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Thexxxxal Expansion of Aluminum at Low Temperatures
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The pressure of the electron gas gives rise to a contribution to the thermal expansion of inetals proportional
to the dilatational strain derivative of the electronic specific heat. It appears from the strain dependence
of the superconducting phase boundary that the electronic specific heat of aluminum is extremely sensitive
to dilatation. This would explain why the thermal expansion of aluminum between 20' and 30'K is much
larger than expected from the Gruneisen theory. I'he extreme sensitivity of the electronic specific heat to
strain is not inconsistent with the zone structure of aluminum.

I. ELECTRONIC THERMAL EXPANSION

" 'T was pointed out by Mikura' that the volume
~ ~ dependence of the energy of the electron gas can
lead to a contribution of the thermal expansion of
metals of the form

(dh/dT). = (1/kV)gC„

where 6 is the dilatation, V the volume, k the bulk
modulus, C, the electronic specific heat, and g is a
numerical constant. This contribution is additional to
that arising from the lattice anharmonicity and pro-
portional to the lattice specific heat C„namely

(dA/d T),= (1/k V)yC„ (2)

where p is the Gruneisen constant. Since generally C,
is much smaller than C„ the electronic thermal ex-
pansion is relatively small; only at low temperatures,
where C, and C, are comparable, can we expect this
term to be appreciable. One should then observe that
the thermal expansion at very low temperatures does
not vary with T as rapidly as indicated by (2), but
decreases more slowly, tending to a variation linear with
T. In general (1) should be comparable to (2) only at
liquid helium temperatures, where the thermal ex-
pansion is already very small and its measurement
exceedingly difficult. The possibility of observing this
electronic contribution should be somewhat more
favorable in transition metals which have a large value
of C,.

Essentially the same conclusions were drawn by
Visvanathan' and later by Varley, 4 each of these authors
being apparently unaware of the preceding work.

The treatment of Mikura and of Visvanathan is not
sufFiciently general, since they did not consider the
possibility of a variation of the density of states with
dilatation. ' Hence these expressions for the coefficient

g in (1) are not reliable, though in the case of free
electrons they obtain correctly g=-', .

Varley derived a relation between (dA/dT), and the

' Z. Mikura, Proc. Phys. Math, Soc. Japan 23, 309 (1941).
2 E. Griineisen, Ann. Physik 39, 257 (1912).' S. Visvanathan, Phys. Rev. 81, 626 {1951).
4 J. H. O. Varley, Proc. Roy. Soc. (London) A237, 413 (1956).' Visvanathan's treatment contains a further error.

strain dependence of the electronic specific heat es-
sentially as follows:

The free energy of a solid of volume U may be
written as

F= ,'Vkh'+F-g(A, T)+F,(A, T), (3)

where Ii „P,are the contributions of the electrons and
of the lattice to the free energy, except that the com-
ponents of P, and Ii, which depend on 6 without de-
pending on T are already incorporated into the first
term. DiGerentiating with respect to 6 and equating
to zero, we obtain equilibrium values of 6, additively
composed of d, and 6,. The latter leads to the Grun-
eisen thermal expansion (2), the former becomes

(4)

where p, = —(BF,/BV)r is the pressure of the electron
gas. The electronic dilatation d, thus arises from this
pressure of the electron gas, which tends to expand the
metal against the restoring elastic forces. Now in general

k(da/dT) = (ap/aT)v,

and since Ii. is a perfect differential

(Bp,/BT) v (BS,/BV) r, ——

where S, is the entropy of the electrons. Furthermore,
in the case of a degenerate electron gas S,~ T, so that
C,=S,.Hence the electronic contribution to the thermal
expansion becomes

(da/d T),= (1/kV) (aC,/aa) „(7)
so that the coeKcient g in (1) is the logarithmic de-
rivative of C, with respect to volume, i.e.,

II. STRAIN DEPENDENCE OF THE ELECTRONIC
SPECIFIC HEAT OF SUPERCONDUCTORS

While it is possible in principle to determine the
logarithmic derivative (8) directly from measurements
of the specific heat as a function of pressure, such
measurements are difFicult and have not yet been done.
In the case of superconductors, however, one can deduce
the normal-state electronic specific heat from the tem-
perature dependence of the magnetic threshold curve
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at lowest temperatures. Olsen' has determined the
electronic specific heat in this way as a function of
pressure, and deduced the logarithmic derivative (8),
for aluminum. He found the surprisingly large value of
g = 130&60.

Another method of determining g is through the
change in volume 6V of the metal when passing from the
normal to the superconducting state, as discussed by
Olsen and Rohrer. ' Since in the superconducting state
C,/T vanishes in the limit of lowest T, d(oV)/dT in
this limit is a measure of the electronic thermal ex-
pansion in the normal state and hence, by (7), of g.
Values of g of a number of superconductors have thus
been deduced. ' ' These are generally of order unity,
but for mercury g +10 while for tantalum g

—40.
In the case of aluminum g could not be determined in
this way to any accuracy, but there were indications
that it is large and positive. '

III. LOW-TEMPERATURE THERMAL
EXPANSION OF ALUMINUM

If the logarithmic derivative g is indeed as large as
suggested by Olsen's measurements, then the electronic
contribution of thermal expansion should be detectable
with available techniques. Figgins, Jones, and Riley
have measured the lattice spacing of aluminum by
x-ray diGraction at 20'K, 32'K, and at a number of
higher temperatures up to room temperature. The
average thermal expansion between 20 and 32'K was
found to be

(dA/dT)26 3X10 'deg '

and about twice as much in the interval from 32' to

The Griineisen expression (2) for the thermal ex-
pansion would yield a value of

(d&/dT)2s —1X10 ' deg ', (1o)

if we use a value of y=2.2, which fits the thermal
expansion data at high temperatures. We have used
here a value of k=7.7X10" dynes/cm' and C26 ——4.5
X10' ergs/deg cm'. This would indicate an electronic
contribution to the thermal expansion of

(dA/dT), ,26~2X10 ' deg ' (11)

furthermore this separation into terms proportional to
T and T3, respectively, also fits the expansion in the
interval from 32' to 44'K.

It is, of course, also possible to explain the large
thermal expansion at low temperatures not in terms of

6 J. L. Olsen, Helv. Phys. Acta 32, 310 (1959).
J. L. Olsen and H. Rohrer, Helv. Phys. Acta BO, 49 (1957).' H. Rohrer, Helv. Phys. Acta 32, 312 (1959).' B.F. Figgins, G. O. Jones, and D. P. Riley, Phil, Mag. 1, 747

(1956).

an electronic contribution, but in terms of a rapid
increase of & as T is decreased. It is, however, unlikely
that y should increase so rapidly and reach a value of
6 at lowest temperatures, particularly as the theoretical
treatment of Barron" predicts a much smaller variation
of p, and actually a decrease at low temperatures.

The value of (dD/dT), of (11) would require a value
of g +40. This is somewhat smaller than the value
deduced by Olsen, but it must be remembered that
there are considerable uncertainties associated with
both estimates. Nevertheless, one can conclude with
some confidence that for aluminum g is much larger
than unity, and is positive.

The extreme sensitivity to volume change of the
electronic specific heat of aluminum, although at first
sight surprising, is not inconsistent with Harrison s
model of the electronic band structure. " The sphere
containing three electrons per atom, transformed into
reduced k space, extends into three zones. The Fermi
surface is close to the zone boundary almost everywhere;
the small pockets of the electrons in the highest zone
are probably eliminated by the crystalline field. Since
the Fermi surface is close to the zone boundary one
would expect the density of states to be sensitive to
small perturbations. It is of interest that in the case of
lead, where the Fermi surface is generally further
removed from the zone boundaries, the logarithmic
derivative g is much smaller. '

The absence of an abnormal pressure dependence of
the room-temperature electrical conductivity is not
easily reconciled to the high value of g. It is, however,
possible that different groups of electrons contribute
mainly to the electrical conductivity and to the strain-
sensitive fraction of the specific heat.

It would be very interesting to know the variation
of C, and of g of aluminum alloys with electron
concentration.

Finally one should remember that the separation of
the specific heat into an electronic and a lattice term
may not be justified in cases when the Fermi surface
lies close to a zone boundary. " For purposes of the
present argument, however, it is sufhcient that there
should be a component of specific heat linear in T,
irrespective of its origin, and that this component
should be volume sensitive. Note added je proof. Dr.
G. K. White, National Standards Laboratory, Sydney,
Australia has measured the thermal expansion of
aluminum from 7' to 20'K, using a sensitive capaci-
tance method. His results indicate an electronic thermal
expansion smaller than that of (11)by a factor of about
8, and a corresponding reduction in g. I am grateful to
Dr. White for his permission to quote these results.

'0 T. H. K. Barron, Phil. Mag. 46, 720 (1955).
"W. A. Harrison, Phys. Rev. 116, 555 {1959).
"H. Jones, Proc. Roy. Soc. (London) A240, 321 (1957).


