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Vacancy-Vacancy Interaction in Copper
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The binding energy of two vacancies in a static lattice as a function of their separation and the positions
of their displaced neighboring atoms has been calculated using a Morse potential function model for copper.
It was found that two vacancies attract one another at separation less than about 7 A. At separations greater
than 7 A the vacancies do not interact appreciably. The most stable separation was found to be the first-
nearest-neighbor separation or the divacancy con6guration, for which the binding energy was found to be
0.64 ev. Based on these calculations, it is shown that third-stage annealing in irradiated copper may be
accounted for by divacancy migration. The role of the divacancy in copper self-diffusion is also explained.

INTRODUCTION

A NUMBER of solid-state phenomena, such as void
formation and radiation damage annealing, are

concerned with the interactions of lattice defects with
one another. The vacancy-vacancy interaction in a
static lattice, because of its simplicity, is the object of
study in this paper. Both the energy of interaction of
two vacancies as a function of their separation and the
positions of their displaced neighboring atoms have been
calculated using a Morse potential function model for
copper.

The Morse crystal employed consists of a 20X 20)& 20-
atom face-centered cubic lattice, which is equivalent to
an infinite lattice for calculations performed on defects
located near the center.

The energy of interaction, C;,, between two isolated
atoms, i and j, as a function of their separation, r,„is
given by the Morse potential function as

where D is the dissociation energy of the pair, ro is the
equilibrium separation, and o. is a constant.

The energy of interaction of one atom i with every
other atom j in the lattice is
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To facilitate the calculation of interaction eoergies
between two atoms neither of which is at the origin of
the coordinate system, the origin is translated through
a vector 51, 82, 63. If the following substitutions are made
in Eqs. (1) and (2):

then
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where l@, m;;, and e;; are the position coordinates of
atom j with respect to atom i, and e is the half-cell
lattice spacing.

The energy of cohesion, C, is
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where S is the number of atoms in the crystal.
The values of the Morse function constants used in

this work are
a=1.3588 A '

p =49.11,

D=0.3429 ev.

These values were deduced from the macroscopic prop-
erties of copper. "

CALCULATIONS

The interaction energy, E&, of two vacancies both of
which are on normal lattice sites is given by

+B +NN++DR 2+VR&

where E» is the energy of interaction between two
atoms at the same separation as the two vacancies,
E» is the relaxation energy of the atoms neighboring
the pair, and Eyg is the energy of relaxation of an iso-
lated vacancy. '

For convenience in performing the calculations, the
interaction energy, E&, was calculated for only four
separations: first-, second-, fourth-, and eighth-nearest-
neighbor separations. It was found that at the eighth-
nearest-neighbor separation the vacancies exerted no
appreciable eGect upon each other, and thus calculations
for larger separations were not performed.

The term E» is calculated by means of Eq. (1).The
energy of vacancy relaxation, Ezz, has been calculated
by the authors in a previous publication and shown to

and 'L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687-690
(1959).
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Fzo. 1. Vacancy-vacancy interaction energy versus separation.

be 0.56 ev. ' Equation (4) is used to calculate E-, the
lattice summations being performed on a high-speed
digital computer.

The method used in calculating EDI& is essentially the
same as that used to calculate Eyg. ' First, the atoms
neighboring the pair of vacancies are grouped into sym-
metrical sets. In the vacancy relaxation these sets are
the sets of nearest neighbors. Here, however, where the
symmetry is much lower, the situation is not that
simple. The criteria for placing an atom in a set are that
it should be a certain distance A away from vacancy
number one and a certain distance 8 away from vacancy
number two. The first- and second-nearest neighbors
to each vacancy were shown to be the only atoms
contributing appreciably to the relaxation about the
pair, resulting in eleven sets for the first-nearest-neigh-
bor separation, nine sets for the second-nearest-
neighbor separation, thirteen sets for the fourth-near-
est-neighbor separation, and ten sets for the eighth-
nearest-neighbor separation.

These sets are then displaced, one at a time, along
their relaxation trajectories, and the energy of the
crystal is calculated as a function of these displacements.
%awhile the first set is being displaced, the remaining sets
are held in their original positions. The point of mini-
mum crystal energy is taken to be the equilibrium posi-
tion of the first set to the first approximation. These new
positions of the first set are then substituted for the
original positions, and the second set is displaced in a
similar manner. This process is continued until all the
sets have been displaced. Then, because of the displace-
ment of the second and succeeding sets, the equilibrium
position of the first set has been disturbed, and therefore
the entire sequance must be repeated until further cal-
culations yield no new results.

The order in which the sets are displaced is based
upon the estimated amount of relaxation, the set re-
laxing the most being displaced first. It should also be
noted that the original positions of the atoms neighbor-
ing the vacancies are the positions of relaxed neighbors
about an isolated vacancy. '

The relaxation trajectories can be described as
follows: The atoms are first allowed to relax radially
toward or away from vacancy number one. Then, using
the newly calculated positions as original positions, the
atoms are allowed to relax radially toward or away
from vacancy number two. This process is repeated,
switching from vacancy number one to vacancy number
two and back again until equilibrium is reached. This,
then, is the final equilibrium configuration about a pair
of vacancies.

The energy of the crystal after relaxation is then sub-
tracted from the energy of the crystal before relaxation
to give the relaxation energy of the vacancy pair. The
relaxation energy is then combined with E~~ and EyI~
in Eq. (5) to obtain the interaction energy F".

RESULTS

The interaction energy of two vacancies as a function
of their separation is shown in Fig. 1. The points on the
solid curve are the values calculated in this paper. The
dotted curve is a Morse potential function which repre-
sents the interaction of two vacancies when no relaxa-
tion occurs, that is, when Eyg ——EDR ——0.

It should be noted, however, that the only points that.
are meaningful on these curves are the points at the
diGerent lattice neighbor separations. Between each of
these points there is an energy barrier, over which the
vacancy can travel only if it has the required activation
energy.

The most stable separation for the two vacancies is
the first-nearest-neighbor separation called the di-
vacancy configuration with a binding energy of 0.64 ev.
This is slightly above the range of values obtained by
Bartlett and Dienes. 4 Using a bond-counting technique
they arrived at the limiting values of 0.23 ev and 0.59 ev.

Table I gives the positions of the atoms around the
vacancies before and after relaxation. The first set of
coordinates in each group is the set of coordinates of a
typical atom of the group in its normal lattice position.
The second set of coordinates in each group is the posi-
tion of the atom in its final relaxed position. The origin
of the coordinate system is placed midway between the
two vacancies in all four cases. The coordinates of the
vacancies are given in the table.

For purposes of computation the atoms neighboring
the vacancies were divided into sets as described pre-
viously. However, inspection of the final configuration
shows that because of the mirror symmetry existing
between the two vacancies, many of these sets are
equivalent, thus reducing the total number of sets by

' S. H. Bartlett and G. J.Dienes, Phys. Rev. 89, 848—852 (1953).
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almost a factor of two. The grouping in Table I reQects
the fact that many of the sets previously used are
equivalent.

By comparison of the results of the eighth-nearest-
neighbor separation calculations with the calculations
performed for a single vacancy, it can be seen that the
configuration about two vacancies of eighth-nearest-
neighbor separation is very ~early the same as the con-
figuration about two isolated vacancies.

The constants in the 'Morse function used in this
paper were calculated to reQect the electron distribution
of a perfect crystal. When this function is applied to an
imperfect crystal, some error will probably be intro-
duced because of the electronic redistribution. However,
in these calculations, where a subtractive process is
used to calculate the binding energy, the errors will at
least partially cancel themselves out. Thus, these cal-
culations should give a fairly accurate value of the
binding energy of a divacancy and a reliable picture of
the interaction of two vacancies.

DISCUSSION

It has been suggested by Li and Nowick' that the
divacancy mechanism might be responsible for third-
stage annealing' in deuteron-irradiated copper which
shows an activation energy of 0.69 ev at about
220'K. 7 ' Following this suggestion and noting Over-
hauser's' observation that the third-stage annealing
mechanism is bimolecular, it might be assumed that
the process involves the migration of divacancies to the
less mobile vacancies, which in this case act as sinks
for the divacancies. The combination of a divacancy
with a vacancy would form a trivacancy, which has been
shown to be quite immobile in copper. "

If one then uses the value of 0.69 ev for the energy of
migration of a divacancy in copper, E ~, 1.0 ev for the
energy of formation of a vacancy' Ef, and 0 64 ev for

' C. Y. Li and A. S. Nowick, Phys. Rev. 103, 294 (1956).
G. J. Dienes and G. H. Vineyard, Radiatiom Effects ia Solids

(Interscience Publishers, Inc. , New York, 1957), p. 163.' A. W. Overhauser, Phys. Rev. 91, 448 (1953); Phys. Rev. 94
1551 (1954).' H. G. Cooper, J. S. Koehler, and J. &V. Marx, Phys. Rev. 97,
599 (1955).' R. R. Eggleston, Acta Met. 1, 683 (1953}.

"M. J. Druyvesteyn and J. A. Manintveld, Nature 168, 868
(1951);J. A. Manintveld, Nature 169, 623 (1952).

"A. C. Damask, G. J. Dienes, and V. G. seizer, Phys. Rev.
113, 781 (1959).

"G. Airoldi, G. L. Bacchella, and E. Germagnoli, Phys. Rev.
Letters 2, 145 (1959).

TABJ-K I. Positions of atoms around a pair of vacancies before
and after relaxation at different separations. See text.

First-nearest-neighbor
separation, vacancies
located at ——,', —$,
0, and —',, —,', 0

Group Coordinates

Second-nearest-neigh-
bor separation, va-
cancies located at
1,0, 0, and —1,0, 0

Group Coordinates

0.50
0.46—1.50—1.49—1.50—1,48—1,50—1.48—0.50—0.50

—2.50—2.51

—0.50—0.46
0.50
0.49—0.50—0.50—1.50—1.48—0.50—0.50—0,50—0.50

1.00
0.92
0.0
0.0
1.00
0.9g
0.0
0.0
2.00
2.00
0.0
0.0

1 00
0.0

2 1.00
0.99

3 2.00
1.98

4 1.00
1.02

5 3.00
3.01

1.00 0.0
0.96 0.0
1.00 1.00
0.98 0.98
1.00 0.0
0.97 0.0
2.00 0.0
2.02 0.0
0.0 0.0
0.0 0.0

Fourth-nearest-neighbor
separation, vacancies
located at 1, 0, 1,
and —1, 0, —1

CoordinatesGroup

Eighth-nearest-neigh-
bor separation, va-
cancies located at—2, 0, 0, and 2, 0, 0

CoordinatesGroup

1.00
1.01
0.0
0.03
0.0
0.03
1.00
1.00
1.00
1.00
2.00
1.97
3.00
3.01

0.0 —1.00
0.0 —1.01
1.00 1.00
0.98 1.01
0.0 2.00
0.0 1.99
2.00 1.00
2.01 1.00
1.00 2.00
0.99 1.99
0.0 2.00
0.0 1.97
0.0 1.00
0.0 1.01

1.00 1.00
1.02 0.9g
2.00 1.00
2.00 0.98
2.00 2.00
2.00 2.01
3.00 1.00
2.98 0.98
4.00 0.0
4.01 0.0

0.0
0.0
1.00
0.98
0
0.0
0.0
0.0
0.0
0.0

the binding energy of a divacancy, E&, then the activa-
tion energy for divacancy diGusion, E&D, given by

jVnD =2Ef&—Qn+ g

is calculated to be 2.05 ev.
The activation energies for diGusion for both vacan-

cies and divacancies are thus seen to be equal. This
would explain why, if divacancies contribute to diffu-
sion, no deviation from linearity is seen in experimental
1n D against 1/T curves.

From these calculations, then, one is led to believe
that the divacancy is probably responsible for third-
stage annealing in copper and is also active in the
mechanism of self-diffusion in copper.


