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characteristics but the spin of F" is not yet sure (1=2
or 3) although the parity is established to be even, as
expected. ' However, the observation' that JNO for the
4.97-Mev state taken together with this large log ff value
suggests it has odd parity, or if even parity, then J= 1.

The relative weakness of the ground-state transition
argues, though not powerfully, against J=1.It would
clearly be of considerable value to improve our know-
ledge both of the ground-state transition from this state
and also of the F' beta decay.
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The Bardeen-Bogoliubov-Belyaev treatment of the pairing correlations is applied to spherical nuclei with
a general nuclear force. The interaction between quasi-particles is treated by the method of linearized
equations of motion. An advantage of this treatment is that the same equations describe single-particle
excitations and collective excitations, so that the former are orthogonal to the latter and the total number of
states is correct. Another advantage is that the spurious states due to the fluctuations in the number of
particles are automatically eliminated. The equations to be solved resemble those for a two-body shell model
calculation. Simple estimates, based on delta-function or quadrupole forces, are made for the vibrational
frequencies in various modes and transition matrix elements. It is concluded that the method is as powerful
as other known methods for dealing with collective states by the shell model, and that the same order of
magnitude for the effective nuclear force seems capable of Qtting all the data.

1. INTRODUCTION

HE past two years have seen some important de-
velopments in the theory of nuclear structure.

The recent success in the theory of superconductivity'
stimulated the application of the same ideas to nuclear
physics. ' ' According to the new point of view, the
pairing correlations and the energy gap must play a
fundamental role in our understanding of many nuclear
properties. Belyaev' has discussed the inQuence of
pairing correlations on the collective behavior of nuclei;
and Kisslinger and Sorensen' have obtained good agree-
ment with many detailed properties of single-closed-
shell spherical nuclei, by using a simple interaction
composed of a pairing force and a quadrupole force and
treating it by the new methods. In a different line of
research, there has been increasing success in accounting
for collective effects starting from the ideas of the shell
model. Here, we mention the work of Brown and
Bolsterli' who showed that the location of the giant

' J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108,
1175 (1957), referred to in the following as BCS.

~ A. Bohr, B.R. Mottelson, and D. Pines, Phys. Rev. 110, 936
(1958).' A. Bohr, Comptes Rendus du Congres International de Physique
Nucleaire, Paris, 1958 (Dunod, Paris, 1959).

4 B. R. Mottelson, in The Many-Body ProNem (John Wiley 8z

Sons, Inc. , New York, 1959).' V. G. Soloviev, Nuclear Phys. 9, 655 (1958).
'S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 51, No. 11 (1959).Some related work is due to A. Kerman
(to be published).' L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. (to be published), referred to in the
following as KS.

8 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472
(1959).

photoresonance could be explained by taking into ac-
count particle-hole interactions.

The present work represents another extension of
these ideas. The aim is to develop an approximation
suitable for calculating the properties of all low-lying
levels of heavy spherical even-even nuclei, starting from
a general shell-model Hamiltonian. To do this, we first
perform the Bogoliubov-Valatin transformation' on the
Hamiltonian (Sec. 2). The result can be interpreted in
terms of a Hamiltonian of "quasi-particles" and an
interaction between these quasi-particles. It is the
existence of a gap in the spectrum of quasi-particles
which restricts the low excited levels to two quasi-
particles and makes possible a simple shell-model type
of calculation. This is not quite true, however, because a
few levels containing many quasi-particles may be
brought down by collective eGects. Fortunately, there
is a well-known method which was devised to deal with
this difhculty in other many-body problems, the method
of linearized equations of motion. We use it (Sec. 3),
and the resulting equations apply equally well to collec-
tive states and to noncollective states of two quasi-
particles. This is a great advantage, as in the past one
has had to treat the two kinds of states by diferent
methods, with the result that one ended up with too
many states and that often they were not mutually
orthogonal. Also, one can now treat states which are
only weakly collective, and for which the standard
methods of dealing with collective states are not valid.
Finally, we shall see that the spurious states due to the

N. N. Bogoliubov, Nuovo cimento 7, 794 (1958);J.G. Valatin,
Nuovo cimento 7, 843 (1958).
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2. THE HAMILTONIAN

A. The Shell-Model Hamiltonian

Since we are concerned with heavy nuclei, we shall use

j-j coupling, but we shall not use the isotopic spin
formalism. The single-particle shell model states will be

specified by various quantum numbers: the charge q, e,
I,, j, m. These states will be designated by Greek sub-

scripts, and the corresponding creation and absorption

operators will be called, for example, c * and c . They
satisfy the usual Fermion anticommutation rules,

c»cp jcpc»=c» cp +cp c» =0,

c» cp+cpc» =8»p.

(1a)

(1b)

In association with the subscript n, we shall use the

Roman subscript a, which stands for all quantum num-

bers above except the magnetic quantum number m.

The starting Hamiltonian H has two parts. One is the

sum of the single-particle energies,

Pray =~a 6~Ca Cay

which runs over all values of the quantum numbers. The
second part is the interaction Hamiltonian

UepygCa Cp Cbt»
apyb

'«. pano anti G. Racah, Irredgcible TeNsoriat Sets (Academic
Press, New York, 1959)."E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1935).

nonconstancy of the number of particles, a cliSculty
introduced by tI'e Bogoliubov-Valatin transformation,
can be easily eliminated. The equations resemble those
for a two-body shell model calculation and should be
easy to solve with a realistic nuclear force, except for the
rather formidable problem of the choice of parameters.
Here, we shall content ourselves with rough estimates
based on quadrupole forces and 5-function forces. These
are sufhcient to show that the new method is as eGective
as older ones in dealing with quadrupole vibrations
(Sec. 4A). We also apply it to collective vibrations of
closed shells, in which case it is not necessary to perform
the Bogoliubov-Valatin transformation, as the spacing
between major shells already plays the role of an energy

gap (Sec. 48). One finds that the strength of the nuclear
force, which is needed to bring the various pairing and
collective effects into agreement with experiment, is of
the same order of magnitude in all cases. Finally we
show how one can estimate the enhancement of inelastic
cross sections (Sec. 4C).

Many of the manipulations that we need to perform
require the use of the algebra of angular momentum. "
We shall not reproduce the details, as they are straight-
forward. We use the Condon and Shortley choice of
phases" in all cases.

where the following antisymmetry relations must hold

+apyb — Upayb apl' +pabst (4)

Next, we must write H; in a way which exhibits its
invariance under rotations and reQexions. This is ac-
complished by coupling two of the particles, say cr and P,
to angular momentum J3f, coupling the other two also
to JM, and writing an invariant tensor product. Thus,
we are led to write 'U a~q in the form

U»pye s P G(abed J)C(j jpJ; m mpM)

8(abJ)=8(j j bJ)=( )'.+"+'. - (8)

The relation between our 6 and the usual two-body
matrix element of shell model calculations is

with
(abJM

~
H;

~
cdJM) = o,bo, eG(a—bcdJ), (9)

&ah=
1 if u—=b,

V2 otherwise.
(10)

But there was no compelling reason for coupling n
and P together, and y and 5 together. We could also have
coupled cr and y to J'M', P and 6 similarly; or alter-
natively n and 8 to J"M", as well as P and y. This leads
us to define another function Ii by

'U-p»= —s Z I'(acdbJ')s„C(f.~,J'; m.m, M')

XspC(js jpJ', mbmpM')

=+-', Q &(adcbJ")seC(j jeJ";m m M"s)

XspC(j „jpJ";m, mpM"). (11)

Here and in the following, m stands for —m. We had to
introduce the symbol

s j,—m, (12)

because, in actuality, it is angular momentum j which
is the sum of j~ and J'. The same function Ii appears

XC(j„jtJ; m, meM), (5)

where the C's are the usual vector coupling coefficients.
The minus sign is introduced for convenience, since the
interactions are mostly attractive. The parity of i,+l b

must be the same as that of l,+la, otherwise G vanishes.
G must also conserve charge, i.e., q,+qb= q, +qe. There
follows from Hermiticity of H; and time-reversal in-
variance that 6 is real and

G(abed J)=G(cdab J).
The relations (4) give, together with the symmetry
properties of the C coeKcients,

G(abed J)= 8(abJ)G(b—acdJ)
8(cdJ)G(a—bdcJ) = 8 (abed) G(bade J), (7)

with the notation



SIIEI.L MODEI. FOR HEAVY SPHERICAL NUCLEI 959

B. Treatment of the Pairing Correlations

In spherical nuclei with partially filled shells, the
most important effect of the two-body force is to pro-
duce pairing correlations. Those must be treated quite
accurately, even if other eAects of the nuclear force are
not. A suitable treatment was discovered by Bardeen,
Cooper, and SchrieGer' for superconductors, and applied
to nuclear physics by the Copenhagen school and
others. ' In the BCS ground state of an even-even
nucleus, the particles are distributed in pairs, all coupled
to angular momentum. 0; the method is a generalization
of Racah's" seniority ideas. The simplest way to intro-
duce these correlations in the wave function is to per-
form the Bogoliubov-Valatin' transformation. We define
a new set of creation and absorption operators by

~a IaCa Sa& aC—a

~a =+aCa Sa&aC—ap

(16)

where —0. is obtained from o. by changing the sign of the
magnetic quantum number, and I, and e, are real and
related by

'ijs+ve =1. (17)

The a's satisfy the same anticommutation relations as
the c's. They create and absorb "quasi-particles. " For
a level far above the Fermi level, u, =1, v, =0; and the
quasi-particle is the same as a particle. For a level far
below the Fermi level, u =0, e =1, and the quasi-
particle is a hole. But for levels in the neighborhood of
the Fermi level, a quasi-particle is partly particle and
partly hole. The vacuum of the new operators is the
BCS ground state. The converse of relations (16) are

Ca= QaCaMSa'Va~ —a
l

Ca Ia~a MSa& a+—a.

We shall express H in terms of the operators a . A
difficulty arises because the number of quasi-particles

"G. Racah, Phys. Rev. 63, 367 (1943).

with both coupling schemes by virtue of Eq. (4). It is
related to the two-body matrix element for a particle
and a hole. Its relationship to G involves a Racah
coefficient:

F(acdbJ')
P—s(2J+1)W(j,j bj.j z, JJ'.)G(bacdJ). (13)

It is real and has the following symmetry properties:

F(acdbJ') =F(dbacJ') =0(abed)F(cabdJ'), (14)

but nothing simple happens if only a and c are inter-
changed.

The pairing force used by KS is (for charge-conserving
matrix elements)

G(abed J)=8.&5.~5$ (oj.+ )2~(j.+-' )2&g, (15)

where g is a constant (which KS called G).

does not commute with the number of neutrons X„and
that of protons K„,

X~=+~ c~ c~, Kv=gv c~ c~,

where P „runs over all neutron states and P „all proton
states. This forces us to introduce two chemical po-
tentials ) „and X„, and instead of diagonalizing H, we
try to diagonalize

(20)

subject to the condition that the expectation values of
K„and K„are the given numbers of neutrons and
protons in the nucleus. This procedure has the unfortu-
nate consequences that our equations really represent a
mixture of neighboring even-even nuclei, and that some
of their solutions are "spurious, "i.e., do not correspond
to any state of a single nucleus; the damage will be
partially repaired in Sec. 3.

The task of expressing X, in terms of the a's is straight-
forward and will only be sketched. We introduce the
notation E for the normal product" of an operator,
obtained by rewriting all quasi-particle creation opera-
tors to the left of the absorption operators, changing the
sign whenever two Fermion operators are inverted, but
ignoring commutators. For instance,

Fv (c~ cp) =Qgsga~ ap s~s~vg'v~a ~ a
+s~vgQga ~ap+Ngspvea~ a p . (21)

A well-known theorem" enables one to write any
operator as a sum of normal products, for instance

c~ cp cicp=N(c~ cp cicp)

+b~,—ps~lgv~X(cgcy)+by, gsylgvgN(c~ cp )
+8 ~v,'N(cp*cq)+hpiv PN(c *c~)

b'av, 'N (—cp*c~) bp~v q'N (c *cq)—

+8, pb~, qs s~l,v e,v,+(8 ~Spy
—8 qbp~)v, 'vt, '. (22)

This is substituted in H; and use is made of well-known
properties of the C coeKcients. For instance, in view of
the relation

P C(j jpJ; jrj mpM)C(j j&J; jN jN&M)
tn aM

= (2J+1)(2jp+1) Bjpjgbmpmg~ (23)

the first term of the third line of (22), when substituted
in H;, gives

—-', P G(abadJ)(2J+1)
aPS J

&( (2j p+1) ibjpjibmpmgv~ N(cp*cg) (24).
At this point we introduce an essential simplification.
We assume that, among all our levels a, b, ~ -, a given

'3 S. S. Schweber, H. A. Bethe, and F. de Hoffmann, JIesons Omd
Fields (Row, Peterson and Company, Evanston, 1955), Vol. I.
p. 203."Reference 13, p. 210. The theorem is closely related to Wick's
theorem.
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Qe &a Pa ~a. (27)

After the Bogoliubov-Valatin transformation, BC can be
written as the sum of four parts,

X=Xi+X2+Xa+X4. (28)

The 6rst part is a pure number, the energy of the ground
state,

(29a)Xi ZaLea (Va+2pa) guaea+aj.

The others are

X2 ——Q L(u,'—tt, ')ti, +2u,v.h, ]a aa. ,

X3—Pa saLua&aria+ 2 (ea ua )+a(

(29b)

X (a.*a *+a .a ), (29c)

X4= P UapviiV(ca cp cic~).
NPy5

(29d)

One chooses the I's and ~'s in such a way that 3'.3

vanishes. This is what Bogoliubov' calls "the elimina-
tion of the dangerous terms"; it is equivalent to the
BCS procedure of minimizing X~. The result is

2u,v, =6,/E„u, '—s,'= ri,/E. , (30)

combination of charge, parity, and j value occurs only
once. This enables tis to replace b& s&&

'in (24) by Be& and
to sum immediately over b. In practice, this restriction
is not serious, as it is satisfied in most shell model
calculations. The same assumption has to be invoked
for all the terms in the middle three lines of (22).

Introduce the notations

6,= (2j,+1)—a p, (2j,+1)'*u,v,G(aacc0), (25)

p, =2(2j,+1)—' Qgg(2 j+1)ng'G(ababJ)
=2(2ja+1) &g&(2jr+1)&n&'F(aabb0), (26)

because p, , can be neglected and one sees that D.,
depends only on the charge. For a more realistic force,
the various 6,'s for a given charge are still roughly
equal; hence the notion of an energy gap, without refer-
ence to a single-particle state, is still a meaningful one.

3. THE APPROXIMATION PROCEDURE

A. Basic Equations

If the interaction were really a pairing force, 3'.2 would
be the most important part of the Hamiltonian and K4
could be treated by perturbation theory, at least for
states with J~O, because Ii would be small and would
have only diagonal elements. In this case, one obtains
the picture of nearly independent quasi-particles, the
creation of a pair of quasi-particles requiring an energy
at least equal to the energy gap. IZS have shown that
this picture agrees well with many detailed properties of
heavy nuclei, hence the pairing force is certainly an
important element in the real force. But, to properly
take into account other parts of the force, a better
treatment of BC4 must be given. The first idea that
comes to mind is to diagonalize GC4 exactly between all
two-quasi-particle states. The neglect of states con-
taining four or more quasi-particles is justified by saying
that, since there is an energy gap, their excitation re-
quires more energy. In the language of Feynman dia-
grams, the method consists in summing exactly all
diagrams similar to Pig. 1(a). It is also known as the
Tamm-DancoG approximation. The calculation is very
similar to a standard shell-model calculation for two
particles, which is not hard. This procedure cannot
yield collective states, which necessarily contain a large
number of quasi-particles.

The method which we propose to use is more powerful
and almost as easy. It is well known in the theory of

Then, K2 takes the form

X2=+a EaCa~Ga,

(31)

(32)

which shows that E, is the energy of a quasi-particle.
is half the energy gap. The quantity p, is the single-

particle energy, corrected for the self-energy p„and
counted from the Fermi level X,. The two X's are de-

termined by writing that the expectation value of X for
the ground state is a given number e, for both neutrons
and protons, for instance

ma=Java'=-', Q (1—ti /E.). (33)

As for K4, it is the residual interaction between quasi-
particles. Its explicit expression in terms of the a
operators involves sixteen terms.

In the case of a general nuclear force G, the values of

A„p, X can only be obtained by solving the compli-
cated set of coupled equations given above. The problem
simplifies itself" in the case of the pairing force (15),

) &«. l. (a) Feynman diagram included in the Tamm-Dancoii
approximation. The lines are quasi-particles. No arrows are shown
since a quasi-particle is part particle, part hole. There are two
quasi-particles present at all times. The complete interaction be-
tween quasi-particles, 3C4, acts at each vertex. (b}Additional dia-
gram included in the approximation of linearized equations of
motion. The chain may double upon itself any number of times.
There may be 2, 6, 10, ~ quasi-particles at once.
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A(abJM) = Q C(j j sJ; m mpM)asrb
m atnp

(34b)

Upon interchange of a and b, we have for instance

A (baJM) = e(abJ)A—(ahJM)

Let 4'o be the real ground state (not the BCS approxi-
mate state) and +abr an excited state with angular
momentum JM, the subscript 8 being used to dis-
tinguish it from other excited states. %e define two
amplitudes P and y (independent of M) by

ba &%0 I
A (abJM) Ieasr) (36a)

rp ba=sssr&+o I
A*(abJM) I%'asr), (36b)

with
sssr ( )

superconductors, under such varied names as random
phase approximation, "method of linearized equations
of motion, "method of approximate second quantiza-
tion."It is also allied to Dyson's new Tamm-Danco6
method. " It is equivalent to summing all diagrams"
similar to Fig. 1(b). Our treatment will be closest to
that of Anderson. " Let us define some creation and
absorption operators for pairs of quasi-particles coupled
to JM,

A*(abJM)= Q C(j jpJ;m maM)a *air*, (34a)

operators and terms with four u operators. The ap-
proximation consists in dropping the latter terms, i.e..
linearizing the equations of motion, on the grounds that
they involve more energetic excitations. A serious dis-
cussion of the validity of this approximation is very
dificult and we shall not attempt it. We are left with a
set of linear, homogeneous equations for matrix ele-
ments of pairs of quasi-particle operators. Of course, we
must include combinations of products of the type
a *as as well as the combinations of Eq. (34). But these
other combinations are found to be completely un-
coupled from each other and from the A' s. Amplitudes
of the type

(39)

must therefore be set equal to 0, since they vanish in the
limit of independent quasi-particles, " 3'.4=0. Define
two functions I' and R through the equations

LA (abJM),BC'

=Q, s P(abed J)A (cdJM)
+Q,s R(abed J)sssrA *(cdJM)

+terms in a*a+terms with four a' s. (40a)

fssbrA*(ah JM)PC)
= —Q, s P(rbbcd J)sssrA ~(cdJM)

—Q, s R(abed J)A (cdJM)
+terms in aea+terms with four a' s. (40b)

The symmetry relations for iP and &p are

P b,a = —e(abJ)P,ba,

yb.a= &(rbbJ) q.—ba

(37a)

(37b)

They satisfy the symmetry re1ations

P(cdabJ) =P(abcdJ),
R(cdab J) =R(abed J)

(4&)

To obtain equations for these amplitudes, one takes
matrix elements of the equations of motion for the 3
operators. If we call && the excitation energy of +&~
with respect to %0, we can write

&+o I LA,5(lj
I
+abr&= roa&+o

I
A

I +asr» (38)

since both %0 and %~~ are eigenstates of K. If the
commutator of K with one of the A operators of (34) is
calculated, it is found to contain terms with two g

"P. W. Anderson, Phys. Rev. 112, 1900 (1958). The method
was applied to the electron gas by D. Bohm and D. Pines, Phys.
Rev. 92, 609 (1953);K. Sawada, Phys. Rev. 106, 372 (1957); K.
Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys. Rev.
108, 507 (1957).

"N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A
Eem 3fethod 7rI, the Theory of Supercoedlctivity (Consultants
Bureau, New York, 1959). See also V. M. Galitskii, J. Exptl.
Theoret. Phys. (U.S.S.R.} 34, 1011 (1958) Ltranslation: Soviet
Phys. -JETP 34, (7), 698 (1958)g."F.J. Dyson, Phys. Rev. 91, 1543 (1953}.The present ap-
proximation keeps an inhnite subset of new Tamm-DancofF
amplitudes.

"The importance of these backward-going diagrams in the
treatment of nuclear collective oscillations has been emphasized
repeatedly by S. Fallieros and R. Ferrell, who have also discussed
the corresponding modi6cation {69) of the normalization. See in
particular S. Fallieros, Ph.D. thesis, University of Maryland, 1959
(Physics Department Technical Report No. 128), and R. A.
Ferrell, Bull. Am. Phys. Soc. 4, 59 (1959).

With our approximations, the quantities iP, p, and ro are
solutions of the eigenvalue equation

roafaba Red P(rbbcdJ)4'cda

+P.s R(abCd J) y, da,
42

&a ga ba Z cd P (rbbcd J) &peda

+Q,s R(abed J)g,sa.

This simple system of equations resembles very much
the equations for a two-particle shell-model calculation,
but we shall see in the next subsection that it also
includes some collective solutions. It is clear that the
problem is equivalent to diagonalizing a nonsymmetric
matrix whose number of lines and columns is twice the
number of two™particle states. For every solution 8 with
~~&0, there exists another solution 8' with u~ ———+~
a,nd P and y interchanged. The latter solution must be
rejected; only solutions with co»0 have physical
significance.

The task of expressing P and R in terms of the nuclear
force G or F of Sec. 2 involves a fair amount of manipu-
lating and only the results will be given. It is convenient

» The amplitude q also vanishes in that limit, but it is coupled
to P.
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for the following to de6ne two new amplitudes by

fa bB =PabB+ &Pa bB&

ga bB g'a bB &4)a bB ~

The equations for f and g are found to be

~Bf bB=(E +Eb)g bB Q,—d U(abcdJ)g, dB,

b)Bga bB (Ea+Eb) fabB Lcd U(CbCd J)fcdB&

with

(43a)

(43b)

p.bB (0I A(CbJM) I-~B~), (49)

where (OI is the BCS ground state, and neglect all other
amplitudes, The Schrodinger equation would be

WBfabB ——
2 Pcd(OI A (ahJM)KA*(Cd JM)

I 0)gcdB, (50)

where WB is the energy, and one would normalize P
(which is real) by

Z. b 9"»)'= 2 (51)

U(abed J)= (u.ub+v. v b) (u,ud+v, vd)G(c4bcd J)
+(u,vb —v.ub)(u, vd v,ud—)H(abcdJ), (45a)

U(abed J)= (u ub —v,vb) (u.ud v vd)G(cbcd J)
+ (u.v b+ v,u b) (u,v d+ v,ud) K (abed J) & (45b)

H(abed J)=F(abed J)+8(cdJ)F(abdcJ), (46a)

K(abed J)=F(abed J) 8(cdJ)F—(cbdcJ). (46b)

It is important to note that, in all this work, the
summations run over all values of the indices, which
means that a given pair of distinct single-particle levels
appears twice. Since, upon interchange of the indices,
the amplitudes f and g transform in the same way as P
and q, i.e., by Eq. (37), the matrices U and U should
have the following symmetry properties:

U(abed J)= U(cdab J)
8(cbJ)U—(bacd J)= 8(cdJ)U—(abdcJ)

=8(abed) U (bade J), (47)

and similarly for V. It can be checked that they do.
One of the two functions, say g, can be eliminated from
Eq. (44). Then f is seen to be the eigenvector of a non-
symmetric matrix for eigenvalue co&'.

More will be said in the next subsection about the
significance of Eqs. (42) or (44). But first, we shall show
how the Tamm-Dancoff approximation referred to
earlier is recovered in the limit of weak coupling, i.e.,
small K4. In that case, it is clear from Eq. (44) that f
and g are about equal (since caB)0), i.e., q((&b. If we
neglect p in Eq. (42) and realize that R is also small
compared to P (because K2 does not contribute to R),
we get an equation for P alone,

~BPabB=Lcd P(&bed J)fcdB (48)

This same equation would come out of the Tamm-
DancoB method. Then, one would define P by

B. Collective Vibrations

To show how collective vibrations arise out of the
formalism, we shall repeat the derivation of Eq. (42)
somewhat diGerently. Let us look for some operators
QBbr Q c&ir ' with the following property

I QB&)r)+j +BQBi)r)

LQB1lr )~g b)BQB3f )

(53a)

(53b)

where idB is some number. Let us assume that the Q's
can be expressed as linear combinations of the A's of a
given J, with real coefficients,

QB~=+a b X bBAa(GbJM)
P a b Ya bBs J3' *(abJ3II), (54a)

SdblQB~*=Lab X.bBSzbIA*(cibJM)
—Q. b Y.bBA(abJM). (54b)

If we substitute this expansion in Eqs. (53), and if we
decide, as we did in subsection A, to ignore in the
commutator terms of the form a*a or terms containing
four o's, we obtain the following set of equations for the
X's and I"s:

b&BXa bB =Zcd P(«Cb J)XcdB
+Q.d R(cdab J)Y.d B,

55
b&BY, bB +cd—P(cdabJ) Y——,dB

+Q, d R(cdabJ)X, dB,

which is identical with the set (42). Thus, X and Y are
proportional to )fI and ba. In the following, we consider
only solutions of these equations for which co& is posi-
tive. One can easily deduce" from the equations a kind
of orthogonality relation,

gab(XabBXabC YabBYabC) = 0& (56a)

which holds for two diferent solutions 8 and C of the
same J'. Since one obtains another solution of Eq. (55)
by exchanging Xz and I'z, the following also holds for
any two solutions with positive co and the same J:

Z.b(Y bBX.bC —X.bB Y,bC) =0. (56b)
Multiply Eqs. (55) by X f,z and F,&t., respectively, and add.

Repeat the procedure with 8 and C interchanged. Subtract the
two and use Eq. (41).

The appearance of the factors —,
' and 2 is due to the fact,

already mentioned, that our summations involve most
pairs of levels twice. The matrix element in (50) can be
written

(0 I I
A (abJM),XjA *(cdJM) I 0)

+(o I
~A (cibJM)A*(cdJM) I 0)

=P(abed J) 8(cd—J)P(abdcJ)
+Wb)b. .8bd 8—(cdJ)b.

drab,

5, (52)

where 5'0 is the energy of the ground state. In view of
the various symmetry relations, Eq. (48) would be
obtained.
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Equations (53) show that QBM' and QBM are the
raising and lowering operators of a harmonic oscillator.
QBM* creates a vibrational quantum of energy ~oB and

QBM destroys it. The ground state may be defined by
the set of all equations

and I+cM ), are orthogonal. We write

&+.IQ. Q. I+o)

=&+oILQBM QCM *)I+o&

= P X. X, &@oILA( bJM), A*( dJ'M')7I+o&
QBM I

+o&= 0 (57) abed

and a particular excited state would be, for instance

I+BM&=QBM I+o& (58)

SJMSJ'M' Q YabBYcdC
abed

X&+o I LA (cdJ'M'), A*(abJM)j I +o), (60)

whose energy with respect to I.+o& is ooB. The ground
state so defined is more accurate than the BCS ground
state, as it includes the zero-point motion of the
oscillators. For most of the applications, it is not neces-
sary to have an explicit form for I+o&. But, if one were
desired, one could assume the most general expansion

I +o&=xo I 0&+2 xo (c'P) a-*ap*
I 0&

+ p x4(npyb)a *ap*a,*ab*l0&+ (59)

and, after having solved Eqs. (55), determine the x's
from Eqs. (57). It will easily be seen that only terms

with 0, 4, 8, quasi-particles occur. On the other
hand, the excited state (58) has only 2, 6, 10, . quasi-

particles. This is consistent with our statement that the

amplitude (39) vanishes. The x's are determined by a
set of recurrence relations which connect y„ to x 4.

But since the sum in (59) actually has a finite number

of terms, trouble will occur unless the y's become small

before the end of the sum is reached. A related cause of
trouble is the Pauli principle, which requires that any x
with two equal arguments vanish and makes the number

of equations larger than the number of p's. We see

therefore that it is essential for the validity of the
approximation that the average number of quasi-

particles in the ground state, vo, be small compared to
the total number of states, which we call Q. In other
words, we wish to treat the Q operators as boson opera-

tors, i.e., creation and absorption operators for oscillator

quanta; but since the Q's are actually made up of

products of operators that obey the Pauli principle, this
is possible only if the number of states available is much

larger than the number of fermions present. Otherwise,

the fermions start to get into each other's way and the
whole picture breaks down. This would happen, pre-

sumably, if the interaction was made so strong that
many vibrational frequencies were very low. It might be
noted in this connection' that the BCS ground state
itself is good only for large Q.

If this interpretation is to be consistent, it must be
verified that two different singly excited states, I+BM&

using Eq. (57) and the fact that two A*'s or two A' s
commute. The commutator of an A with an A* is found
to be

&+olav*a-I+o&=&- v' (62)

After performing the summation over magnetic quantum
numbers, one finds

&+oil:QBM,QCM jl+o&
2~SJ'4IM' Lab(XabBXabC YabBYabC)

X (1—2v,). (63)

The quantity v is of order vo/0, which we assumed to be
small and can be neglected. Then, the orthogonality
relation (56a) shows that the expression vanishes for
8/C. The case 8=C gives us the normalization, which
we want to be

&+olQBMQBM I+o&=1,

and therefore, if J~=Jq,

(64)

Jab(XabBXabC —YabBYabC) 25BC. (65)

The argument can be extended to show that the Q's
satisfy approximately the commutation relations

I QBM, QCM j=l QBM*,QCM *j=0,

I QBM QCM' ] ~BC~MM'

(66a)

(66b)

as far as all matrix elements between low excited states
are concerned, relations (66a) being a consequence of
Eq. (56b). Thus, as long as vo/0 is small, we have truly
a system of independent bosons and we can con-

I
A (abJM),A*(cdJ'M') j

C(j j pJ;m mpM)C(j j bJ', m mbM')
m cbmpm &my

X[8 ~8pb "o oft~ o~—ao*ap—
—8pba~~a +8p~ao*a +5 ba, *apj, (61)

hence we need to know vacuum expectation values of
products such as a~*a . This certainly vanishes unless
the charge, the parity, and the angular momentum of n
are the same as those of y. If we invoke again the
simplifying assumption made in Sec. 2B, this means that
n must be the same as y. Calling v, the average number
of quasi-particles of type o. in the ground state, we write
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sider higher excited st:ates such as QB~*'
~
+o) or

Qmr~Qcnr *~%'o), with energies 2cuB and coB+cvc. Of
course, the higher the excitation, the worse the ap-
proximations become, And, in any case, it is not allowed
to carry these ideas to excitations larger than twice the

gap, where we would get mixing with configurations
that we have not properly taken into account. Since
most co's, by far, are larger than the gap, the corre-
sponding Q*'s can be applied only once and do not give
rise to a vibrational spectrum, properly speaking, since
there is only one excited state. Those are the excitations
that can be described as of the single-particle type. We
know that these excitations are also given correctly by
our method, since it is an improvement upon the Tamm-
DancoB method that would normally be used for them.
It is the virtue of the present approximation that the
same equations describe single-particle and collective
states, as well as all shades in between. Consequently,
the various states are automatically orthogonal to each
other (approximately) and the total number of states is
correct. The main result of this section is therefore that,
due to the special treatment of the pairing correlations
and the importance of the energy gap, it has become
possible to perform a certain type of shell-model calcula-
tion that will give the low excited states of spherical,
nonclosed-shell nuclei, including the vibrational states,
and whose difhculty is not much greater than that of a
two-body shell-model calculation, except for the choice
of parameters.

There remains to establish the connection between I
and I' on the one hand and f and p on the other. We
de6ned f in Eq. (36a) by

PubB = (+o I
A (abJ3I)QB~~1%'o)

=(e,
~
LA(adam), Q, *j~+,). (67)

All we have to do is express QB~* in terms of the A's by
Eq. (54b) and insert the previously given value of the
commutator of 3 and A*, neglecting terms of order
vo/0 as earlier. The result is

4'abB 2+abB& PabB 2I abB) (68)

and the orthonormalization conditions become"

Qubg'gbB4'abc pabB @abc) 28Bc& (69a)

Lab�

(gabBf abc fabB V abC) = Oq (69b)

provided J~=J~. We note that this agrees with Eq.
(51) in the limit where p is small. In terms of f and g,
these equations become simpler, namely

Jab fcbBgnbc 2~Bc) (JB +C) ~ (70)

One can also derive a simple sum rule. For this, it is
more convenient to sum over a given pair of levels only
once. We designate the pair (ab) or (ba), coupled to J,
by the single Greek index I', and furthermore we define

fabB
1'8

f.bB/v2 if a=b—

ZB frB'goB'= & r~, (&r=&~), (73)

since it is true when applied to every vector of the set.
This sum rule is not accurate in the case J=O, because
then the physical solutions of our equations do not form
a complete set, due to the existence of spurious solutions
to be discussed next.

C.
'

The Spurious States

It is well known47 that the independent quasi-
particle picture yields too many states. There is one
extra state of J=O among all states containing a pair of
neutron quasi-particles, and another one for proton
pairs. Their existence is due to the fact that, since the
SCS ground state is not eigenstate of X„or K~, the
states X„~O) and X„~0) are diferent from ~0) and their
components on two-quasi-particle states are spurious;
only states orthogonal to them have equivalents in a
physical nucleus. But the two-quasi-particle states re-
sulting from an approximate diagonalization of the
Hamiltonian are usually not orthogonal to the spurious
states, with the result that the spurious states are mixed
with various percentages among all the states that one
calculates. It is a major advantage of the present method
that this difFiculty does not arise, as was pointed out by
Anderson. "Here, two of the solutions of our equations
are entirely spurious and the others not at all. The
spurious solutions have positive parity, J=O„co=0,
f=O, and

g .o
——(2j,+1)-:u.r.,

u being a neutron state in one case, a proton in the other.
It can easily be verified that these are solutions of Eqs.
(44), provided one appeals once again to the assumption
that the charge, the parity, and the angular momentum
determine the state; as a consequence, for states of two
neutrons and positive parity for instance, g ~0 exists only
if a—=b.

The existence of these simple solutions is due to the
fact that BT,„and K~ satisfy Eq. (53) for QB~ with
co&= 0, since they commute exactly with K. They can be
written

K =Q {v,'+(u, '—r,')a *a

+(2j.+1) ~u.o.LA (aa00)+A*(aa00)g}, (75)

and BT.„similarly. Therefore, two of our Q's are im-
mediately known,

Q„=g„(2j,+1) &u,r LA(aa00)+A*(aa00)j, (76)

and Q~ simila, rly. We cannot apply to them all the

and grB' similarly. Then Eq. (70) becomes

Qr frB'grc'=&Bc, (&B=&c) . (72)

The number of possible values taken by I' is also the
number of possible values for 8 or C. If one assumes that
the vectors fr B', for instance, form a complete set, then
the following sum rule holds:
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arguments of Sec. 2B because they are Hermitian. But
the orthogonality relations (56) are still satished, and
therefore we can repeat the argument leading to Eq.
(63) to show that

example that Eqs. (44) give results that are nearly the
same, without invoking the adiabatic approximation.

It is convenient to change the phases of the states of
two particles (ahJ). We multiply them all by

(+ol&.Q»*l+o) =o, S.»= (—)""'xsgn ~(j.j~~; 2
—20) (8o)

for instance, where 8 is any other J=O excited state.
This shows that the other solutions of our equations are
orthogonal to K„l@0) and are nonspurious in the sense
used above. They are not, however, eigenstates of X
or K~. The states still describe a mixture of neighboring
even-even nuclei, and in fact the expectation value of
X„or X~ varies from state to state, depending on the
relative amounts of hole or particle character in the
excitations. But, at least, the number of states is
correct.

4. APPLICATIONS

We have seen that Eqs. (44), when used with a
realistic effective two-body force, should be capable of
accounting approximately for the properties of all low-

lying levels of even-even spherical nuclei. A calculation
of this type is necessarily lengthy and none have yet
been performed. Here, we propose only to demonstrate
the power of the method in dealing with collective
effects. We shall use very simple forces and the calcula-
tions will be quite rough. We have never given explicit
expressions for the various wave functions, but this is
not so serious because we shall see that, for many
applications, the amplitudes f and g are just what one
needs.

A. Quadrupole Vibrations

We prime the matrices expressed with these new phases.
For instance,

V'(abed J)=S,i,qS,~~V (abed J).
Their symmetry properties are simpler, namely

(81)

K'(abcd2+) = (x/20m) L, b*'L, ~'*,

L, i,=(R P(2j +1)(2ji,+1)
(83)

XLC(j.j,2; —,
' —-', 0)], (84)

R, (r)R i, (r)r'dr (85)

The fact that all matrix elements of E' are positive leads
us to expect a collective solution. Equations (44) be-
come (for 7=2+)

~f.i = (E.+Ei)g. i„

V'(abed J)= V'(cdab J)= V'(bade J)
= ( )~V—'(bacd J)= ( )~V—'(abdc J). (82)

We need the matrices O', B', and E' for J=2. It turns
out that G' and B' are small because, through recoupling
of the angular momenta, the strength of the quadrupole
force is distributed between many J values. But E'
contains a large term for 2+ states,

Here, the aim is to understand the relatively small
vibrational frequency and the large electric quadrupole
matrix element between the 6rst 2+ excited state and
the ground state."We follow KS and take an interaction
composed of a pairing force, Eq. (15), and a quadrupole
force of the type introduced by Elliott" (the discussion
is limited to particles of a single charge),

cog b= (E,+E&i)f, i, (x/20~) sin(x,—+xi)L, &,

sin(x, +xg) L,g'*f, g,
(cd) 2+

with
I =cosx, e,= sinx .

Solution is easy and the secular equation is"

(86)

(87)

q. (~v) =(~lr'V»(0 v) Iv). (79)

~.= —lx 2 (—) ~.( ~)q;(~b) .* s*"„(78)
(ab) 2+

sin'(x. +xi,)L.i, (E +Ei,)

(E,+E i,)'—co'
(88)

The collective solution is that value of ~ which is below
all (E +Ei). If it does not exist because x is too large,
then the nucleus is not spherical and this method cannot
be applied.

As an example, we pick the following parameters
which are very close to those used by KS for Sn"'.
g (h»&,)=0.80, P (d3~2) =0.24, i1 (s&& 2) = —0.04, P (g7/2)
= —1.70, g (d~~2) = —1.90, 6= 1 02, all in Mev; x =0090
Mev n4; a = (nuuo/i')', where &uo is the frequency of the
oscillator well used; n '=2.46)&10 " cm'. We 6nd the
vibrational frequency to be co=1.17 Mev. The same

Essentially, the pairing force contributes only to X2 and
the quadrupole force only to K4. The method used by
KS to get the collective state consists in picking a
collective coordinate, in this case the quadrupole mo-
ment Q; calculating the energy for a fixed value of Q;
invoking the adiabatic approximation and using this
energy as potential energy for the motion of Q; deriving
a kine'tic energy from Inglis' cranking formula; and
finally solving the Schrodinger equation for Q, in this
case a harmonic oscillator equation. We shall see on an

"G. S. Goldhaber and J. Weneser, Phys. Rev. 98, 212 (1955)."J.P. Elliott, Proc. Roy. Soc. (London) A24S, 128, 562 (1958).
23 Dr. Sorensen points out that. this equation reduces to Eq. (32)

of KS in the limit of small cu.
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B(E2)=&
I &+oI oil (E2,p) I+2'I) I' (89)

with

OR(E2,p) = r'lr, „(8,q)p(x)d'x,

p(x) =e P $*(xm,)P(xm, ),

(90)

(91)

where p(xm, ) destroys a particle at position x with spin
m„and e is the effective charge. To calculate B(E2),
one expresses the p operators in terms of the c's,

value is obtained with the method of KS if- one takes
X=0.091 Mev o4. The deviations between the two
methods would be larger for larger co, but for states that
are truly collective they are equivalent.

The strength of the electric quadrupole transition
between the first excited state and the ground state is
measured by'4

They do not depend on the composition of the unfilled
shells and must therefore involve transitions between
whole shells. The giant photoresonance is evidence of 1
oscillations with this property. There are also 3 oscilla-
tions" which manifest themselves through large radia-
tive matrix elements and anomalous inelastic scattering.
Pairing correlations are not so important here, because
the large spacing between shells already plays the role
of an energy gap. Then, one can use the equations of
Sec. 3, but set I equal to 1 for a particle and to 0 for a
hole. Since we are interested in states composed of a
particle and a hole, the 6 term does not appear in
Eqs. (45).

We assume 6-function forces,

[Ve(1—ei o2)/4+V&(3+oi e2)/4j&(xi —x2). (96)

The triplet part acts only between a neutron and a
proton. All standard force mixtures have'~

y(xm, )=P.(xm, In)c., (92)
V8 ——0.6Vz. (97)

then the c's in terms of the a's by Eqs. (18), then one
introduces the amplitudes tb and q by Eqs. (36), and
one finds

50xe'
B(E2)=

X2~ (ab) 2+

sin'(x. +x g) I..p(E,+Es)

[(E,+Ep)' —oP]'
(94)

For the example above, setting e equal to unity, one
finds B(E2)=2.8)&10 " cm', while the method of KS
gives 3.0 and the experimental value" is 2.3. One can
also use Eq. (73) to derive a sum rule for B(E2). One
multiplies Eq. (93) by a& to be able to replace cof, & by
(E,+Et)g, q, and one finds easily

[B(E2)7
= (Se'/407r) P sin'(x, +xq)I., t, (E,+E~), (95)

(ab),2+

where the sum on the left runs over all solutions of Eqs.
(86). For our numerical example, the collective solution
contributes 79%%uc of the total sum.

Finally, we note that collective eGects can be much
stronger when protons are present as well as neutrons.
The next section is an example.

B. Collective Oscillations of Closed Shells

Some collective phenomena vary smoothly through
the periodic table without change at the magic numbers.

'4 K. Alder et a/. , Revs. Modern Phys. 28, 432 (1956)."P. H. Stelson and F. K. McGowan, Phys. Rev. 110, 489
(1958).

B(E2)= (Se'/80m)[ P I.,i,' sin(x, +xb)f, t j'. (93)
(ab) 2+

It is essential here to have the correct normalization.
This is given by Eq. (70) and the final result is

The matrix elements involve radial integrals such as

Fs= (Ve/4m))" R, (r)Rq(r)R, (r)Rd(r)r'dr, (98)
0

and Pz which is similarly defined. We follow Brown and
Bolsterli in keeping only those integrals which are
obviously large and setting them all equal. We need
matrix elements of II and E, both for (a,b, c,d) all of one
charge and for (a,b) of one charge, (c,d) of the other. For
odd J and parity, one finds that the largest elements by
far (i.e., by a factor 3) are those of H between non-
identical particles. 'We keep only those. I et a and c be
particles, b and d be holes. We keep only terms where a
and b belong to adjacent major shells, and for which

lq ——t +1; this gives R, and Ri, the same number of
nodes and makes the radial integral large. ' We do the
same for c and d. Adopting again the phases (80), we find

II'(abed J)= i2Fh, t,'*h, g'*,

h&= —
(~i2 +J1) '(2j,+1)(2j&+1)

)&[C(j,j &J -' —-'0)$' (100)

F=Fe+3Fr. (101)

26A. M. Lane and E. D. Pendlebury, Nuclear Phys. 15, 39
(1960).

2' J. P. Elliott and A. M. Lane, Eecyclopedia of Physics
(Springer-Verlag, Berlin, 1957), Vol. XXXIX,p. 337.

We keep only terms with j&——j,+1, as they give bigger
C coefficients in (100).The hole b associated with a given

particle a is now completely determined and we shall use

a single subscript, Roman for proton particle-hole pairs,
Greek for neutrons.

With these rather drastic approximations, Eq. (44)
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takes the form

"fa Epga Fha gahaga~

"ga=Epfap

"fa Epga Fha +aha'ga&

"ga=EO fag

(102)

where Eo is the distance between major shells. The
secular equation is

(Ep' —oP)'=F'Ep'(P. h.) (P h.). (103)

There are two solutions: one for which Eo' —co' is posi-
tive and in which the protons and the neutrons oscillate
in phase (i.e., f and f have the same sign); and the
other for which Ep' —a&' is negative, f, and f have
opposite signs, the protons and the neutrons are in
opposite phase. For light nuclei, those would be called
T=0 and T= 1, respectively. Oscillation in phase gives
an attraction, out of phase. a repulsion. For a numerical
estimate, we took Q, h, and P h equal, and calcu-
lated it using the 50—82 major shell for the particle and
the 82—126 major shell for the hole. We found it equal to
9 for J= 1 and 2.9 for J=3.We took Eo equal to 7 Mev.

For the 3 case and oscillation in phase, the experi-
mental value of co seems to be" 2.6 Mev. This is achieved
by taking F=2.1 Mev. The 1 in-phase solution corre-
sponds to motion of the center of mass of the whole
nucleus and is spurious. ' The 1 out-of-phase case is the
giant dipole resonance which has been discussed by
Brown and Bolsterli. ' Our treatment differs from theirs
in that we include the diagrams of Fig. 1(b), while they
have only those of Fig. 1(a). Including diagrams 1(b)
actually enhances the effect for the in-phase case, but
decreases it for out-of-phase. Of course, one may wonder
about the validity of either method when applied to
such large excitation as that of the giant resonance. Be
that as it may, one can get the experimental value,
&o= 15 Mev (for heavy nuclei), by taking F=2.8 Mev.

The two values of F thus obtained are in rough
agreement. Another estimate of F can be gotten from
the work of KS, since the J=0 part of the G matrix for
the pairing force is almost the same as for a 8-function
force. Their value of Fs (their G) is (25 Mev)/A. By
Eqs. (97) and (101),F should be six times larger. For
heavy nuclei, this gives F=0.8 Mev. One possible reason
why this estimate is smaller, is that the true force has
a finite range, whose effect is to increase hole-particle
matrix elements compared to particle elements. How-
ever, it should also be noted that, in his theory of the
lead isotopes with 8-function forces, Pryce" uses values
of F~ around 0.3 or 0.4 Mev, corresponding to 8=2
Mev. Finally, a meaningful comparison can also be

"J.P. Eliiott and T. H. R. Skyrme, Proc. Roy. Soc. (London)
A232, 561 (1955).

»M. H. L. Pryce, Nuclear Phys. 2, 226 (1956/57); D. E.
Alburger and M. H. L. Pryce, Phys. Rev. 95, 1482 (1954).

made with the numbers of Sec. 4A because, for -a 8-
function force and identical particles, one has

E'(abcd2+)
= (Fs/10)E(2j +1)(2j&+1)(2j+1)(2j~+1)j»

X ~C(jaj&2; s
—s0)C(j,j&2; —',—s0) ~. (104)

This is very close to Eq. (83). Since (R„' is
(11/2)'u ' for most values of a, one can identify Fs
with (x/2~)(11/2)'n '. The value of F that one obtains
this way is 2.6 Mev.

In conclusion, one can say that the order-of-magni-
tude agreement between these various estimates of the
nuclear force makes it appear likely that, in the future,
it will be possible to obtain a good fit of all these
phenomena with the same effective two-body interaction.

C. Anomalous Inelastic Scattering

Anomalously large inelastic scattering has been ob-
served with protons, "deuterons, "and n particles. "This
happens in particular for scattering into the first
quadrupole vibrational state, but there are other large
anomalies at other energies. The main one is around
2.5 Mev in all heavy spherical nuclei. Cohen" has
suggested that collective effects are responsible in all
cases, and strong evidence'4 has been offered that the
2.5-Mev anomaly is due to 3 vibrations. It might be
that, in nuclei with proton and neutron shells both
partially filled, there is also a contribution from the one-
phonon 4+ vibrational state" which must lie near the
top of the gap.

A proper theory of this effect must take into account
absorption, refraction, and diffraction of the projectile. "
Here, we do not wish to attempt to calculate the abso-
lute cross section or the angular distribution, but only
try to make a very rough estimate of the enhancement
compared to the single-particle value. For this, it might
be enough to use a model where the projectile is spinless
and interacts with the nucleons in Born approximation
through a zero-range, spin-independent, charge-inde-
pendent potential. Then, the scattering amplitude with

"B.L. Cohen, Phys. Rev. 105, 1549 (1957); B. L. Cohen and
A. G. Rubin, Phys. Rev. 111, 1568 (1958)."J.L. Yntema and B. Zeidman, Phys. Rev. 114, 815 (1959);
B.L. Cohen and R. E. Price (to be published).

~ D. R. Sweetman and N. S. Wall, Compl'es Rendus du Congres
Iuteruatioual de Physique 1Vucleaire, Paris, 1N8 (Dunod, Paris,
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momentum transfer lt is proportional to

J~d'x e'" *('4'p~ P p*(xm, q)p(xm, q) j@QM) (105)
msq

where g(xm, q) destroys a particle with position x, spin
m„charge q. We shall calculate the quantity

dx)(@o~ P y*(xm, q)P(xm, q) ~+ )~-', (106)
msq

which is a measure of the total strength of the transition.
This can be expressed in terms of f and g by methods
used earlier. With the phases (80), it is found equal to

Q Z(abed)h. b*'h, d **(u,v b-+v, ub)
abed

X (uavd+vcud)fabfcdp (107)

for even J and even parity, and to

Z (abed)h~ b*k~di (u~v b
—'v~u b)

abed

X (u,vd —v,ud)g, bg, d, (108)

for odd J and odd parity, with

Z(abed) = (4v) ' R, (r)Rb(r)R, (r)Rd(r)r'dr, (109)
0

and h, b as defined by Eq (100).. Other combinations of
J and parity give a vanishing result. The charges of a
and b must be the same, and those of c and d likewise.
Once again, we shall set all large radial integrals equal
and neglect the others.

For a single-particle transition, only two states are
important, say a particle state a and a hole b. The
amplitudes f,b and g, b are equal to each other, and to
unity in view of the normalization (70). We can average
h b over J, which gives ~~. Then, formulas (107) and
(108) become just Z. Therefore, the enhancement over
the single-particle transition is given by (107) or (108),

but with Z omitted, provided that we include in the sum
only terms whose Z is large.

It is a simple matter to apply this to the case of 3
oscillations, using the approximations and parameters
of Sec. 4B. The enhancement is given by (4Ep/rp)P h„
which is equal to 30. This is of the same order of magni-
tude as the enhancement of B(E3) for heavy nuclei,
quoted in reference 26. A more direct comparison with
experiment is dificult.
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