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It is shown that the canonical density matrix in a single-particle
framework may be related directly to the generalized canonical
density matrix, containing the Fermi-Dirac function, and to the
Dirac density matrix.

A study is then made of density matrices in central field

problems. A new differential equation is derived, from the Sloch
equation, for the diagonal element of the canonical density matrix.
In the case of a continuum of energy levels, this is shown to lead

directly to a differential equation for the diagonal element of the
Dirac matrix, that is, the particle density. Free-electron density

matrices are fully worked out and a perturbation theory based on
these free-electron forms is presented.

It is further shown that for a nonspherical potential energy V(x),
the work of Green on the quantum-mechanical partition function
may be utilized to yield a perturbation theory for the Dirac
matrix. In this way, the correct formulation to replace Mott's well-
known first-order approximation for dealing with imperfections in
metals is obtained. A brief discussion of the way in which this
removes qualitatively the difhculties of the Mott treatment is
given and the possibility of direct numerical application in a self-
consistent framework is pointed out.

1. INTRODUCTION

ECENTLY there has been a considerable revival
of interest in the use of the density matrix in

quantum-mechanical many-particle problems. If we

consider a single-particle approximation to the solution
of the many-body problem, then the essential tool is the
matrix introduced long ago by Dirac. ' Only recently
have serious attempts been made to calculate this
quantity directly. ' '

There are, unfortunately, a number of rather severe
practical difhculties associated with the direct calcula-
tion of the Dirac density matrix. Chief among these is
the awkward nature of the idempotency condition, but
other points also are somewhat troublesome. Thus,
while a differential equation may be obtained for the
Dirac density matrix, this determines only very general
properties of the solutions and must be used in con-

junction with a variational principle.
The question naturally arises therefore whether some

alternative formulation may be found, from which the
Dirac density matrix may be obtained, but in which the
calculations are eased by allowing the subsidiary condi-

tions to be relaxed. The purpose of the present work is

to show that the Dirac density matrix is rather directly

related to the canonical density matrix, defined by Eq.
(2.g), and since this latter quantity satisfies the Bloch
equation (2.7) with a well-defined initial condition, it.

seems that a useful alternative approach for the calcula-

tion of the Dirac matrix is now available.

We remark at this stage that the need to develop the

methods described here became apparent as a result of

some earlier work on electronic wave functions around

*We wish to acknowledge that this work was performed under
partial contractual support with the U. S. Army, through its
European Research Ofhce.

' P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
~ R. McWeeny, Proc. Roy. Soc. (London) A235, 496 (1956}.
'N. H. March and W. H. Young, Proc. Phys. Soc. (London) 72

182 (1958}.

imperfections in metals4 and we shall consider therefore
examples particularly relevant to this 6eld.

2. RELATION BETWEEN DIRAC AND CANONICAL
DENSITY MATRICES

We consider the complete set of solutions of the
SchrOdinger equation

(2.1)

and we denote the wave functions and energy levels by
)tl, and E;, respectively. We now form the quantity

where the summation extends over all the energy levels.
It will be convenient to consider the following choices
of co, .

(a) coi= 1)

leading to the usual definition of the canonical density
matrix

1+a(r si))it &T—
leading to the generalized canonical density matrix

g(g—Ei) /k, T

L)(r', r, 1jk T,i ) =Q ,*it(r') t(lr) (2.4).
1+e0'—Ei)/&&

The definition (2.4) contains the Dirac zero-tempera-
ture density matrix p(r', r,f) as a special case, namely

p(r', r f') =limD(r', r, 1/ItT f), (2 5)

where 1 must be determined from the number of occu-

'N. H. March and A. M. Murray, Proc. Roy. Soc. (London)
A256, 400 (1960).
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pied states Ã through the relation Laplace transform of p (r', r,E). The inverse relation can
be written in the form

p(r, r)dr =N. (2.6) r+i,ao 1
e—~EC(r', r,P)dP, (2.13)

2~i ~. ,„pt (r', r,E) =
Now it is well known that the canonical density

matrix satis6es the Bloch equation

—BC/BP=HC; p=1/kT,
where o is chosen such that the integrand has no poles

(2.7) in that part of the complex plane for which R(P) ~&0..

with the initial condition

C(r', r,0) =b(r' —r), (2.8)

and in Eqs. (2.7) and (2.8) is summarized the practical
merit of the canonical matrix: it may be obtained with-
out detailed knowledge of the individual wave functions
and energy levels.

We shall now show directly that knowledge of C
enables the Dirac matrix p and the generalized canonical
matrix D to be found. We introduce the function
Q(r', r,E) defined by

Q(r', r,E) =2'4'*(r')4'(r)&(E —E') (2 9)
Hence

where
C(r', r,P) = exp( —R'/2P)/(2irP) i,

R =(~—~') +(y—y') +(s—") .

(3.1)

In obtaining p, we start from the result'

3. EXAMPLE: A UNIFORM ELECTRON GAS

As a first example of the use of the relation (2.11),and
because the results will later be made the basis of the
perturbation treatment of Sec. 7, let us consider a uni-
form electron gas, neglecting interactions. As Sondheimer
and Wilson' have shown, the Bloch equation (2.7) is
readily solved, subject to the initial condition (2.8) and
the result, in atomic units, is

p(r', r, f') = Q(r', r,E)dE,
0

(2.10) u f a'~ ("e—"
expl ——

l

= ~
- sinu(t)*'dt,

2w~s' ( 4s ~ 0

(3.2)

the Fermi level i being defined such that it lies just
above the highest occupied level. From (2.3) and (2.9) and by differentiating (3.2) with respect to a we find
we have almost immediately

=P "
~l Q(r', r,E)dE e ~edE

0 0

=P,~ p(r', r,E)e e~dE,
0

using (2.10). From (2.4) and (2.9) we have

8 f' g
expl ——

I

4m ls' ( 4s)

oo g
—st

[sina(t) l —a(t) &cosa (t) l]dt. (3.3)
0 71

(2.11) Using (3.3) we obtain directly from (3.1) the result

C(r', r,P)

~ 00

D(r', r,P,i') = Q(r', r,E) dE
J 0 1+ee(& r)— QO

e eEt sina(E): —u(E) l cosa(E) l jdE, (3.4)
2x'R' ~ 0

t (r', r,E)
J 0 gE 1+ee(& r)—

Equations (2.11) and (2.12) reveal immediately that
knowledge of the canonical matrix C is sufhcient to de-
termine both p and D. We shall not consider the gener-
alized canonical matrix D further in the present paper,
as our main interest is in the Dirac matrix, but shall
content ourselves with the remark that (2.12) will allow
direct calculation of physical properties of Fermi-Dirac
assemblies from a knowledge of the canonical density
matrix.

Focusing attention therefore on p, in what follows, it
is evident from (2.11) that C(r', r,P)/P is simply the

1
p(r', r, i') =——Lsina(l) —a(t)'* cosa(t) ]. (3.5)

2x2E3

From (2.6), l is to be determined from the equation

p(r, r, t') =N/V = (2i) ~/6i(' (3.6)

' E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951).

6 See, for example, G. Doetsch, TIzeorie @ed Amzvendleg der
I.aplace Transform (Dover Publications, New York, 1943), p. 24.

(2.12) where a= 2*'R.

From (3.4) and (2.11), a, simple closed form for the
Dirac matrix results, namely
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i d'
——(rx;,) =
2 dr2

t (t+1)
+U E;i rx, i. —

2r2
(4.1)

The eigenvalue E;~ and the function X,~ are, of course,
both independent of rn. Hence from (2.3) we have

C(r', r,P) =P{Pe '~X, , (r')x-;, (r))

x{p &,.*(&'A') &,.(sA))

=E{Ze-""x'i(")x'i(r))

(2t+1)
&(— Pi(cosy), (4.2)

where y is the angle between r' and r and the addition

theorem for spherical harmonics has been used.

We now define CE through the equation

4~Ci(r', r,P) =2' e ""X'~(r')X't(r), (4.3)

and thus (4.2) can be rewritten

C(r', r,P) =P~(2t+1)Ci(r', r P)Pi(cosy). (4.4)

The initial condition on C&(r', r,P) may be obtained by
viewing (4.1) as a one-dimensional wave equation, with

wave function rx, i(r). From (4.3) it then follows that
err'Ci(r', r,P) is the corresponding one-dimensional

canonical density matrix and hence

4irrr'Ci(r', r,0) = e(r' —r). (4.5)

This is easily shown to be consistent with the condition

(2.8) on C(r', r,P) From (4.1) a.nd (4.3), the equation

where V is the volume, and this is the familiar relation
between the electron density and the Fermi energy.

The result (3.5) has, of course, been obtained pre
viously by direct use of plane waves, but the present
argument shows how it may be found without recourse
to the wave functions, and by a method which neverthe-
less circumvents consideration of the awkward idempo-
tency condition.

4. DENSITY MATRICES IN CENTRAL
FIELD PROBLEMS

We turn now to a case of particular importance in the
imperfections field, namely that corresponding to a
spherically symmetric potential energy V (r). Here it is

often convenient to exploit the fact that the wave

equation separates in spherical polar coordinates r, e, g,
as was done, for example, in our previous computations
of electronic wave functions around a vacancy in a finite
metal. 4 Then the solutions of Schrodinger's equation

may be written in the form

x'()V-(&,~),
where

2t+1 (t tm~)! '—
(eA) = P~ (cose)e' ~,

4~ (t+~~~)!

and X,~ satisfies the radial Schrodinger equation

satisfied by Ci(r', r,p) is

1 8' t(t+
(«i)—

2 ar2

1)
)

8
+V rCi —(r—Ci) =0. (4.6)

Bp

Often it would be very convenient in applications if
the important diagonal element Ci(r, rp) could be calcu-
lated directly, without the necessity of obtaining the
complete matrix Ci(r', rtp). In fact, as is shown in

Appendix I, the diagonal element, which we write for
convenience as Z~(r,p), satisfies the differential equation

1 8' t(t+1) 8 1 BV
(r'Zt) —— —(rZt) —— r'Z i

8 Or' 2r Or 2 Or

O O2

—V (r Z, ) —(r Zi—) =0. (4.7)
Br Bp8r

Turning our attention now to the corresponding
Dirac matrices, we define p& through the equation

4~pi(r', r,E)=2*x'~( ')rx'i(r), (4.8)

and then we have

p(r', r,E) =Pi(2t+1) pi(r', r, E)P i(c os'), (4.9)

which is seen to be entirely analogous to (4.4). From
(2.11), (4.4) and (4.9), and using the orthogonality of
the Legendre polynomials, we have

CI(r', r,P) =P t p((r', r, E)e eedE.
"0

(4.10)

Denoting the diagonal element of the matrix p&(r', r,E)
as ni(r, E), it follows that

Z, (r,P) =P n, (r,E)e &~dE. -(4.11)

VVhen the eigenvalues E;~ form a continuous set, it is
shown in Appendix I that the differential equation
(4.7) for Zi leads to the equation

1 8' t(t+1) 8 1 BV
(r'n,)——(rn, )—— r'n,

8 Or' 2r Or 2 Or

1 8' t(t+1) 8
(rC i) — — (rCi) ——(rCi) =0.

2 Or 2r2 Bp
(5 1)

!ni 8 O2

—U—(r'«)+ E (r'n &)dE= 0, (4.12)
~ 0 OEOr

for the "particle density" ni(r, E).

5. CENTRAL FIELD RESULTS FOR V(r) =0

As an application of the above relations, as well as the
fact that the results will form the basis of the per-
turbation theory outlined in Sec. 6, we consider now the
case when U(r) =0.Then Eq. (4.6) satisfied by Ci(r', r,p)
reduces to
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k'
rii(r)E) = f jP(kr) —ji i(kr) ji+i(kr)) (5.8)

4n-2
r —r2

C0(r', r,p) =
24'P'r'r

being obtained from (5.6).
(r'+r)'

(5.2a) 6. PERTURBATION TREATMENT FOR
CENTRAL FIELDS

—exp—

The solutions of (5.1) satisfying the boundary condition the general formula

(4.5) are, for the first two t values,

(
Ci(r', r,p)=, , I

1——exp
24.tP **r'r L r'ri 2P

("+r)'
l+l 1+—l exp — . (5.2l)

E r'ri 2P

pk

f= (r'ri—i), or r'n, i
' fdk-—,

ak
(6 1)

It appears possible for a spherical potential V to
obtain a perturbation series solution of (4.12) which
reduces to (5.7) or (5.8) when V vanishes Wr. iting

Using the modified Sessel function
Eq. (4.12) may be expressed as

Z„(*)= (-i .Z.(ix)

the solution of (5.1) satisfying (4.5) may be obtained ~f,~f 4t(f+1) ~f
for all l in the form

~i(r,p) = expl ——II i+-:l —
l

pi '&p) (5.4)

From the Laplace transform relation (4.10) we can
obtain pi(r', r,E) from (5.2) and (5.3). Thus

p0(r', r,E)
1 sin(r' —r) (2E)& sin(r'+r) (2E)'

(5.5a)
4m2r'r

pi(r', r,E)

r+r

1
!

t'sin(r' —r) (2E)& cos(r' —r)(2E)'*)

4''r'r! & r' —r r'r(2E) & )
(sin(r'+r) (2E)' cos(r'+r) (2E)& )

+
r'+r r'r(2E) & i

Equations (5.5) are particular cases of the general
formula

p&(r', r,E) =- k'ji(kr')ji(kr)dk,
21r 0

(5.6)

where k= (2E)'. Setting r'= r we obtain from (5.5)

1 ( r'+r ) (rr)
&i(r',r,p) = — exp!

— IIi+;l —I. (5 3)
4 P(r'r)'* & 2P i '&P)

Setting r'=r, the corresponding solution of (4.7) with
V=O is

4/(l+1) 8f 0I V+- f 8V 4— f—=0—. (6.2)
r3 Br Br

The three independent solutions of (6.2) when V=O
may be written

f = k'r'gP(kr)

fp ——k'r' ji(kr)Hi(kr).

f0=k'r'n i2 (kr)

(6.3a)

(6.3b)

(6.3c)

f=fi/2 ' (6 4)

To second order in V, it may be verified that the solu-
tion of (6.2) is then

fi(r)
f= +

2~2 m2k

X fi(r) ~ V(s) f2(s)ds+ f&(r)~l V(s)f, (s)ds
r 0

+ f2(r) V(s) fi(s) V (t) f2(t)dtds
8

m'k2

+f () V()f () V(t)f (t) td
'r S

where, to avoid confusion with the particle density e E,

we have written n~ for the spherical Neumann function.
The free-electron solution given in Sec. 5 is obtained
from (6.1) by writing

rt0(r, E)=
4~2r2

sin2krk-
2r

(5.7a)
r ))

—2fi(r)) V(s)f0(s) V (t)fi(t)dtds+ ,'f,(r)-
1 sin2kr cos2kr —1

it~ (r,E)= k+ + —
(, (5.7b)

kr'

I

8

X ~ V(s)fi(s) V(t) fi(t)dtds . (6.5)
0 ~o
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Thus combining (6.5) and (6.1), the perturbed density
may be obtained to the same ordee of approximation.

k' k' p V(r,)ji(2kRi)
e(r, i) = — ' dri,

6x' 4m' " (7 2)

where k= (2l) l. This formula is new, a,nd appears likely
to be very useful in the imperfections field, as we shall

now discuss.

8. APPLICATIONS TO IMPERFECTIONS
IN METALS

Mott' developed a first-order approximation to deal
with imperfections in metals, the result being expressed
in the form

e(r, l) = (2f) l/3 'erg'V(r)—/4', (8.1)

'7. PERTURBATION TREATMENT FOR
NONSPHERICAL V (r)

After developing the methods described in the pre-
ceding sections, we became aware of a paper by Green~

in which a very general perturbation treatment yielding
the canonical density matrix was developed, in order to
calculate the quantum mechanical partition function.
We shall restrict ourselves to a first-order calculation
here, although, in principle, higher terms may be ob-
tained using Green's work. Equation (15) of Green's

paper may be expressed almost immediately in our
present notation as

1 p V(ri) exp( —2Ri')/P
C(r, r,P) = —1—

~" dri, -(7.1)
(2~P) ~ mRg

where
Ri = {(~—»)'+ (X

—yi)'+ (s—»)') '

All that remains is to transform this to give the diagonal
element of the Dirac matrix to the same order, using

(2.11), the zeroth-order result being the free-electron
density given in (3.6). The perturbed density is then
found to be given by

tions by the present writers4 that besides the localized
screening predicted by (8.1) there are also long-range
effects which Mott's treatment cannot account for.

Ke see now that the work presented in Sec. 7 allows
the exact formulation of the first-order treatment, in
which (8.1) must be replaced by

2k' r V(ri) ji(2kRi)
V"V(r) = dri,R' (8.4)

we have a self-consistent field problem which should
give some account of long-range effects in both the
density and potential. Calculations are now being
planned to enable the solutions of (8.4) to be obtained
and we hope to report on this problem at a later stage.

We shall conclude by indicating the connection be-
tween the perturbation theory of Sec. 7 and that given
for central field problems in Sec. 6. We have not seen at
present a way to connect the two treatments com-
pletely generally in the case of a spherical potential, '
but we show here that they yield the same expression
for the density at the origin to first order for central
fields. This comparison is easily achieved, because only
the partial density corresponding to 3=0 contributes to
the density at the origin when the separation in spherical
harmonics is carried out. It follows from (6.5) and (6.1)
that the density difference is given by

(2$)t k' i V(r,)j,(2kR,)
ri(r l.) = dr i. (8.3)

3' 27K Rg'

The connection with Mott's treatment is seen directly
when we make the assumption that the potential is
slowly varying and replace V(ri) by V(r) in (8.3).
Equation (8.1) then follows after a straightforward
integration. Clearly, for a potential which is singular as
r ' the density given by (8.3) remains finite at the origin
so that the qualitative defect of the Mott form is re-
moved in this case. Also it seems tl at by combining
(8.3) with Poisson's equation to yield

where now we consider doubly filled levels. Here the
screening radius 1/q is given in terms of the Fermi

energy l by

V(s) sin2ksds, (8 5)

q'= 2:f'l/ir. (8.2)

' H. S. Green, J. Chem. Phys. 20, 1274 (1952).' N. F. Mott, Proc. Cambridge Phil. Soc. B2, 281 (1936).
A. Slandin, E. Daniel, and J. I riedel, Phil. Mag. 4, 180 (1959).

Various shortcomings of (8.1) are now well established.
Thus, the density follows the potential too closely and
at a point singularity, the density becomes infinite with

the potential, an incorrect result. This is unfortunate,
because in physically interesting problems involving
positron annihilation in metals, the positron lifetime
depends on the electron density at the positron and the
Mott treatment is inadequate. Also, it is known from
the work of Blandin et al.e and from previous computa-

and the integration over k may be performed. The final
result is

ji(2ks) U(s)ds, (8.6)

and this is easily seen to be equivalent to that given by
Eq. (7.2).

9. CONCLUSION

By exploiting the relation between the canonical and
Dirac density matrices embodied in Eq. (2.11), we have

"Footnote added in proof. This connection has now been founc1,
and the proof is given in Appendix II.
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shown how some progress may be made in the calcula-
tion of the Dirac matrix in certain cases. Suitable
perturbation treatments based on free electrons may be
developed, and the most important practical conse-
quence would seem to be the exact first-order formula-
tion which supersedes Mott's well-known treatment of
imperfections in metals.

We also stress that the generalized canonical matrix
D may be obtained from C, should it be required to
calculate Fermi-Dirac physical properties at elevated
temperatures. Furthermore we suggest that the new
equations (4.7) and (4.12) for the diagonal elements of
C and p, respectively, may have computational merit.
when perturbation theory fails. Generalizations of these
equations when the potential is not spherical may also
be obtained, but the results are complicated and will not
therefore be recorded here.

APPENDIX I

In this appendix we derive (4.7), the equation satisfied
by Zi(r, p)= Ci(r, r,p), —from (4.6) which is satisfied by
C&(r', r,p) Multiply. ing (4.6) through by r' we obtain

8
f r'rC, (r', r,p) )

2 Or

l (l+1)
+V (r) r'rC (r', r,p)

2r2

Therefore it follows that

n(2n —1) n Bc„
c„+~'" 'c„'+-'g'" c

n 2 O

P P ~m+2ec v —0

where primes on c„denote derivatives with respect to $.
We now equate to zero the coefficient of each power of p.
The coefIicient of g' gives then

Ocp

4CyM SCo CoVo 0)
O

(A1.4)

and the coefficient of g,

gcl covl (A1.5)

Hence, using the fact that v& is the derivative of vp and
eliminating ci between (A1.4) and (A1.5) we obtain

pcp —
&vp cp —'vpcp —Bcp /BP= 0. (A1.6)

Replacing $ by r, introducing the explicit form for vp,

and substituting cp(r) = r'Zi(r, p), (A1.6) is readily
shown to be equivalent to (4.7).

Finally we show that (4.12) may be obtained directly
from (4.7). Substituting (4.11) into (4.7), we obtain

1 8' l(l+1) cj

p ——(r'n i) —— —(rn i)
&o 8 Or' 2r Or

(r'rC t (r', r,p) )—=—0. (A1.1)
O

1OV
r'ni V—(r'nt) e—eEdE

2 Or Or

where

r'rC i(r', r,p) =p „n' "c„($),

r 'cp(r) =Ci(r, r,p) =Zi(r, p).

(A1.2)

We also expand l(l+1)/2r'+ V(r) in the form

l(1+1)/2r'+V(r) =Q g v (P),

where

and
vp(r) =l(l+1)/r'+V(r),

v (r) =dvp(r)/«.

Writing (A1.1) in terms of $ and q we obtain

t
1 cl' 1 8' 1 8' 8+- + Z n'"c. (r)

l8 Bn' 4 cjg8$ 8 BP &P

-"n'" (kc)v-(5) =o

We now introduce new variables f, q defined by the
relations

$= (r'+r')/2, g= (r' r)/2, —

and hence r = $+n, r'= $—z. Since r'rCi(r', r.p) is sym-
metrical with respect to interchange of r and r' we may
expand it in the form

00

——p e ~~ (r'n()dE =0—. (A1.7)
Bp- p Br

Partial integration of the last term in the above yields

~W pE $2

p
aEa.

(r'n, ) e—»dE,

+ dsV(s)rPs'j P(kr)j i(ks)ni(ks) (A2. 1)

and since (A1.7) must hold for all p, (4.12) follows.

APPENDIX II

We demonstrate in this Appendix the equivalence, to
6rst order in V, of the methods of paragraphs 6 and 7,
for the central field problem. The first-order terms of
Eq. (6.5) may be written

1
——(r'(np —n) )
kak

2k2

P(2l+1) ' dsV(s)r's'j i(kr)ni(kr)j P(ks)
Ã2
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and we first focus attention on the quantity S defined by Since S(0)=0, we have on integration, for s~(r,

5= 4k—'rs Q(2l+1) j&(kr)n&(kr) jP(ks). (A2.2)
S(k) =

2 k(r-s)

p2A&"+' Sing
dl (A2.4)

Thus, in (A2.1) we may write

1'"&"+'& sinu
dsV(s)rs de

o
2

2 k(r—s)
BS—= —4 P (21+1)k'rsLr( j& i(kr)n&(kr) —j&(kr)n&+r(kr) }

To proceed, we wish to differentiate S with respect to k,
using the results of Schi6."Strictly, terms corresponding
to l=o should be considered separately, but for con-
venience they may be included if we identify j i(p) and (r2(n n)}
n i(p) with n—p(p) and jp(p), respectively. It then k Sk
follows after some manipulation that

XjP(ks)+sj((kr)n((kr)

X f j( i(ks) j((ks) —j((ks) jg+i(ks)}).

Using Schiff's Eq. (15.10) we obtain

GO p2~(s+') Sing
+ ' dsV(s)rs~' du

r 2 &(s—r)

00 p2~&r+s) Sinl
ds V(s)rs]' du

2''l 2
2k/r —st

(A2.5)

85—=—4k'r's'P Lj& r(kr)n&(kr) j~(ks) j~ i(ks)
&9k l

+j&(kr)n& i(kr) j& i(ks) j&(ks)

jq(kr)nq+, —(kr) j~+r(ks) j~(ks)

jr+1(kr)ni(kr) ji(ks) jl+1(ks)j
= —4k'r's'Lj r(kr)np(kr) jp(ks) j i(ks)

+jp(kr)n i(kr) j i(ks) jp(ks) j,

since all other terms in the summation cancel. Inter-
preting j i(p) and n, (p) in the manner discussed above
we find

BS 4—=-(cos'kr —sin'kr) sinks cosks
Bk k

As may be verified by differentiation, the integral of
(A2.5) is

P2 oo

r'(np —n) = ' ds V(s)rs
2m' ~()

r
'"'"+'& t'sine cosup

X du
(

— I. (A2.6)
pplr sl ( u u )

Now when V has spherical symmetry, Eq. (7.2) may be
written

P2 s2 sin|A}

np —n=, l dS I dsV(s)
RI2

sin2kR~ cos2kR~
X

(2kB,)' 2kB&

where ErP=r'+s' 2rs cos|&. Substitut—ing e=2kR&, it
follows that

=—(sin2k (r+s) —sin2k (r—s)}.
k

(A2.3)

2x'

k'
&

" s
&

'"&'& +(sine coseq
dsV(s)- ll du~

r ppl
l

4 u u )
"L. I. Schi8, QNuntgm 3IIechunics (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), p. 78, Eq. (15.10l. which is evidently equivalent to (A2.6).


