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F1c. 3. Deviation of critical field curves of several super-
conductors from parabolicity. For clarity the curves for individual
samples of tin and indium are not shown (since the differences in
D amount to 0.0014 or less).

found in —dH./dT? as temperature is lowered.
Whether this behavior will extend into the range
below 1°K remains to be seen.!?

12Tt should be pointed out that the work of E. A. Lynton,

B. Serin, and M. Zucker on tin indicates that a value of v in
better agreement with calorimetric data results if critical field
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The deviation, D(¢), of the critical field curve from
parabolicity is defined as the difference between the
true critical field curve and a parabola drawn through
the experimental values of Ho and 7:

D@)= 2.0
H

- (1_t2)7

0

Such curves are shown in Fig. 3 for the materials
discussed here as well as for lead and mercury. It is
clear that the differences among tin, indium, and
tantalum are small. The amplitudes of these curves
are sensitive to the choice of Hy and thus are affected
by the uncertainty in the extrapolation to 0°K.
Measurements below 1°K will be required before the
differences in amplitude of D(?) for these elements can
be considered to be clearly established. Further
measurements, if extended to sufficiently low temper-
atures to yield reliable vy values, will also permit the
deduction of the temperature dependence of C,; (the
superconducting electronic specific heat) from the
shape of D(t).
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data are extrapolated to 0°K by means of an expression which takes
explicit account of the exponential temperature dependence of
the superconducting electronic specific heat.
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A theory of anisotropic superexchange interaction is developed by extending the Anderson theory of
superexchange to include spin-orbit coupling. The antisymmetric spin coupling suggested by Dzialoshinski
from purely symmetry grounds and the symmetric pseudodipolar interaction are derived. Their orders of
magnitudes are estimated to be (Ag/g) and (Ag/g)? times the isotropic superexchange energy, respectively.
Higher order spin couplings are also discussed. As an example of antisymmetric spin coupling the case of
CuCly-2H,0 isillustrated. In CuCly-2H,0, a spin arrangement which is different from one accepted so far
is proposed. This antisymmetric interaction is shown to be responsible for weak ferromagnetism in a-Fe:0s,
MnCOs, and CrF;. The paramagnetic susceptibility perpendicular to the trigonal axis is expected to increase
very sharply near the Néel temperature as the temperature is lowered, as was actually observed in CrFs.

INTRODUCTION

WEAK ferromagnetism of mainly antiferromag-

netic crystals, represented by a-Fe;Os and the
carbonates of Mn and Co, has been a controversial
problem for a decade. Néel' proposed an explanation

*On leave of absence from Tokyo Metropolitan University,
Tokyo, Japan.

of this phenomena based on an impurity effect, possibly
magnetite. Many years later, Li? proposed a different
explanation based on antiferromagnetic domains with
magnetized walls. As he pointed out, however, the
formation of antiferromagnetic domains is not energeti-

1 L. Néel, Ann. phys. 4, 249 (1949).
2Y. Y. Li, Phys. Rev. 101, 1450 (1956).
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cally advantageous and may be possible only when
some imperfections of structural or chemical nature
stabilize the domains. From these impurity mecha-
nisms, we expect the magnetic properties to change
from sample to sample depending on their purity.
However, it seems to be natural to raise the following
question: Is weak ferromagnetism an intrinsic property
of a-Fe;0; or not? An affirmative answer was first given
by Dzialoshinski.? His argument is phenomenological
and is as follows: He first showed that when the spins
are perpendicular to the trigonal axis, an a-Fe,O;
crystal with the antiferromagnetic spin arrangement
has the same symmetry as that with a canted spin
arrangement which has a net magnetic moment
perpendicular to the trigonal axis. The next step was
to write down the free energy of the system in terms of
spin variables, the magnetic moments of the four
sublattices. Among the terms of the form allowed under
this crystal symmetry there was a term which favors
the canted spin arrangement rather than the antiferro-
magnetic one and therefore is essential to the weak
ferromagnetism. This term is expressed by

D-[S:XS.], (1.1)

where D is a constant vector. In a-Fe;O3, D is parallel
to the trigonal axis. This theory, however, is a phe-
nomenological one and does not clarify how this
interaction arises and how D can be calculated.

We first note that the expression (1.1) is the anti-
symmetric part of the most general expression for
bilinear spin-spin interaction. Only the symmetric
interactions have been familiar to us so far. In insulators
the known spin-spin interactions are isotropic super-
exchange interaction, magnetic dipole-dipole interaction
and anisotropic superexchange interaction of pseudo-
dipolar type. Among them the magnetic dipole-dipole
interaction can make a contribution to the antisym-
metric coupling in certain special cases because of the
orbital moments. Its magnitude, however, is generally
very small and it vanishes in the above mentioned
trigonal crystals. The anisotropic superexchange inter-
action studied so far? is the so-called pseudodipolar
interaction and is symmetric. However, the previous
theories do not seem to be general.

We have developed a general theory of anisotropic
superexchange interaction with the use of the new
formalism recently developed by Anderson.’ We take
account of the spin-orbit coupling in the mechanisms
of superexchange while the previous theories do not
explicitly consider the mechanism of superexchange.
We could show that when the crystal symmetry is
sufficiently low, the largest term of the anisotropic

31. Dzialoshinski, J. Phys. Chem. Solids 4, 241 (1958).

4J. H. Van Vleck, J. phys. radium 12, 262 (1951); T. Moriya
and K. Yosida, Progr. Theoret. Phys. (Kyoto) 9, 663 (1953);
T. Nagamiya, K. Yosida, and R. Kubo, Advances in Physics,
edited by N. I. Mott (Taylor and Francis, Ltd., London, 1955),
Vol. 4, p. 1.

3 P. W. Anderson, Phys. Rev. 115, 2 (1959).

superexchange which is linear in the spin-orbit coupling
has an antisymmetric form as was briefly reported.®

In this paper we discuss the anisotropic superexchange
interaction to a fuller extent and the weak ferro-
magnetism of a-Fe,Os, the carbonates of Mn and Co
and CrFs.

a

ANISOTROPIC SUPEREXCHANGE INTERACTION

The anisotropic superexchange interaction is derived
by extending the theory of superexchange interaction
to include the effect of spin-orbit coupling. We use
Anderson’s new formalism® of superexchange inter-
action. The basic one electron wave functions are those
localized at the positions of magnetic ions and are
orthogonal tg each other. The one electron part of the
Hamiltonian is diagonalized within an ion, in this
representation. These basic wave functions are denoted

by
lpnf (7—R)7 ‘P'ﬂ‘ (T—R),

where ¢ and | mean the spin almost up and almost
down, respectively. As we take account of the spin-orbit
coupling, these functions are not eigenfunctions of the
spin component S, but mixtures of + and — spin
states. The one electron Hamiltonian is written in terms
of annihilation and creation operators as follows:

E=§ 2 en(B)[ant*(R)ant (R)+an*(R)an (R)]
+ 2 2 {bwn(R'—R)[awt*(R)ant (R)

R#R’ n,n’'
Fany*(R)ans (R)J+Corn® (R — R)[aw1*(R )ant (R)
—an ¥ (RN (R) J+Corn~ (R — R)ant* (R )ans (R)

FCrrnt (R = R)an v * (Rt (R)}, (2.1)
where

barn(R'—R)+Crn*(R'—R)
= fl,bn'f*(r—R')HltﬁM (r—R)dr,
bura(R'—R)—Crn*(R'—R)

= fjpn; ;*(1""‘ R,)Hﬂpnlr (r—R)dTy (2'2)
Cn’n—(R/_R) = ‘[‘¢"’?*(7'_'RI)H1¢7Lt (r_—R)dT’

Cont(R—R)= f Yars (=R Hafomt (r— R)dr,

and
Hi=p2/2m+V (r)
+ (B/2m2c%)S - [gradV (r) X p],
Crn*(R'—R)=Cn*(R'— R)£iC ¥ (R'— R).
" 6T, Moriya, Phys. Rev. Letters 4, 228 (1960).
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ant (R) and a,1* (R) are the annihilation and the creation
operators of the electrons in the state Y.t (r—R), etc.
The most important contribution to the superexchange
comes from the configuration mixing of the polar states
due to the transfer terms of (2.1). By the second order
perturbation calculation we get the usual isotropic
superexchange from the ? terms, the interaction of the
form (1.1) from the dC terms and pseudodipolar
interaction from the C? terms. We have for the inter-
action between the spins at R and R’

Er,z®=Jr,r?(S(R)-S(R))
+Dr,r®-[S(R)XS(R)]
+8(R) Tr.r®-S(R) (2.3)
where the scalar, vector and tensor quantities: Jzr'®,

Dz, 2@, and Trr/® are given in the case of one electron
per ion as follows:

Jr,p®=2|bw(R—R")|%/U, (2.4a)
Dr r®=(44/U)[ban (R—R")Cra(R'—R)
— Con (R—R)bwn(R'—R)], (2.4b)
Trrr®=(4/U)[Crw(R—R")Cpr(R'—R)
+Con(R—R)Cn/(R—R')
- (Cnn’ (R_R/) . Cn’n(.Ry—R))l:l. (24C)

The expression for Jzr/® has been obtained by Ander-
son.” We assumed here that the ground state of an ion
is nondegenerate except for being a Kramers’ doublet.
n and %’ represent the ground states of the ions at R
and R/, respectively, and U is the energy required to
transfer an electron from an ion to its nearest neighbor,
thus making a polar state.

When the orbital level separation in an ion is larger
than the spin-orbit coupling, we can calculate the
transfer integrals & and C by a perturbation method.
The b terms are the ordinary transfer integrals without
spin-orbit coupling and the C terms are given up to
the first order in the spin-orbit coupling as follows:

Con(R—R)=— > be?®) (R'—R)
" I\ e (R)—en(R)
L..(R)
Y b (R—R R—R), (2.5
el >)+c< ) (2.5)
with )
R R)= f on (=K

X[gradV (r) X ple.(r—R)dr, (2.6)

where n,n’ represent the ground orbital states and

m, m’ the excited states, L,.,(R) the matrix element of
the orbital angular momentum of the ion at R, \ the
spin-orbit coupling constant, and ¢,(r—R) the ground
orbital wave function of the ion at R.

From (2.5) we see that the magnitude of the C
terms is roughly (Ag/g) times that of the b terms where

g is the gyromagnetic ratio and Ag is its deviation from
the value for a free electron. Therefore the orders of
magnitudes of D and T' are estimated by

D~ (Ag/g)J, T~(Ag/e)]. (2.6)

The contribution of the next importance is the direct
exchange interaction. This has the same form as (2.3)
and the coefficients of the first two terms Jgg-** and
T'rr- are given as follows:

Jer™*=Jrp (WWLIVWL'), (27)
Lun(R)
Drr==2\ > —————Tpr (n1'mn’)
m €n(R)— e, (R)
£ ). @9
—_ NN nm . .
ey (Rl)_Gn' (R’) RR

The tensor coefficient I'rr/** of the last term has just
the same form as that which has been discussed by the
previous authors® though they regarded J to include
superexchange implicitly. The exchange integral is
given by

62
J rre (n0'mm’) = f f @a*(r—R) @u*(r2— R')—

712

chm(fz—R) (pm'(fl—‘R,)dl'ldl'g, (29)

where ¢,(r—R), etc., are the orthogonal orbital wave
functions obtained without the spin-orbit coupling.
We see here again that the ratios of Drg-** and I'gg-**
to Jrr°* are approximately given by (2.6). Therefore,
these terms are generally smaller than the corresponding
second order superexchange terms as was shown by
Anderson in the case of isotropic superexchange.

The third order perturbation which include transfer
terms twice and the intra-atomic exchange interaction
gives the same form of coupling as (2.3). The isotropic
first term and the anisotropic second and third terms
come from 27, bCJo, and C%J, terms, respectively,
Jo being the intra-atomic exchange energy. All the
three terms are generally Jo/U times smaller than the
corresponding second order terms.

We shall here show only the coefficient of the second
term. The first term is given in reference 5.

Dre®=— (/U {2 m Jwm (R)[bum (R—R') ¢
X Corn(R'— R) = Cop (R—R")brn(R'— R) ]
+3 1 T um(R)[Brm(R'— R) G (R—R’)
—Cpm(R'=R)bpw(R—R) T}, (2.10)

where J..(R) represents an intra-atomic exchange
integral in the ion at R, etc. We have considered above
the most important three contributions to the super-
exchange interaction. As was seen, all the terms linear
in the spin-orbit coupling have the form (1.1) which is
antisymmetric for the interchange of two spins and the
terms of second order in the spin-orbit coupling have
the pseudodipolar form which is symmetric for the two
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Fic. 1. Crystal structure of
a-Fe;03. The open circles represent
O~ ~ jons and the shadowed ones
Fe¥t jons.

spins. The orders of magnitude of these anisotropic
couplings are generally given in relation to the isotropic
coupling by (2.6).

The crystal symmetry is of particular importance
for the antisymmetric coupling (1.1). In crystals of
high symmetry this coupling vanishes though it is
important in crystals of low symmetry, particularly in
relation to weak ferromagnetism. Discussion of the
symmetry properties will be given in the following
section.

Extension of the theory to the case of many-electron
ions is straightforward only when the ground ionic
state has a single configuration. In this case we need
only to express the spin operators of the electrons by
the equivalent operators of the ionic spins with some
modifications in the coefficients. However, in the first
transition group ions the term separation is much larger
than the spin-orbit coupling and the ground states
taking account of the spin-orbit coupling cannot
generally be expressed by a single configuration. More-
over, in crystals of low symmetry in which the anti-
symmetric coupling (1.1) is of particular importance,
even the purely orbital states cannot generally be
represented by a single configuration. The calculation,
therefore, is very complicated even for the isotropic
coupling and we would content ourselves with the
expectation that also in this case the order estimation
of (2.6) may be correct.

We shall now further discuss the contribution from
the higher order perturbations qualitatively. For the
one electron ions there are no other types of interaction
between two ions than those given by (2.3). So the
higher order perturbation calculation gives only minor
corrections to the contributions treated above. On the
other hand, for the ions with many electrons the
couplings of more than fourth order in the spin vari-
ables come out from higher order perturbations. For
example, from the fourth order perturbation we get

biquadratic forms of spin coupling (for S>1) and
couplings which are linear in one spin and of third
order in the other (for S>> $%), in addition to the minor
corrections to the bilinear terms. A representative term
of the fourth order perturbation which contributes to
the isotropic biquadratic coupling may be of the form:

> U=3Xbpw (R— R")brm(R'— R)byms (R—R')

Xbm'n(R,—R) Z Z anv*(R)an’d(R’)an’V’*(R’)
o, AN

X mor (R)amn* (R)amr (R )amn* (R aun (R).  (2.11)

When the ground ionic state can be expressed by the
numbers of electrons in the basic states, the first sum
is over the singly occupied Kramers’ doublets. In
general, we should take the expectation value of (2.11)
in the ground ionic state. The order of magnitude of
the isotropic biquadratic coupling may be (b/U)? times
the usual bilinear superexchange interaction.” Contri-
butions to the anisotropic coupling can be obtained by
replacing one, two or three &’s in (2.11) by C’s with the
corresponding modifications of the spin suffixes of the
annihilation and creation operators. From the order of
magnitude relation: C~ (Ag/g)-b, we may estimate
their magnitudes.

Though we will not discuss any further these higher
order perturbations, we already see how to provide
the mechanisms and to estimate the orders of magnitude
of various forms of higher order anisotropic super-
exchange couplings.

CRYSTAL SYMMETRY AND THE ANTISYMMETRIC
SPIN COUPLING

In the preceding section a general theory of calcu-
lating the anisotropic superexchange interaction was
developed. In an actual crystal, some components of
the symmetric and antisymmetric coupling tensors
vanish because of the crystal symmetry. Here we
discuss the antisymmetric coupling (1.1) from the
crystal symmetry point of view.

The coupling between two ions in the crystal is
considered first. The two ions 1 and 2 are located at
the points 4 and B, respectively, and the point bisecting
the straight line 4B is denoted by C. The following
rules are obtained easily.

1. When a center of inversion is located at C,
D=o0.

2. When a mirror plane perpendicular to 4B passes
through C,

D || mirror plane or D 1 AB.
3. When there is a mirror plane including 4 and B,

D 1 mirror plane.
7 This was first pointed out by P. W. Anderson.
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4. When a two-fold rotation axis perpendicular to AB
passes through C,

D 1 two-fold axis.
5. When there is an #n-fold axis (#>2) along 4B,
D | 4B.

For example, for an Fe**—Fe** pair in a-Fe.O;
oriented along the three-fold axis, D is parallel to the
trigonal axis when the two ions are (1 or 4) and (2 or 3)
in Fig. 1 and D is zero for the other pairs. For the
rutile type iron group difluorides, D is not zero for the
pairs of corner and body-center ions. D for the nearest
neighbor interaction is given by the following table.

The Positions of the Ions Direction Magnitude
000 and 3, &, &% [110] +D
000 and —3, —3, &3 [110] +D
000 and —3, 3, £3 [110] +D
000 and 3 —% 3 [t 10] +D

When the spins are ordered and form sublattices we are
interested in the coupling between the sublattice
magnetizations. In the case of iron group difluorides,
we see from the above table that there is no anti-
symmetric coupling of the form (1.1) between the two
sublattice magnetizations. In a-FeyOs, this coupling is
not zero and D for the coupling between sublattice
magnetizations is parallel to the trigonal axis. This
was first shown by Dzialoshinski.?

Symmetry consideration on the transfer integrals is
also useful in theoretical calculation of the anisotropic
exchange. This will be discussed in the following section.

MAGNETIC ANISOTROPY IN THE ANTIFERRO-
MAGNET CuC12~2H20

The magnetic anisotropy energy of CuCly-2H,0O
which determines the spin orientation has been dis-
cussed by Yosida and the present author.® However,
they neglected the antisymmetric coupling of the form
(1.1). This interaction may be of particular importance
in understanding the antiferromagnetic spin arrange-
ment in this crystal as was briefly discussed in the
reference 4. We shall show in this section how the
coefficient D of the anisotropic exchange interaction
can be calculated in CuCl,-2H,0 as a typical example
of the preceding section.

A Cu?* ion has only one hole in the 3d shell. The
crystal structure is orthorhombic and two Cu?t ions
are located at the corner and the base-center sites in a
unit cell. The symmetry elements of the crystal are

(1|2¢|5) = —V3Co—iC,
3| le|4) =1,

(1]1,]4) =V3Co—iCs,
@l2,]5)=—i.

(3]1,]2)=—i2Cy,
(2|1¢] 5) = —iv3Cy'—iCy,

Fic. 2. Symmetry ele-
ments of CuCly-2Hs0
crystal.

(o]

f

B
s

i
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— O\ @—— @0 — =T
< O @~ QG —— =) —>
-— O—-@

shown in Fig. 2. The principal axes of the crystalline
electric field around the corner and the body-center
sites are different. Only the b axis is a common principal
axis. We denote it as the z axis. The two other principal
axes at the corner site and those at the base-center
sites are written as £ and £ams, respectively. Writing
the a- and the ¢ axes as y and x, respectively, we have
a relation:

£y=2x cosf—y sinb,
ne=x sinf-+y cosf,

£1=x cosf-+y sinf,
m=—x sinf-+y cosf,

where the angle @ is constant but not known so far.
The five localized 3d orbital states of a Cu?* ion are
nondegenerate in this crystalline field and have the
following forms:

Y1 Co(322—72)+Co(8—12),
Y2 Co' (35— 1) +Co' (£ —),
Y3 &,
¢4 «<”3,
\b5 o« ZE ’
where the constants Co, Cs, Co/, Cy’ are in principle
determined by the crystalline potential. We shall denote
the transfer integral between the nth state of a corner
ion and the mth state of its neighboring base-center
ion by bpm.
Then the following relations are obtained from
symmetry considerations.

(4.1)

bis=—bs1, bas= —bsz, by = —554;
bis= —bsl, bas= —552, bsg= —by3; (4-2)
bu= b41, bu= b42, 1735= bss-

All the nonvanishing matrix elements of 1 are listed
below.

(412,15)=—1,
(4.3)

(2]1,]4)=iV3Cy'—iCy,
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i

~
=

Fic. 3. Proposed spin arrangement in antiferromagnetic
CuCl;-2H:0. The spins are in the ac plane. The black and the
open circles represent the ions at the positions 0, 0, 0 and 3, 3, 0,
respectively.

—>3

Using (4.2) and (4.3) we can calculate D from (2.4b)
and (2.5). Though we do not know which of the five
states (4.1) the ground state is, the following formulas
are valid, regardless of the ground state:

&N (L) ma
D®=D®=—3
U

m € €pn

bnmbnm

8N (l¢ cosf—1, Sinb) s
D®=DO=—3"
U n Em— €p

D,®=D,®=0,

nmUnny

where # denotes the ground orbital state and m the
excited states. There is no reason why any one of the
transfer integrals should vanish and therefore we see
from (4.3) and (4.4) that the ¢ and & components of
D are nonzero regardless of which the ground state
may be. D, or D, in (4.4) consists of only one term
when the ground state is other than 3 and two terms
when the ground state is ;. Similarly the direct
exchange contribution is calculated as follows.

() mn
SE=4iN Y

m €m— €p

J (nnmn),

(b cosB—1, Sin6) mn

T (nnmm), (&)

D=4\ 3

n €Em— €n

y==0,

where J (nnmn) is defined by (2.9). These expressions
are also valid regardless of what the ground state may
be.

Quantitative calculation of the transfer integrals dma
and the direct exchange integrals J (nnmn) is necessary
to get D. However, we may expect that b, and
J (nnmn) are of the same order of magnitude as b,
and J (nnnn), respectively, because of the low symmetry
at the positions of Cu?t. The magnitude of D may be
about (Ag/g) times the isotropic superexchange inter-
action.

In the antiferromagnetic CuCly-2H,0, a magnetic
unit cell is considered to consist of two chemical unit

cells oriented in the ¢ direction. A four sublattice
model may be reasonable. In this case, D, for the
interaction between the corner and the base-center
sublattice magnetizations vanishes. However, non-
vanishing D, is very important in determining the spin
arrangement. The spin arrangement which is accepted
at present is the ferromagnetic layers parallel to the
ab plane with the spins pointing in the +a and —a
directions alternatingly.® When D, is not zero this
arrangement cannot be stable. We propose instead the
spin arrangement shown in Fig. 3. The ¢ component
of a spin is expected to be (Ag/g) times, i.e., about
109, of, the ¢ component. We expect that this spin
arrangement may give a more consistent understanding
of the proton resonance data both above and below the
Néel temperature®® and the neutron diffraction datal
for the positions of the protons. Neutron diffraction
experiment below the Néel temperature is highly
desirable.

WEAK FERROMAGNETISM OF SOME
TRIGONAL CRYSTALS

The following trigonal crystals are known to be weak
ferromagnets: a-Fe;03, MnCO;, CoCO;, CrF; and
possibly FeF;. a-Fe,O; has a corundum type crystal
structure and MnCOj3; and CoCOj; are of NaNOj type.
The crystal structures of CrFs; and FeF; have recently
been determined.!t All of these crystals have the same
space group D;;—R3C. The spin superstructure of
a-Fey0;3 2 gives rise to a nonvanishing antisymmetric
spin coupling of the form (1.1) between the sublattice
magnetizations and D is parallel to the trigonal axis as
was first shown by Dzialoshinski.? For the remaining
crystals, the carbonates and the trifluorides, non-
vanishing D parallel to the trigonal axis exists when the
magnetic unit cell is just the same as the chemical unit
cell (with two molecular units) as may actually be the
case.

When the spins are perpendicular to the trigonal
axis in the ordered state, a net magnetic moment is
induced by this interaction. The magnitude of this net
moment at 0°K may be estimated by

M D Ag)
)

N guBS 2]
Comparison of the value estimated by (5.1) with the
measured moments is shown in Table I. The agreement
is generally reasonable. In CoCOjs, the orbital moment

8N. J. Poulis and G. E. G. Hardeman, Physica 18, 201 (1952).

9 J. Itoh, R. Kusaka, Y. Yamagata, R. Kiriyama, and H.
Ibamoto, Physica 19, 415 (1953).

(11°5§].) W. Peterson and H. A. Levy, J. Chem. Phys. 26, 220

957).

1 For CrFj see K. H. Jack and R. Maitland, Proc. Chem. Soc.
(London) 232 (1957); K. Knox has also obtained the same result
(private communication). For FeF; see M. A. Hepworth, Acta.
Cryst. 10, 345 (1957).

2 C, G. Shull, W. A. Strauser, and E. O. Wollan, Phys. Rev.
83, 333 (1951).

(5.1)
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may be of particular importance. Though the g values
are not available. we may naturally expect a compara-
tively large D and therefore a large moment, in quali-
tative agreement with the experiment. In «-Fe,Os,
CrF;, and FeF;, we have neutron diffraction datal21?
which show that the spins are perpendicular to the
[111] axis below the Néel temperature. For MnCO;
neutron data!* suggest the spin directions are between
the [1117 axis and the (111) plane while a magnetic
susceptibility measurement!® seems to show that the
spins are almost perpendicular to the [111] axis.

Various magnetic properties of a-Fe;O; have been
discussed by Dzialoshinski® from phenomenological
grounds with the essential use of an interaction of the
form (1.1) with D as a parameter. We have now
provided the mechanism for this interaction, thus giving
a firmer ground to his theory. We shall here remark
one property of these weak ferromagnets which has not
been discussed. The paramagnetic susceptibility of
these weak ferromagnets shows a very sharp increase
near the Néel temperature. A simple model to show
this may be the following Hamiltonian:

H=73% (8;8,)+B% S;?
.9) 7

+D X (SiaSiy—SiSiz)tgusH-2_ S,

(%)) i

(5.2)

where summations are taken over nearest neighboring
pairs. We assume that B is positive, i.e., the easy
direction is perpendicular to the z axis. By a molecular
field approximation we can easily show that X, (z
component) obeys the Curie-Weiss law fairly well
down to Ty while X, is given by

Ng2us2S(S+1) T— Ty
Xl= y (5.3)
3k(T+Twn) T—Tx

JZS(S+1) D\
3k J

JZS(S+1)
To=r—

3k

with
(5.4)

where Z is the number of nearest neighbors. As (T'xy— T')
is small and positive, X, increases very sharply near Ty.
A measure of the sharpness may be given by

(TN—To)/TN~—;(7D)2~2(NIBS)2. (5.5)

The smaller the net moment below 7'y the sharper is

B E. O. Wollan, H. R. Child, W. C. Koehler, and M. K. Will-
sinson, Phys. Rev. 112, 1132 (1958).

14 S, J. Pickart, Bull. Am. Phys. Soc. 5, 59 (1960).

15 A. S. Borovik-Romanov, J. Exptl. Theoret. Phys. (U.S.S.R.)
%?65;?% (1959) [translation: Soviet Phys.—JETP 36 (9), 539

TasLE I. Comparison between fractional magnetic moments
and (Ag/g) in various weak ferromagnets.

Substance (M /NgBuS) (Ag/g)
a-FegO3 1.4X103 ~1X103
MnCO; 2~6X1073 ~1X1073
CoCO; 2~6X 102
CrF; 1X102 ~1X10"2
FeF; ~1X10-3

the increase of X; near Ty. This behavior seems to be
observed in CrF;.!® For MnCO; there is some sign of
this behavior but it is not yet clear.’® Similar behavior
has been expected theoretically’” and was observed in
NiF,.!8 This behavior of the paramagnetic susceptibility
may be one of the distinctive features of weak ferro-
magnets.

Our next discussion is on the possible other mecha-
nisms of weak ferromagnetism. Interactions between
two spins have been fully discussed in 2 and the higher
order interactions are more than two orders of magni-
tude smaller than the bilinear term discussed above.
We shall consider the anisotropy energy of single spin
nature which comes from the spin-orbit coupling under
the crystalline electric field. This interaction does not
depend on the superexchange mechanism and therefore
is more important in substances with low Néel temper-
atures. In NiF, this kind of interaction is responsible
for its weak ferromagnetism.}” In the trigonal crystals
which we are discussing now the fourth order terms of
trigonal symmetry are the lowest order terms which
may give rise to a net magnetization of the crystals.
This is possible because there are essentially two kinds
of positions for the magnetic ions and the crystalline
fields around them are different. They are written as

1)
K [ > SiaSiy (S — 35522

@
=2 SisSiu(Si—35: ], (5.6)
7

where the first and the second summations are taken
over one and the other kinds of ions, respectively. This
interaction is effective in producing weak ferromagnet-
ism only when the equilibrium spin orientation is
somewhere between the trigonal axis and the plane
perpendicular to it. This is possible when the total
effect of the second order and the other fourth order
anisotropy energies and the dipolar and pseudodipolar
interactions favor it. In a-Fe,0;, CrF;, FeF; this does
not seem to be the case.!*'3 Moreover, the estimated
values of K for a-Fe;,O3 and MnCO; are more than one

16 W. N. Hansen and M. Griffel, J. Chem. Phys. 30, 913 (1959).

17T, Moriya, Phys. Rev. 117, 635 (1960).

18 R. G. Shulman, NMR measurement in NiF; (to be published);
A. H. Cooke, x1 of NiF, (private communication); J. C. Burgiel,
V. Jaccarino, and A. L. Schawlow, x of powdered NiF; and
Ni(I03)z+ 2H:0 [Bull. Am. Phys. Soc. 4, 424 (1959)].
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order of magnitude smaller than D. We may fairly
safely conclude that this interaction is not of primary
importance in the weak ferromagnetism of a-Fe,Os,
MnCO;, CrF;, and FeFs; The sixth order anisotropy
energy is probably negligibly small as compared with D.

CONCLUDING REMARKS

It should be emphasized here that now a firm ground
has been given to the mechanism of weak ferromagnet-
ism first proposed by Dzialoshinski. It is no longer a
phenomenological model but is a real effect established
theoretically. Though there may be some impurity
effects (chemical or structural), this mechanism always
exists as an intrinsic property of the crystal.

At present we have many weak ferromagnets and we
know two types of interactions which can be the origin
of weak ferromagnetism. One is a coupling between the
spins such as the antisymmetric part of the anisotropic
superexchange interaction, and the other is the single
spin anisotropy energy. In o-Fe,O; etc., the first
mechanism and in NiF, the second one are the origins
of their weak ferromagnetism. There may be substances
in which both of these types of interactions are im-
portant. Generally speaking, there is a tendency that
when the Néel temperature is high the first type of
interaction is more important and when the Néel
temperature is low, the second mechanism is more
important. This is because the first is approximately
proportional to the exchange interaction while the
second is independent of the exchange interaction.
When the single spin anisotropy energy is comparable
with the exchange energy, as may be possible for some
substances with low Néel temperature, or when (Ag/g)
is not small, the magnetic moment may not necessarily
be small. This may be the case in ludlamite where
Tx=20°K and the magnetic moment is 0.8 up per ion
of divalent iron.X®

The antisymmetric spin coupling treated here is
important not only as an origin of weak ferromagnetism
but also in determining the spin arrangement in
antiferromagnets as was illustrated in the case of
CuCl,- 2H,0.
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APPENDIX

We shall show here an alternative derivation of the
interaction of the form (1.1). We start from the localized
electron orbital states and consider the spin-orbit
coupling as a perturbation. The unperturbed states of
the ions 1 and 2 are specified by (u#,m, ---) and
(n', m’, - ), respectively, » and %’ being their ground
states. The second order perturbation energy bilinear
with respect to the spin-orbit coupling and the exchange
interaction is given as follows:

Em:z((u[)\ll- S1|m)2J (mn'n'n)S:-Se

€n ™ €Em

J‘,’Zf(nn’%'m) (S1-S2) (m|}\ll-S1|n))
€n— €m

+z,((n’ [Nle- S| m")2T (m/nnn’) (S1- S2)

€n' — Em?

27 (W'nnm’) (S1-Ss) (m’ | Ny~ Sz | )
+ ) @
€n' — Emt

where J’s are the exchange integrals given by (2.9) in
the text. When the orbital state is nondegenerate, the
matrix elements of 1 are purely imaginary and we can
rewrite (A.1) as follows:

J (nn'n'm)
Ey2=2)\ 2. _ (n|Li[m)-[Ss, (S1-S2)]
J (nn'm'n)
FAL —————[L|m)-[Ss, (5+-S)]

1,7 l]_
_21_)\(Z](nnnm)(n| [ )
J (no’m'n) (' | 12| m”)

-2 )‘[S1><Szj. (A.2)

m’ €n’ — €’

This is equivalent to (2.8). If we replace J(nn'm'n)
by the effective superexchange integral: d,ubmn/U,
etc., we get the expression equivalent to (2.4b) and
(2.5).

Though this derivation is more elementary, the one
given in the text is superior for the systematic study
of the anisotropic superexchange interaction.

Note added in proof —It has been shown by Professor
K. W. H. Stevens [ Revs. Modern Phys. 25, 166 (1953)]
that there can exist anisotropic terms of the exchange
interaction which are linear in the spin-orbit coupling.



