(1+1/I)

A 4 Rps I'(1+3/n)

—12.4

3.5

—0.23

4g

—10.7

1.9

—3.0

2.7

where
Eb(p) =/isa'+/bsp+e4p',

a2= —19.5 Mev,

a3 ———188 Mev,

a4 ——253 Mev.

(34)

This provides an accurate fit over the region which was
included in I (densities down to 0.3 of the equilibrium
density) and vanishes for small p.

In calculating (/IV)f and (i)V), we shall make the
simplifying, but quite accurate, assumption that the
various averages (g(lr; r, r')),„are independent of

This is just the radius of the equivalent uniform sphere
having the same volume as expI —(r/Rp) "].

We now want to examine the numerical consequences
of this model. To facilitate numerical computation
Eb(/p) (Fig. 1 of I) is fit with a polynomial in p'*:

(3i 1+//m

+I-I
(eV)y [kr(p///2)s//]' 97—I t'3) '+'/"

a~ po'13

A 20 100 E5)

117—e (1l '+8/" 137—I
+ — &spo+

120 (2) 140

(3 l
/. +8/n

x
I

—
I

/J4po /~

&.7)

E. 3 (Ze)'

A 5 AR, ff

0.03

3.7

—1.6

0.03
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In Table I, Column A, we show the general form of
each part of E/A, using the distribution Eq. (23). The
symmetry energy is not included in this calculation. It
is positive and small; from the WeizsKcker semiempirical
mass formula it is 0.7 Mev for A 150. In Column 8
we show the numerical values that are obtained for
A =150, Z=62, using the empirical values of Rp and e.
The energy can be minimized by varying the trial func-
tion X,(r), which depends upon the two parameters Ep
and e. We have done this for A = 150 and find an opti-
mum binding energy of E/A = —5.7 Mev with
Rp=5.06 f. and m=2. 7.

The empirical values" " are L&'/A = —8.25 Mev,
Rp= 6.03 f, and e= 6.7. The numerical values of the
individual contributions to the energy are shown in
Table I, and the values of c and t, in Table II. The de-
pendence on the mass number A, as determined from
minimization of the total energy for other values of A,
is in agreement with the form of Eq. (29).

One may examine our expression for the energy if Rp
and st are assumed to have their asymptotic (large-A)
forms

Rp rpA&, ——
m=epA'.

(36)

The results can then be compared with the WeizsKcker
semiempirical mass formula. '7 The one distinctive
feature is that (8 V) /tAis proportional to A&; this de-
pendence follows from the constant falloff distance
which is implied by Eq. (36). It should be noted that
the WeizsKcker formula is essentially an expansion in
powers of A&, which is not large for actual nuclei. Thus,
there is a large ambiguity in the actual coeKcients of
the WeizsKcker formula and several alternative forms""
have been proposed and successfully used. " Even the
"volume energy" term, which is often used as a basis
for comparison of theories of nuclear matter, diGers by
1.2 Mev per particle in these various determinations.
The form we have obtained might also be used to obtain
a fit to the nuclear masses, since it includes the

TABLE II. The half-density radius c and the falloff distance t
for A=150. Column A: empirical valuesa; Column 8: results
obtained by minimizing Eq. (1) using the trial function Eqs. (2)
and (23); Column C: results obtained by minimizing Ect. (1), if
corrections (ST)„(bT)y, and (SV), are reduced by 50%;
Column D: results obtained by minimizing Eq. (1) including the
core correction, Eq. (37}.

c(f)
t(f)

A

5.73
2.5

4.42
4.7

4.32
4.1

3.86
4.1

a R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).

"D. Strominger, in Nuclear Spectroscopy (Academic Press, Inc. ,
New York, 1960), Part B.

'7 A. E. S. Green, Phys. Rev. 95, 1006 (1954}.
' A. G. W. Cameron, Can. J. Phys. 35, 1021 (1957).
"We acknowledge a fruitful discussion with Professor W, F.

Hornyak on this point.

Hofstadter observations on the shape of the nuclear
surface. However, it will probably not be possible to
obtain a fit which is a significant improvement over
those already obtained, since the number of parameters
is already large and the range of A& is small.

IV. DISCUSSION

The results of the last section have shown that this
model gives qualitative agreement with the observed
binding energy and shape of nuclei, but that it fails to
agree in quantitative detail. The binding energy that we
find is too small, the mean square radius is too small
(leading to a central density which is higher than ex-
pected), and the falloff distance is too large. We shall
discuss here several possible explanations for this failure.
Separately they seem inadequate to explain the dis-
crepancy, but all are corrections which certainly should
be made and which together might permit a quantita-
tive understanding of the nuclear surface. They are
(1) poor trial wave function X;(r), (2') breakdown of the
assumption of a dependence solely on "local" density,
and (3) breakdown of the "uniformity" assumption, i.e.,
formation of clusters.

(1) The only way to test our trial function is to com-
pare the results which it gives with experimental data
or to solve for the exact functions O';. In our particular
case a comparison with experiment tests not only the
wave function but the local uniformity assumption and
the approximations implied by Eq. (1) (neglect of
clusters, etc.) After this calculation was completed, we
learned" that the numerical calculation proposed in II
(that is, an exact calculation of +;) had been completed,
also yielding too little binding (E/A —5 Mev) and
a high central density. Our large falloB distance may be
attributed to a failure of our trial function.

To provide a guide to the sensitivity of our results to
the wave function, one can modify various terms in the
energy and determine the eGect of these modifications
on the energy and shape parameters. As an example, a
diGerent wave function might reduce the surface cor-
rections. If (oT)„(hT)t, and (8V), were all reduced by
50%, the energy would become lower to E/A= —7.2
Mev, while the half-density radius would be reduced
by 0.1 f and the falloff distance by 0.6 f (Table II,
Column C). Hence, it appears that our results are fairly
insensitive to the form of the wave function, and a quite
drastic change would be required to yield the observed
values.

(2) The dependence on local density appears in the
variation of the K matrix with density. It is primarily
the core contribution which is density dependent, be-

coming less repulsive as the density decreases. This has

P K. A. Brueckner (private communication). See also Pro
ceedkngs of the Internationat Conference on the Nuclear Optical
M'odel, Florida State University, Studies, No. 3Z, edited by
A. E. S. Green, C. E. Porter, and D. S. Saxon (The Florida State
University, Tallahassee, Florida, 1959).
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3 (r' —r.)
(r

~

E
~

r'),...=A (p)3(r—r,)
4xr, '

(37)

where A (p) decreases with decreasing density. We shall
make a crude calculation of the correction to this due
to variations in density, with the aim of determining the
magnitude of the energy diGerence and its eGect on the
nuclear shape. To do this, we represent the correction
to A(p) by

Xp dp
5A (p) =———LA "&—A (pp) j,

p dE.
(38)

where A&'&=A'/3llr, is the hard-core contribution for
free particles, and (X&;/p) (&Ep/dR) is the fractional
change in density over a Fermi wavelength (R is the
center-of-mass coordinate). This has the form we expect,
but its magnitude is only an a,rbitra, ry estimate. The

~~ L. C. Gomes, D. Walecka, and V. F. Weisskopf, Ann. Phys.
3, 241 (1958).

~ We would like to acknowledge an interesting discussion with
Professor K. A. Brueckner on this point.

a simple physical interpretation: The Pauli principle
requires the two-body wave function to "heal"" (ap-
proach its uncorrelated form) for separations of the
order of the Fermi wavelength, while the hard core re-
quires it to vanish at the core radius. As the density
decreases, Xg increases and the wave function need not
"heal" so rapidly, leading to less curvature in the wave
function and a lower energy. This effect was included
by calculating the Ematrix in uniform media of various
densities, as discussed earlier.

It may be, however, that the core corrections are
quite different in a region where the density is varying
rapidly. It would appear that the relevant parameter
here is the change in density over a distance of the order
of A.p. If the eGect of the Pauli principle upon the core
contribution were diminished, more binding would
result and the equilibrium shape might be diGerent. "

One can use our model to estimate the magnitude of
such an eGect. In II it is shown that the core contribu-
tion can be approximated by

correction to the energy has the form

(3I')--= —4~'HA"') —(A(Po))3

d lnp(R)
X ~d'Rp'(R)kp(R) (39)

dR

The spin-isospin averages give, including even states
only,

(A& &)=sA& &=37.0 Mev-f.

(A (P&&)) r s PA singlet (Pi&)+A triplet (Po)$= 94

(40)

Inserting this result into the expression for the energy,
we And an additional binding energy of 5.1 Mev and
values of c and t given in Column D, Table II. Clearly
the energy correction is of the right order of magnitude
(2.5 Mev is "needed" ), but the effect upon the shape is
quite small. Again it would appear that quite drastic
modi6cations in the model are required to obtain the
observed, very small, falloG distance.

(3) It has been shown quite conclusively" that cluster
eGects are small in uniform nuclear matter, primarily
as a result of the Pauli principle. In the surface the con-
sequences of the Pauli principle are not as clear, and it
has been suggested by many people" that there may be
cluster formation in the surface. It is, of course, quite
dificult to obtain any quantitative insight into this
possibility. One might note that the binding energy per
particle in a nuclear medium of even quite low density
( 10 Mev according to I, excluding the Coulomb
energy) is considerably larger than the binding energy
per particle in an &r particle (7.1 Mev). Hence, cluster
formation in the nuclear surface must, if it exists, be
quite different from simple formation of light nuclei; in
particular, the gain in potential energy which can occur
must not be overbalanced by the 'increase in kinetic
energy, as it is in light nuclei. This is clearly a question
which requires much further investigation.

"K.A. Brueckner, Phys. Rev. 100, 36 (1955); H. A. Bethe,
Phys. Rev. 103, 1353 (1956).

~ For instance, D. H. Wilkinson, Phil. Nag. 4, 215 (1959).


