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one or two moments of the line, and not the detailed
shape. It is dificult to include the eGect of the trans-
verse radiation Geld in this method. Our approach is in
some respects more fundamental than either of these, as
we attempt to directly construct stationary states of the
whole system consisting of Geld and matter. There is no
ambiguity in the dehnition of states, and radiative
processes on the energy shell are taken into account in
all orders. The main new physical eGect is the frequency
dependence of the damping term in the resonance

denominator, which is easily overlooked in the above
two methods.
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Roothaan's open-shell self-consistent 6eld theory is extended in such a way that it can cover a number
of important classes of atomic and molecular states which are not included in the range of applicability
originally claimed.

L INTRODUCTION
' 'N a recent paper' Roothaan described a new self-
' ~ consistent 6eld (SCF) theory for electronic systems
which can accommodate open shells as well as the closed
shells. However, his paper made a rather modest claim
on the range of applicability. The purpose of the present
paper is to extend the applicability of the theory in such
a way that it includes a number of open-shell cases of
practical importance which are not accommodated in
the original form of Roothaan's scheme.

The relevant points of Roothaan's open-shell SCF
theory are as follows. It is stated that the scheme is of
practical value if the total energy can be represented

by the following equation:

E=2 Ps Hs+Z~t(2At —K~t)

+f)2+„H +fQ„(2aJ „IpK „)—
+2+t, (2A —K~ )j. (1)

This is the expectation value of the total Hamiltonian
(in a.u.),

X=+„Ho+-', p„&„(1/ro") (2).

H& is the nuclear Geld plus kinetic energy operator for
the pth electron, and r~" the distance between the pth
and the t th electron. In Eq. (1), H;, J;s, and Kcs are
dehned as usual by using Dirac's notation:

H;=(q, lH l y, ),

K' =(~,IK, I v;)=(v, lK'I vt),
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where

I,"y = J~(p;" p;"(1/r&")dV" y'

e'"v "(1/r"")dV" v, .

Fc=H+2Jc Kc+2Jo Ko+2crLo—PMo, — —
Fo=H+2Jc —Kc+2aJo bKo+2otLc —P3fc, —
~= (1—&)/(1 —f),
& = (1—&)/(1 —f)

(6)

J; and E; are commonly called the Coulomb and ex-
change operators, respectively, associated with the
orbital q;. In referring to the individual orbitals, the
indices k, l are used for the closed-shell orbitals and m, n
for the open-shell orbitals in Eq. (1). a, b, and f are
numerical constants depending on the speciac case. The
erst two sums in Eq. (1) represent the closed-shell

energy, the next two sums the open-shell energy, and
the last sum the interaction energy of the closed and
open shell. The number f is, in general, the fractional
occupation of the open shell, that is, it is equal to the
number of occupied open-shell spin orbitals divided by
the number of available open-shell spin orbitals. The
numbers a and b dier for diGerent states of the same
con Gguration.

Two alternative formulations of the SCF problem are
given in Roothaan's paper. ' The erst is the following
set of equations:

~Calx —gJ PI,

~Oem =gmPm, )

where
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Tknz E I. CoeKcients for the configurations sp+ of atoms S(f=1/2, a=b=0, n=p~ 2), p+(f', a',b',a',p').

Canfig.

$p2

SP

SP4

State

gp 0

gpO

4p
2g)
2S
Qp

'S'
3g) O

3p0
ID 0

'S'
1pO

4p
2D
'S
2p

3p0
'P'

1/6

1/3

1/2

2/3

5/6

a'

3/4
9/20
0

3/4

1
4/5
2/3
4/5

1
2/3

15/16
69/80
3/4

15/16

24/25

0

3/2—3/10—3
3/2

2
4/5

4/5
2
0

9/8
27/40

0
9/8

24/25

3/8
33/40

3/2
3/8

0
2/5
2/3
2/5
0

2/3

3/16
33/80
3/4
3/16

6/25

6/5

—3/4
39/20

6—3/4

—2
2/5
2

2/5—2
2

—3/8
39/40

3—3/8

6/25

2ff'Zm~ l~m

~(s,p) &(s,p)

—2—1

1

—3—2—2
0
1
0

3—2—2
0

—3

The second is a more elegant scheme in which the closed
and open-shell orbitals are solutions of the same eigen-
value equation:

~pi= &ihip

where

F H+ 2Jr Er+ 2n (Lr—Jc)—P (Mr —Ec). (9)

The definitions of various operators in (6) and (9) are
listed below.

Jc=Zk Jk,

Jo=fZ J,
Jr =&c+J'o,

Ec Zk Ek)

Eo=fZ E,
Er Ec+Eo, ——

L;v= (v; I ~ol v )v,+(~, I ~&jck;,

M, v=(v;IEcl v»v;+(v, l v»Ecv;,

LC Zk Lk&

Lo=f 2
Lr =Lc+Lo,

M'c=Qk Mk,

Mo= fQ
Mr Mc+Mo. ——

Roothaan's theory as it stands covers a number of
important cases but unfortunately the electron con6gu-
rations with two (or more) open shells drop out of the
range of applicability, with one important exception.
This exception is the case in which the open shell consists
of singly occupied, complete degenerate sets of orbitals,

and all the spins are parallel. Examples of atomic states in
this class are C 1s'2s2P'& 'S& Cr 1s'2s'2P'3s'3P 4s3d', rS.
A general molecular example is the lowest excited triplet
of a molecule with a closed-shell ground state, the
excitation being from a nondegenerate to a nondegener-
ate orbital.

II. EXTENSION OF ROOTHAAN'S SCF THEORY

It is, however, not necessary to restrict ourselves
within the form of the energy expression given by
Eq. (1). Consider the following formula for the total
energy which includes (1) as a special case:

&=2 Pk &k+2 Pk &k +Zkl(2Jki —Ekt)

+ski (2Jki —Ekg )+Qk i(2Jk i
—Ek i)

+Qk i (2&k i Ek i )+fP—2 II
+fQ„„(2' bK „)+2+—k„(2Jk —Ek )
+2 Z k (2A —Ek )$+f'L2 Z ~ & ~

+f' Q„.(2a'J ~ —b'E„;)
+2&k (2A —Ek )+22k (2A —Ek )j

+2ff'Q „I„. (13)

The indices k,l refer to the 6rst group of closed shells
with a corresponding set of orbitals {yk},h', l' to the
second group of closed shells with {yk }, m, n to the
first open shell with {& }and

finally

', n' to the second
open shell with {y }.The most essential condition is
that these two open shells should belong to different sym-
metries. More precisely, the orbital {&p } and {&p

should belong to different symmetry species. A possible
way out of this restriction will be discussed in the fourth
section of the present paper. The reason for dividing the
whole closed shell family into two groups will soon be-
come clear. In Eq. (13) all sums except the last one
hardly need explanation, Eq. (13) being a straight-
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Con6g. State f'
2ff' Z ~ I

p' J(a,e) E(a,e)

3rr
'lI

1/4 0 0 4/3 4/3

0+ 4Z 1/2
2Q
2g+
z

1 2
1/2 0
0 —2

1/2 1

0 —2
1 2
2 6

0

—2—1—1
1

TAB&K II. CoefBcients for the con6gurations e~& of linear
moleculea, 0 (f~1/2, a=b~0, a~P=2), e+(f',a', b',a',P'). Keeping this kind of grouping in mind, we recast

Eq. (13) into the following form:

&=2 Qk(&k+hck)+2k~(2Ai —Eki)
+ftt2 P„(H„+ho„)+fP (2aJ' —bE .)
+2&k (2A —Ek )]+22k&k
+2k l (2A v —Ek v)+f'L2 r,-&-
+f' P„„(2a'J ~ —b'E„ )

+2 Qk (2A —Ek )j, (14)

02' 3 3II
err

3/4 8/9 8/9 4/9 4/9
3 0

hck=gv(2Ai —Eki)+f'2 (2A —Ek )
(15)

ho =Xi (2J r Ev)—+f'2 'I
forward generalization of Eq. (1). We have two open
shells here and so we need two sets of parameters f, a,
b, and f', a', b'. The last term Zff' P ~ I represents
the interaction between the two open shells. In some cases
it is expressed with familiar J;, and E;; integrals, but
in some other cases it is not. See Tables I, II, and III.

It is necessary to divide the whole family of closed
shells into two groups. The erst group {yk} contains
all the closed shell orbitals which have the same sym-
metry property as that of the first open-shell orbitals

{p };the second group {qk } contains all the closed-
shell orbitals which have the same symmetry property
as that of the second open-shell orbitals {p }.If there
are remaining closed-shell orbitals of symmetry species
different from both {q } and {q }, these closed
shells can be grouped either within the first group
or within the second one. For example, suppose we have
to deal with the following electronic configuration.
1s'2s'2p'3s'3p'3d"4s4p (1&cV~&5). It is possible to
divide it in the following two alternative ways:

(I) 1s' 2s2 3s' 3d'0, 4s 2p' 3p' 4pn.

(II) 1s', 2s', 3s', 4s; 2P', 3P', 3d" 4Pn

Or alternatively,

&=2 Qk (&k+hck ')+2k v(2A« —Ek ~ )
+f'E2 Z. (a.+ho. ')
+f' Q„„(2a'J ~ b'E —„)
+2 Zk'na'(2~k'm' Ek'm')$

+2 Zk&k+Zki(2%i Eu)—
+f(2+„H„+fP„„(2aJ „bE„„)—

+2 Zk (2A —Ek )j, (16)
where

hck '= Zi(2 Jk i Ek ~)+—fZ (2A Ek ), —
(17)

ho =Zr(2J i E))+f—g I
Application of the variational principle to Eq. (14)

Lor to Eq. (16)$ will yield the SCF equations for the
orbitals. Instead of varying all the orbitals simultane-

ously, we proceed in the following way. Assume that we
have a reasonable starting approximation for the or-
bitals {cpk }and {p }.Now apply the variational prin-
ciple to Eq. (14) by varying the orbitals {pk} and {q }
(the erst group) only with {pk. }and {p }held axed.
This is permissible because the orthogonality conditions
between {&pk,q } and {q»., p .} are always secured.

TAM.E III. CoeScients for the con6gurations m. 3mp~ of linear molecules
n„'(f=3/4, u=b=8/9, a=P=4/9) m ~(f' a' b' a' P').

Condg. State
2ff Zmm' 1wgm~

J(m„+p.g+) E(m„+p.g ) E(w +pg+) (n,.+n.„+~wg ng ).
7l Q 7Pp

3

7f Q, Ãp3 2

+ +
'z
1g +
lg—
3Q
lg

4O„
2rr„

1/2
0

1/2

2—2
0

4/3 4/3

—2
6
2

—1—1—1—1—1
1

—2—1—2

1—1
1
0
0

Ã~ Ãp
3 3 'z+

'z
lg +
ly, —

3/4 8/9 8/9 4/9 4/9 ~ 3—3—1—1—2

1

1

0
0
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hc~= &yaI hcI v s&,

hg ——&q„IhgIp ),
h=he —ho,

hca'=&q~ Ihc'I qa &,

hg '=
&y Ihg'I q

h'= ha'-ho',

~'~= &v'I hI ~&&*+&a'I ~&he*,

&''v =&a'Ih'I v)v'+&v'I v &h'v',

~c=Qz: ~z:,

Ag= fQ
~r =&c+&g,

~c'=pa ~~,

(18)

(18')

(19)

(19')

The orbitals {pz, ) and. (y„) being fixed, the last five
sums in Eq. (14) drop out from the expression for 8E.
This means that the expression for bB assumes essen-
tially the same form as that derived from Eq. (1) as far
as the present variation is concerned, with some modifi-
cation only in the one-electron part of the energy as
indicated in (15).

Before applying the variational principle to Eq. (14)
for to (16)j in the way just described, we define the
operators, ht.-, ho, h, 6;, h, ~, Ao, d, ~ and the correspond-
ing ones with prime by

s'=8'+C',
H'= H+ y'{ho' —f'hc'+ 6r'),
G' = 2Jr' Kz '+—2cz'(L r' Jg')—P'(M—r' Kg')—,
~'= (1—g')/(1 —f')
~'= {1-h')/(1-f'),
v'= 1/(1 —f').

(25)

(26)

The operators Jo', Eo', J~', Ep', Lp', Mp' are obtained
by replacing {yq,q„) with (yt, ,q„}in the definitions
of the corresponding operators without prime. The addi-
tional terms p(hg —fhc+d r) or p'(hg' f'hc—'+Dr') may
be regarded as a kind of force field for the electrons in
non6xed orbitals due to the electrons in 6xed orbitals.

The following is a summary of the self-consistent
field procedure:

(I) Fix (yz, y }.Determine (pz, , &p }from Eq. (21).
(II) Fix {&pk,y ) as obtained above. Determine a

new set of (yz, p .) from Eq. (24).
{III) Fix {p~, y„) as obtained above. Determine a

new set of (qq, y ) from Eq. (21).
(IV) Continue the above procedure until the cycle

produces no appreciable changes in a11 the orbitals
(v„v ) and(v, ,v„).

(V) With thus determined orbitals ( yq, y ) and
(y~, y ) calculate the total energy from the full ex-
pression. (13) or (14) or (15).

Ag =f'Q
hr'= Ac'+kg'.

(20')
III. APPLICABILITY

A close relationship between (19), (19'), (20), (20'),
and (11), (12) is evident and the derivation of the SCF
equations closely parallels the derivation of the SCF
equations (5) and (8), which are described in detail in
Sec. 2 of Roothaan's paper. ' Ke restrict ourselves here
to writing down the results and only for the scheme
employing the combined Hartree-Pock Hamiltonian:

(21)

where

E=H+6,
H =H+y(hg fhcy&r), —
a=2Jr —Kz+2cz(Lr Jg) P(Mr Kg),

(22) J(.;,;)= I;(1).—,(2) (1/" ).;(1);(2)««

The iterative procedure described in the previous
section is directly applicable to electron configurations
which have two open shells of different symmetries.
Three tables presented in this paper constitute useful
supplements of Tables I and II of Roothaan's paper. '
It is to be noted that these tables cover only a part of
the applicable range of the procedure proposed here.

Table I (sp~, I &~ zV &&5).This table is a supplement to
Table II of Roothaan's paper. ' Kith these two tables
one can now cover all atomic states arising from dis-
tributing the electrons in all possible ways over the s
and p atomic orbitals. Here and in the following,

~= (1—g)/(1 —f),
0= (1—h)/(1 —f),
v= 1/(1 —f).

(23)
= "0'(1)~'(1) (1/~") Pz(2) ~ (2)&I"dl",

(27)

This is the equation for ( yz, , &p ) and a generalization of K(&' &z) =
J

Eq. (8) with (9). The corresponding equation for
{v~,p )»

(24)
~'(1) v z(1) (1/~") e»(2) v '(2)~l"d I".

(28)
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J(m+p+) =J(m-p —
) = J(m+,~-) =J(~—p.+),

E(m+p+) =E(vr-p=),
E (m+, 7r-) =E(~—p.+).

(29)

As is seen in Table III, SZ states contain the integral
(~„+s.+I~, x, ) which is not expressible with the J
and E integrals:

(v'v'I ~, v;)

'

q, (1)p, (2) (1/r»)(p. (1)(p, (2)dP'dP'

=
) p'(1) ~"(1)(1/r") e (2) p (2)di"dl"

(30)

Note that

(31)

It seems sensible to examine a little more closely
the structure of the interaction between two open
shells 2ff' g ~ I by- taking an example from
Table III. The table gives the following expression for
2ff'P „I „of the ~„'~,''Q„+ state:

9J(~„+,~,+) 3E(~ +,~;)—
—3E(n. +p.g+)+(7r +m„+Iong-~g-).

This can be rewritten in the following way by using

If we denote the three components of the p orbital by
py p2 and p3

J(s p) =J(s p~)= J(s p2) =J(s ps)

E(s,p) =E(s,p,) =E(s,p2) =E(s,p3).

For example, in the case of the sp' 'P state we see that

2ff'Q „, I =2J(s,p)+E(s,p)
=2(1/2) (1/3)I {2J(s,pq)+E(s, p~))

+{2J(s,p2)+E(s„p2))
+{2J(s,p )+E(s,p ))j.

Table II (oar~, 1~&X~&3). This table, together with
the next table, is a supplement to Table I of Roothaan's

paper. ' The x molecular orbital has two degenerate
components. (See comments to Table III). With this
table one can treat several important electronic states
of molecules, for example, E2 30,1m;, 'H, and 'lI, .

Table III (~ 3~,~, 1&~ X&~3). In this table m+ and m

are the molecular orbitals with the component of angu-
lar momentum +1 and —1, respectively, along the
molecular axis. There are several identity relations
among integrals over m molecular orbitals:

(29) and (31);

(9/4) J(~„+,m,+)—(3/2) E(~„+,~,+)

+ (1/2) (~ +or +
I
~g+&0+)

+ (9/4) J(~ +p,—)—(3/2)E(m +p;—)
+(1/2) ( -+ -'I . . )

+ (9/4) J(~„—,~,+) —(3/2) E(~„—p,+)

+ (1/2) (7r
—~ —

I 7r,+~,+)

+(9/4) J( p; )—(3/2)E(7r, , )
+ (1/2) (vr

—
m „—

I m,-w,-).
This means that

I =2J'(m, m') —(4/3)E(m, m')+ (4/9) (mm I
m'm').

Generally speaking, however, it is not necessary that
all I 's have the same functional form as it is in the
above example. They may all be diferent from one
another.

It is hoped that the SCF wave functions will be
worked out for the lower lying electronic energy levels
of N2, 02+ and 02 molecules arising from the configura-
tions listed in Table III.

IV. POSSIBLE EXTENSIONS OF THE
APPLICABILITY

With additional elaborations described in the pre-
ceding sections Roothaan's open-shell SCF theory now
covers electron configurations which have two open
shells of digerertt symmetry. Generally speaking, how-
ever, if we have two open shells of the same symmetry,
the scheme is not directly applicable. Here we describe
briefly a possible scheme to include such cases, taking
the 1s'2s'2p3p configuration of an atom as an illustrative
example. This electronic configuration yields 'P, 'D,
'5, 'P, 'D, and 'S states. On the other hand, the lower
lying configuration 1s'2s'2p' yields the lowest 'P, 'D,
and '5 states and so the straightforward variational
treatment is applicable only to the erst three states,
'P, 'D, and 'S. YVe choose the 'P state. Now we start
with the application of the LCAO form of Roothaan's
theory to the 1s'2s'2p' 'P state which is described in
Sec. IV of Roothaan's paper. ' In general, we expect that
the SCF orbitals can be expressed with sufhcient ac-
curacy in terms of a given set of suitable basis func-
tions X„q .

pea Zy XykaCxyi

Here P refers to the irreducible representation, or sym-
metry species; 0. refers to the subspecies, that is, it
labels the individual members of the degenerate set that
transform according to the representation X; and i is a
numbering index which labels orbitals which cannot be
distinguished by symmetry any more. The notation iP n
is analogous to the familiar elm in atomic spectra. Now
focus our attention on the p orbitals. First, we may drop
the subscript ). Second, we may group together three
degenerate functions (n; m=+1, 0, —1) and simply
write x~~ ~ or q;~ ), which actually represents three
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functions. For the 2p' configuration we need only one

q & &
for the 2p orbital. But if the subscript p of the basis

functions x„( ) runs, say, from 1 to n, we are supplied
with a set of orbitals y;( ) where' also runs from 1 to e
and the usual procedure is that we pick up one orbital
p;( ) which corresponds to the lowest "orbital energy. "
It is important to note that the set of orbitals (y;& &)

spans the same functional space as the one spanned by
the original set lg„& &} and each member of the new
set q;( ) is orthogonal to one another. Taking advantage
of this property we can treat the 1ss2s'2p3p 'P state in
the following way.

(I) Apply Roothaan's SCF scheme to the 1s'2s'2p' 'P
state. It gives a set of orthogonal functions for the p
orbitals;

where

&t I()) &2(rr)1
' ' '

7 && ~(rr)7

0'~&a& = Q &fr&a&'Cpi.
y=l

I I~'( )
= ~ Nn( )C~' ~

p=2

Here ps& &' is the first approximation for the 3p orbital.

Suppose that the above sequence is in the order of
ascending "orbital energy. " Thus p1( ) is taken for the
2p orbital.

(II) Now we consider the is'2s'2p3p 'P state. Repre-
sent the 2p orbital by pi& &

and keep it fixed. Apply the
SCF procedures described in the present paper to
1s'2s'3p by using ps& &, ps& &, , q & &

as a new set of
basis functions for the 3p orbital. Thus we get

I
&2(cr) ) 9 3(r&f) )

' ')
&I rt(o) )

Notice that these functions are all guaranteed to be
orthogonal to the fixed 2p orbital pi& &.

(III) Represent the 3p orbital by ps& &' and keep it
axed. Use y1( ), q3( )', q4( )', ~ ., q„( )' as anew set of
basis functions for the 2p orbital. Thus we get

1 lf /1 I/
&1(&) ) &3(cr) ) &4(rx) 7

' ' '~ &&(rr) )

where &&i&~&' is the second approximation for the 2p
orbital.

(IV) Represent the 2p orbital by pi& &' and keep it
6xed. Use q2( )', y3( )", , y„( )" as a new set of
basis functions for the 3p orbital.

(V) Continue the above procedures until self-con-
sistency is attained.

It should be admitted that the procedure described
above is not at all simple and the convergence property
of the whole process is not very clear mathematically.
In some favorable cases, however, it could be of practical
value because the number of necessary basis functions
n is expected to be rather small in most cases.

V. CONCLUSION

It has been shown that with some additional elabora-
tions Roothaan's SCF theory covers almost all the elec-
tronic con6gurations of atoms and molecules which are
of immediate importance. It is easy to extend formalLy
the SCF procedure described in the present paper in
such a way that some classes of three, four or more
open shells can be accommodated but it hardly seems
worthwhile to make such a formal extension.
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X-Electron Capture Branch of Sr""f
A. W. SUNYAR AND M. GOLDHABER

Brookhaven National Laboratory, Upton, Xem York

(Received June 29, 1960)

The existence of a (0.65&0.25)% E-electron capture branch in the decay of 2.8-hr Sr8™has been estab-
lished by means of an "internal source" technique. The low log ft =4.25 and small energy release of 115 kev
make this E branch especially interesting because it establishes Rb" as a possible low-threshold detector
for the inverse neutrino capture reaction, Rb '+v ~ Sr8™+e,which could be identified by observing the
characteristic decay of the Sr 7 isomer.

HE 2.8-hr Sr87™isomer decays by an 3f4 transition
of 388 kev to the Sr" ground state. Ke find that

it also decays by a previously undetected E-electron
capture branch to Rbsr. From the measured ff value

(This work was performed under the auspices of the U. S.
Atomic Energy Commission.

we can calculate the rate of the inverse reaction and
thus judge the potential usefulness of Rb" as a low-
energy neutrino detector.

In Srs™,the 49th neutron is in a Pf state, while in the
ground state it is in a g9L2 state. Long-lived Rb"
(4=6X10"yr) decays to Sr" by P emission, with a


