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The generalized random phase approximation is used to investigate the effects of electron-electron inter-
action on the spin susceptibility of an electron gas. Within this approximation, the induced spin density is
determined by the solution of an integral equation that describes exchange scattering between virtually
excited particles. Solutions to this equation are obtained in simple cases. They indicate that the exchange
scattering enhances the susceptibility over that predicted by the Ruderman-Kittel formula by factors which,
for electron densities comparable to those found in good metals, are in the range 1-2. These results can also
be derived by summing certain classes of diagrams in many-body perturbation theory. The structure of
these graphs shows that the random phase approximation takes account of the simplest sort of self-energy
effect and the simplest type of scattering of virtually excited particles.

I. INTRODUCTION

OCALIZED magnetic fields in metals, such as
those due to paramagnetic impurities or nu-
clear moments, induce spin polarization in the con-
duction electrons in their vicinity. A theory of this
effect, based upon the independent electron model, was
developed by Ruderman and Kittel! and yields a simple
formula for the amplitude and spatial variation of the
spin density. It is well known, however, that in real
metals electron-electron interactions are nof weak. Thus
a complete theory of the spin polarization must include
the effects of Coulomb interactions between the elec-
trons. As a first step in this direction we study in this
paper the response of a degenerate interacting electron
gas to an applied magnetic field. This system is, of
course, a rather crude approximation to an actual metal,
but does contain, in full, the many-body effects whose
nature we would like to investigate. Thus it may serve
as a useful model for understanding their nature in real
crystals.

Our analysis of the many-body problem is based
upon the random phase approximation (RPA)? in a
form that includes exchange interactions between the
electrons.? This approximation leads to an integral
equation (in momentum space) whose solution deter-
mines the spin density. The relation of this equation
to the Ruderman-Kittel result is quite straightforward.
The latter is calculated by second-order perturbation
theory that contains, as an intermediate state, a con-
figuration in which one electron is excited outside the
Fermi sea and there is an empty level (which we will
call a hole) below the Fermi surface. These virtual
particles may, however, scatter against one another.
The Schrodinger equation that (with due allowance
for the exclusion principle) describes this process is,

IM. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
See also K. Yoshida, Phys. Rev. 106, 893 (1957).

2D. Pines, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 367.
K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys.
Rev. 108, 507 (1957).

3 P. W. Anderson, Phys. Rev. 112, 1900 (1958).

in momentum space, the integral equation charac-
teristic of the RPA.

This integral equation is generally quite difficult to
solve, but in the long-wavelength limit or for a delta-
function interparticle potential (which is not too bad
an approximation to the screened Coulomb interaction),
solutions are obtained readily. The spin density calcu-
lated from them is enhanced over that predicted by the
Ruderman-Kittel formula, and also has a slightly
broader distribution in space. Since the solutions in the
two limiting cases have exactly the same form it is not
unreasonable to expect that an exact solution of the
integral equation would lead to similar conclusions.

The RPA contains, of course, only a part of the
electron-electron interaction. In view of this fact, it is
of considerable interest to inquire which terms (in a
perturbation theory sense) lead to the integral equation
obtained from it. To answer this question it is necessary
to restudy the problem with many-body perturbation
theory of the Goldstone* type. In the final section of
the paper we indicate briefly how such an analysis may
be carried out, and display those terms in the pertur-
bation expansion that give rise to the integral equation.
These terms arise from a certain type of graph whose
structure indicates that the RPA has the twofold
effect of including direct Coulomb scatterings between
virtual particles created by the external field, and taking
account of the simplest self-energy corrections to the
propagators of these particles.

I

The system with which we shall deal in the following
pages consists of a degenerate gas of electrons (of
density 7) that interact with one another via the
Coulomb field. The electron field operator for this
system will be denoted by ¥(r) and has the usual

expansion
Y(r)= :L Cr,o|0)e™ T ¢y

in terms of creation operators ¢y, for plane wave

4 J. Goldstone, Proc. Roy. Soc. (London) A240, 539 (1957).
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states of momentum k and spin ¢. The Hamiltonian
H consists of two parts: the kinetic energy®

Hy= f J(r)(—£)¢(r)d3r= > [ck,,ck,,g], (2)

k,o

and the electron-electron interaction

=1 f SOV ) (r—r W () W) drd’

=32 2 (@i, ofumq, ot ortio] ()

q kk‘co’

[here v(q) is the Fourier transform of the interparticle
potential, »(r)]. To calculate the spin susceptibility
we now imagine that a weak magnetic field B (r)—which
for simplicity we take in the z direction—is applied to
the system defined by Egs. (1)-(3). Its coupling to
the electron spins is described by the interaction
Hamiltonian

Hy= (ug) f P (D0, BEY P
= (ug) kZ (Cirq, 16,1 = Cictq, 40k, 4 ) B(Q), 4)

where B(q) is the Fourier transform of B(r). From this
equation it is clear that the spin density (at wave
vector q) is determined by the operators €iiq,s¢x,0. TO
study their behavior we consider the equation of
motion which is obtained from the commutator

[Crtq,oCx,0, H+H1].

Evaluation of this commutator is a straightforward
but tedious matter. The result is a very complicated
expression involving a sum of products of either two or
four annihilation and creation operators. Of the fourfold
products we retain only those terms in which one pair
has a nonvanishing expectation value in the un-
perturbed ground state. Thus, for instance, in a sum
such as

kZ [ (P)Cxsolr—pCrrryp ], (5)
p

we keep terms in which k’=k+q, k—p=k-+q and
k—p=Kk'—p. The corresponding operator products
CryqCiyq and Cx_pck_p are then replaced by their expec-
tation values, the zero-order occupation numbers
Hxq and mi_p. This is the basic approximation of the
RPA which greatly simplifies the equations of motion.

®We set #=1 and denote the conjugate of an operator or
function y by ¢.

After using it the commutator takes the form
[Cxrq,10x,1, H+Hq]
[ k (k+q)*

2m

]ék+q,tck,r
2m

— 2 {[v(k—k)—v(k+q—K) I 1 } g, 6k,
=

+ 22 {v(Q)Cw1q.00k7 o} [Picyq, t — 11,1 ]
ko

- Z: {v(k_k’)ck’+q,15k’,1}[”k-{-q,?"‘nk,f:]
— (ng) B(@)[7xtq,t— 1,0 1. (6)

The first term on the right-hand side of Eq. (6) is the
commutator of xyq,1¢k,+ With the kinetic energy; the
second gives the exchange self-energy of the states
involved and corrects the individual particle energy

from %2/2m to
k? 3%/

e(k)=—-— v(k—k’) ; )

2m  Jr<kr (2m)? ’

the third is a plasma term that describes coupling to
charge density fluctuations; and the fourth an exchange
term that gives rise to scattering between the two
virtual particles in states k4+q and k. Finally, the
inhomogeneous term ugB(q) (%xiq,t—7x,t) arises from
the coupling to the external magnetic field. To simplify
the succeeding analysis we now define a quantity

Os,a= [ Citq, 1€k, t = Cictq, 4 Cic 4 - 8)

This operator does not generate charge density fluctua-
tions. Thus, all plasma terms cancel from its equation
of motion [as one may readily verify by subtracting
from Eq. (6) the corresponding expression with spins
reversed ], and one obtains the relatively simple formula

0x,q=[e(k) — e(k+q) Jx
= 2w {v(k—K)bw o} (g~ 1)
—ugB(q) (”k+q ). (9)

We now take the expectation value of this equation
with respect to the wave function of the perturbed
system. The result is the formula |

I¢]
i5<9k,q>= Le(k)— e(k+q) (Ox,o)
- Ak: [v(k—k')wk’,q) (”k+q—”k)]
—ugB(Q) (nrq—m).  (10)

It is clear from this equation that (k) is proportional
to (Mkyq—mx). Thus, we define a quantity o(k,q)
through the relation

BOx.)= (s — 1) 0 (k). (11)
Under steady-state conditions ¢(k,q) is determined by
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the integral equation
Le(k)—e(k+q)Je(k,q)

—Zwlok—K) (nwiqg—mw) o (K,q) J=ngB(q). (12)

The solution of Eq. (12) determines the spin density
through the relation

(0:(@)) =2l o (k,Q) (g — 125) ]. (13)

Equation (12) is a sort of Schrodinger equation
describing scattering of particles excited into states k
and k+q by the external field. As was mentioned
earlier, this equation is generally rather difficult to
solve. Some feeling for the nature of its solution may be
obtained, however, by making the assumption v(k—k’)
=constant=79. If 2(k—k’) were the Fourier transform
of the bare Coulomb potential this approximation
would be very bad. Hubbard® has pointed out, though,
that the exchange interaction should be screened.
Under these circumstances the assumption v=7 greatly
improves, and one may hope it will give some insight
into the solution of the correct problem. After this ap-
proximation is made, Eq. (12) is readily soluble. One
finds the induced spin density

ugB(@F (q)
T, = 14
(o) = s (14)
where :
nk+q—1¢k
Flg)=— - 15
w=-2 [e(k-}-q)—e(k)] (13

is the counterpart of the Ruderman-Kittel suscepti-
bility function, and reduces to their formula if one sets
e(k)=k2/2m. From Eqgs. (14) and (15) we see that,
within the RPA, the Coulomb interaction has a twofold
effect on the spin susceptibility. It renormalizes the
particle energies [to the extent of replacing #2/2m by
e(k)], and causes exchange scattering between virtual
particles created by the external field. These scatterings
give rise to the denominator [1—3F(q)] in Eq. (14),
which has the effect of enhancing the spin density
[note that F(q)>0] over that predicted by the
Ruderman-Kittel formula. Moreover, since F(q) is a
monotonically decreasing function, this correction is
greatest for small ¢. Hence the spin density (in q space)
is also slightly sharpened by the exchange interaction,
which means that it is broader in real space.

The previous results have been obtained by replacing
v(k—Kk’) by 7. It is also of interest to investigate Eq. (12)
in the limit ¢/kp<K1 (here kp is the Fermi momentum).
The factor (mx.1q— ) in this equation then limits the
k' integration to the vicinity of the Fermi surface.
Furthermore, from Eq. (13), we see that to compute
the spin density we only need know ¢(k,q) for k~Fks.
Therefore, in solving Eq. (12), we may assume that
both k and k’ lie on the surface of the Fermi sphere and
write k=%£rQ and k'=%7Q’, where Q and Q' are unit

¢ J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958).
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vectors. Lastly, we set
¥(kg)
[e()—e(kta)]

In the limit ¢/2r<1, Eq. (12) then becomes

o(kaq)= (16)

V(krQR—krQ) o(krQ' Q) (N 4q—mir)
(Vere)-q

¥ (krQ,q)+ 1;.
an

The integral over the magnitude of k' may now be
evaluated, and the equation takes the form

=ugB(q).

By , ke ’ ’
v [ W)a( )etkrta- ')
=ugB(q), (18)
where
vp=(0¢/0k) | k=t p.
This equation has a solution
B
¥ (kr2,0) = Ll (19
—~f ag’ v[kp(Q——Q’)]kp
(27)3 2%

since S [dQ'/(27)*Jo[kr(Q— Q')] is independent of Q.
The corresponding spin density is obtained from Eq.

(13) and turns out to be
rgB(a) rke?
(o.(@)= Crfor (20)
kpz dﬂ’ ,
{ - 27)3v[kp(9— Q)]

With the aid of Eq. (15) this expression may be re-
written in the form

B(q)F (0
(o a(@) = rg d(q) (0) ,

l—F(O)f ,

;v[kv(ﬂ—ﬂ')]

1)

which is then similar to that of Eq. (14).

From Egs. (14) and (21) one sees that exchange
scattering has an important effect on the spin suscepti-
bility when 9F(q) or (in the limit ¢ — 0)

F0)S (d /4m)v(krQ")

are of order unity. There is, in fact, a divergence of
(s.(q)) when either of these quantities is equal to
unity. It is clear from Eq. (12) that this infinity
corresponds to the existence of a finite spin density in
the absence of any magnetic field—that is, to ferro-
magnetism of the electron gas. In particular, one may
show that the denominator of Eq. (21) (which gives the
spin density in the ¢=0 limit) vanishes at that electron
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density which corresponds to Bloch’s” criterion for
differential ferromagnetism of the electron gas.® If
2(k) is the bare Coulomb interaction this criterion is
satisfied when the density parameter 7, is about
six—with a screened interaction the divergence occurs
at an even lower electron density. We conclude, there-
fore, that in an electron gas of density comparable to
that found in good metals, the enhancement of the
Ruderman-Kittel susceptibility by exchange scattering
is not particularly large. Typically, one may expect
enhancement factors in the range 1.25-2.0.

Finally, it should be observed that our entire analysis
is based upon perturbation expansion about an un-
polarized ground state. It must, therefore, fail when
the exchange interaction is sufficiently strong (or
the gas sufficiently dilute) that the electron system
is ferromagnetic. For the case of the delta-function
interaction ferromagnetism sets in when the denomi-
nator of Eq. (14) vanishes for ¢g=0—that is, when
7F (0)=1. This equation also has infinities, correspond-
ing to standing spin waves, when its denominator goes
to zero for finite ¢. Since F(g) is a monotonically
decreasing function, however, these roots only occur
at electron densities so low that the gas becomes
ferromagnetic—that is, in a range in which Eq. (14)
has no physical meaning. Overhauser® has suggested,
on the basis of an analysis somewhat similar to ours,
that such spin waves actually exist in metals. The
preceding remarks imply, however, that before the
exchange interaction is sufficiently strong to generate
them, the electron gas becomes ferromagnetic, under
which circumstances both his and our analyses fail.

III

Having discussed the spin susceptibility from the
point of view of the RPA, we now wish briefly to
consider the same problem with the aid of many-body
perturbation theory. Since the techniques of this
method, as well as many of the formulas we shall need,
have been given elsewhere, we will only indicate the
essential points in the development. Our point of

@0

(o2(q))=2ugB(q) Im’ f € (@0, T[So."(q,1)o.(—q, 0)Jo)d |

0

This formula, which provides the starting point for
the perturbation calculation, is in precisely the form
to which Wick’s theorem applies and thus leads
directly to a diagrammatic analysis of the spin density.

To develop Eq. (25) in powers of ¢® we replace S by
its expansion [Eq. (24)7]. Wick’s theorem then permits

" F. Bloch, Z. Physik 57, 545 (1929). See also F. Seitz, Modern
Theory of Solids (McGraw-Hill Book Company, Inc., New York,
1940); p. 601.

81 am grateful to P. W. Anderson for pointing out to me the
relationship between Eq. (23) and Bloch’s work.

9 A. W. Overhauser, Phys. Rev. Letters 3, 414 (1959).
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departure is the fact that the field B(r) that causes the
spin polarization is weak. We may, therefore, use
first-order perturbation theory to calculate its effect
on the electron system. Assuming that this system is
initially in its ground state o one finds by a straight-
forward computation that the expectation value of the
spin density is given by the formula

1

<0z(r)>=( ) ];)we""(!lfo,[vz(r,t),de&o)dt, (22)

1

where o.(r,f) =e¢#'s,(r)e~ ! is the Heisenberg operator
for the spin density, and » a small, positive convergence
factor. Equation (22) has the form of a vacuum expec-
tation value and may be evaluated with techniques
that have been developed for treating such quantities.
A straightforward calculation, which exactly parallels
the discussion given by Schweber, Bethe, and de
Hoffman,!® leads to the formula

(o ())=2 Im[ [ et ttsemenmienl. @3

0

Here o.t(r,f) =¢#olg,(r)e~Hot is the spin-density
operator in the interaction representation, “7T” is
Wick’s!! time-ordering operator, ¢y is the ground-state
eigenfunction of Hy, and the .S matrix is to be evaluated
with the expansion

® 1\ "1 o
S= — ) — diy- - -
Ea (i) n! f_w :
% f dn TV () - V(5)], (24)

where V (f) = ¢iHotV g~iHot,

As in the RPA, it is more convenient to deal with
the Fourier transform of the spin density, (s.(q))
= S {o.(r))e~"*d%, rather than with (s,(r)) itself. By
combining Eq. (4) with Eq. (23) and making use of
translational invariance and the reality of B, one may
obtain the result

(25)

one to write each term in the series as a set of diagrams
of the Goldstone type. Most of the rules required to
evaluate these diagrams are given in the literature and
will not be repeated here. A formulation due to Du
Bois®? is particularly convenient for our purposes and
will be used throughout this section. The operators
c2(q,0) and ¢.(q,f) do not appear in his work, however,

10°S. S. Schweber, H. A. Bethe, and F. de Hoffman, Mesons and
Fields (Row, Peterson and Company, Evanston, Illinois, 1955),
Vol. 1, p. 384.

1 G. C. Wick, Phys. Rev. 80, 268 (1950).
2 D. F. Du Bois, Ann. Phys. 7, 174 (1959).
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Y,

1,7 1

(P, w, )

(p,w,)

@) (b)

F16. 1. Diagrams illustrating the effect of
spin operators in Eq. (25).

(<)

so we must consider how they are to be incorporated
into the graphical analysis. Their effect can probably
be best understood by examination of simple examples.
In Fig. 1(a), we show the diagram that arises from Eq.
(25) when S is set equal to unity. The incoming wavy
line in the graph represents the interaction of the
electron system with the external field [operator
o.(—q, 0) of Eq. (25)], whereas the cross corresponds
to the spin-measuring operator o(q,f). It is clear that
these operators bring momentum ==q into the dia-
gram—thus one has momentum conservation at each
of the vertices of Fig. 1(a). On the other hand, the
energy conservation rule, which applies at the vertices
corresponding to Coulomb scattering, is modified or
absent. For Coulomb vertices this conservation condi-
tion arises from the infinite time integral, that appears
in Eq. (24). No time integral at all is associated with the
vertex due to the perturbing field—thus there is no
corresponding frequency condition. At the spin-
measuring vertex the time integration goes from zero
to infinity. Thus in Fig. 1(a), instead of setting w=c’
at the upper vertex we introduce a factor 2/ (w—w'-+17)
and integrate over both w and «’. In static problems,
however, only the delta-function part of this expression
contributes.

The preceding remarks take care of the momentum
and frequency conditions at vertices arising from the
o operators in Eq. (25). We must finally examine their
spin dependence. For this purpose label the particle
lines of a graph according to their spin states «, o, etc.
It is then clear that the spin operators in Eq. (25)
give the matrix element {a|c.|a’), between incoming
and outgoing lines, at the vertex. Thus, in Fig. 1(a),
the spin sum is

% (alou]a’el [o:]a)=1. (28)

In considering more complicated diagrams it is
important to realize that a particle’s spin is unchanged
in scattering. Thus, in Fig. 1(b), the spins of electron
and hole are the same before and after the scattering,
and the spin sum again has the value 3. On the other
hand, in cases such as that shown in Fig. 1(c) in which
the two spin operators are on different particle lines,

WOLFF

the spin sum is of the form

E (a/l”zl““)(a’lo'zl‘x’)’

and vanishes. The principles embodied in these obser-
vations are quite general and greatly simplify the
succeeding analysis. Henceforth we may ignore spin
and consider only those diagrams in which the two spin
operators appear on the same particle line.

We are now in a position to discuss the diagrams that
contribute to the RPA. These are graphs containing
the simplest sort of self-energy correction and electron-
hole scattering. A typical such graph is illustrated in
Fig. 2 and involves exchange self-energy corrections to
the propagators and direct Coulomb interactions be-
tween the virtual electron-hole pair. The effect of
including the exchange self-energy in all possible ways
(that is, to all orders) in such graphs is quite simple.
It merely replaces the energy %%/2m in the propagators
by the expression given in Eq. (7). Assuming that the
summation over all possible exchange self-energy
insertions has been performed, we are then left with
the set of graphs shown in Fig. 3 [which are to be
evaluated with propagators renormalized to the extent
of replacing k2/2m by e(k)] to sum. The first diagram
gives a contribution to {¢,(q)) of the form

1S (kw)S (k+q, ) @k do do’
2ugB(q) Imjw ()¢ —i—'q ) ——, (29)
(w—w'+in) 2mr)® 2r) (27)
where
0(k—Fkr 0(kr—Fk
S(k,w)=—i{ ( ) | ( ) , (30)
[o—e(k)+in] [w—e(k)—in]
and 6(x) is the step function defined by
6(x)=1 x>0, 31)
0(x)=0 x<0.

One may readily show that only the 6(w'—w) term
contributes to Eq. (29). Thus we obtain

d*kdw
@n)¢

4gB(@) Im f S (k)S (k--q, ) (32)

F16. 2. A typical diagram that
contributes to the RPA.
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) (b) ©)

F16. 3. Diagrams that are summed to give
the RPA integral equation.

" which can be evaluated by contour integration to give

@k (i~ 1)
B .
b (2n) [e(ht@)— e(k)]

The integral in this expression is just the function F(q)
defined in the previous section, and Eq. (33) is, once
again, the Ruderman-Kittel result for the suscepti-
bility. From the structure of the graph that leads to
Eq. (33) one might also suspect that F(q) is the pair
propagator. Comparison with Du Bois’ work shows that
this surmise is, indeed, correct.

We now go on to consider diagram 3(b), in which
there is a single exchange scattering between the
electron and hole. Using Du Bois’ rules one finds, after
some minor manipulations, that this graph contributes
an amount

(33)

B d3kd3k’ dwdw’ " "
ngB(g) f Y (27)2[5( w)S (k+q, w)

Xo(k—K)S (K w)S(K'+q, )] (34

to (0.(q)). To simplify succeeding expressions we
introduce the function

R(pa)= (3) / %s<p,w>5(p+q, o)

={_ﬂf§_] (35)
e(p+q)— e(p)
With this abbreviation the sum of the two lowest

order diagrams in Fig. 3 is

ak

B @] [ ko

a3k dB3F
+ f — — Rkqek—K)RK,q) . (36)

(2m)?* (27)°

From the structure of this expression one guesses—and
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may verify by direct computation—that the contri-
bution of the entire set of diagrams shown in Fig. 3
is obtained from the solution of an integral equation.
This equation is

T(k,q)=ngB(Q)R (k,q) .
+R(kg) f ok KT (R (37)
) ) (27‘_)3:

from its solution one obtains the induced spin density
(due to graphs in Fig. 3) through the relation

a3k
2r)8

(@)= f T(k,q) (38)

(

If we make the identification 7'(k,q) = (nx— #icrq) 0 (k,q)
we see that Eq. (37) reduces to Eq. (12), and that Eq.
(38) is precisely equivalent to the expression we ob-
tained earlier [Eq. (13)] for the induced spin density.
Thus, the set of diagrams shown in Fig. 3 gives the
same spin susceptibility as the RPA. This approxi-
mation may, therefore, be characterized by saying
that it takes into account (to all orders) the simplest
possible propagator renormalizations and the simplest
type of scattering between the virtual electron and hole
created by the external field.

CONCLUSION

The calculations outlined above indicate that,
within the RPA at least, Coulomb interactions enhance
the spin polarizability of an electron gas. For the
completely free gas, at densities comparable to those
found in good metals, the change is probably less than
a factor two. However, one can well imagine that the
effect of the lattice, which causes electrons to move in
Bloch waves rather than plane waves, might consider-
ably increase this figure. This is a point which certainly
deserves further investigation.

We have shown that the RPA is equivalent to the
summation of certain selected terms in perturbation
theory. It thus neglects a great part of the Coulomb
interaction and one can hardly expect its formulas to
be numerically accurate at metallic densities. On the
other hand, the general form of the results is physically
very reasonable and doubtless indicates the sort of
effect to be expected from an accurate treatment of the
electron-electron interaction. Since such a treatment is
presently rather far from realization, it has seemed
worthwhile to investigate, in some detail, the rather
simple RPA.
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