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A quantum mechanical variational treatment based on a simple Heitler-London wave function is used
to describe the various properties of Van der Kaals solids at O'K. The eifects of nuclear motion on the
cohesive energy, volume, compressibility, sound velocity, etc. , are discussed. These eBects can be expressed
in the form of a power series in A, of which we show the first term, linear in A, explicitly. The results are in
good agreement with the available experimental data for all solidified inert gases, except for He to which
the present method is not applicable.

I. INTRODUCTION

HE ratio of the Boltzmann constant times the
Debye temperature to the cohesive energy per

atom is a rough measure of the importance of nuclear
zero point motion eBects on the properties of a solid.
This ratio is of the order of one percent or less for most
solids, with the important exception of Van der Waals
solids. For instance, this ratio has the approximate
values: 0.025, O. i, 0.3, and 5 for Xe, A, Ne, and He4,

respectively. Hence, one may expect that nuclear zero
point motion will have an appreciable eBect on the bulk
properties of the solidified inert gases.

It is the purpose of this paper to give a quantitative
account of these effects on basis of a simple quantum
mechanical model.

In Sec. II we present a discussion of a classical law
of corresponding states, valid in the limit of infinitely
heavy nuclei. Values for the volume at zero pressure,
cohesive energy, initial compressibility, sound velocity,
Debye temperature and Grueneisen constant are dis-

played. In Sec. III we present a discussion of quantum
mechanical e6ects on these quantities, and an improved
law of corresponding states is obtained. In Sec. IV the
results are compared with experiment, and Table IV
in the concluding Sec. V summarizes our results.

II. CLASSICAL LAW OF CORRESPONDING STATES

It should be possible to derive the bulk properties of
the gaseous, liquid, and solid phases of He, Ne, A, Kr,
and Xe from the solutions of a Schrodinger equation:

N $ N N

E ~"+-E Z V(r's) +-(»,rs, rs)
2M q=l 2 i=i j=l

=E @(rr rtv), (1)

be derived from the solution of the two-atom prob1em
but in practice one uses phenomenological interatomic
potentials whose analytical expression involves two or
more parameters chosen to give a good representation
of the properties of the gas phase. '

In the present paper we restrict the discussion to a
12-6 Mie-Lennard-Jones potential

V( )=4 L( / )"—( / )'j, (2)

which gives a good description of the properties of both
the gaseous and solid phases of the inert gases. ' '

It is convenient to introduce dimensionless variables
and write Eqs. (1) and (2) as

( —~'Z'~. '+l E'E; (*.,))
)&+(x, xtv) = (L~'/e)@ (x, x v), (3)

and
V (r;;)= ev (sc;;—)= e4fsc;, " sc,—, '—j, —

(4)

where r;;—=gx;, , V,' is now the Laplacian with respect to
x;, and X'—=pt'/2M so' is a dimensionless parameter whose
magnitude is a measure of the importance of the effects
of nuclear zero point motion on the properties of the
substance.

Table I shows the values that we adopt for e, 0, and
hence X, for the inert gases. Diferent authors' ~ adopt
slightly different values for these parameters, but the
values given never diGer one from the other by more
than a few percent.

In the limit of vanishing X the eGects of nuclear zero
point motion become negligible, and the kinetic energy
term in the Hamiltonian can be dropped. In this case
every atom is highly localized, with a vanishing root
mean square deviation 8, about its lattice site. This
localization implies an expectation value of V' which
increases without bounds, i.e., (V') = (o/8)s. Neverthe-
less it can be shown t see Eq. (52)) that (8/o)s=X, and

*Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission.

where r; is the vector position of the center of mass of 'H. Margenau, Revs. Modern Phys. 11, 1 (1939);J. C. Slater
~ ~ and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).the ith atom, V", is the LaPlacian with resPect to r;, M 2 J. O. ~irschfe]der, C. F. Curtiss, and R. B. Bird ~o)ecu)ar

is the nuclear mass and V (r;;) is an interatomic potential Theory of Gases and Leqttids (John Wiley tk Sons, Inc. , New York,
describing the interaction of two otherwise isolated 1954)' N. Bernardes, Phys. Rev. 112, 1534 (1958)and Nuovo cinmnto
atoms, which we regard as given. In principle V(r;;) can 11 (jp8 (1959)' J. de Boer and B. S. Blaisse, Physica 14, 149 {1948).' E. R. Dobbs and G. O. Jones, Reports on I'rogress in I'hysics

(The Physical Society, London, 1957), Vol. XX, p. 516.
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TABLE I. Values of the parameters e and 0 in the 12—6 potential. TABLE II. Lattice sunlnlation constants. '

He'
He4
H2'
H~2

Ne
A
Kr
Xe

~ (ln K)

10.2
10.2
37
37
36.2

121
166
232

cr (in A)

2.56
2.56
2.93
2.93
2.74
3.40
3.66
3.98

0.347
0.302
0.195
0.137
0.0658
0.0212
0.0113
0.0070

14.45 12.80

C12

13.13

or using Eq. (7),
Eop* ——E*(Vpp"'),

Voo" = (Cn/Co) '*,

a Values from reference 2.

C14

12.06

hence the expectatioii value of the kinetic energy per
particle, V(a/8)' in units of p, goes to zero as X.

Thus in the classical limit, X—+0, the energy of the
solid at O'K under no external influence is given by

and
Eoo ——pCo'/Cip. (9)

Substituting the numerical values of C6 and C~~ from
Table II, one gets

N N—=—Q P p(X,,),
2 i=I j=l

(5) and
Voo*=0 916

Epp~ ———8.61.

(10)

where the vectors X, describe the static positions of the
atoms. The set of all vectors X is determined by choosing
one of them as origin and requiring that E is a minimum
with respect to displacements of all the others. If one
restricts the considerations to periodic lattices one can
write, using Eq. (4),

E/4piV=-', (CgpX "—CpX ')

where X is the nearest neighbor distance, in units of a-,

and the C's are tabulated' constants which depend
only on the lattice structure.

The volume and cohesive energy of the solid, under
no external influences, can be found by minimizing the
right-hand side of Eq. (6) with respect to X for different
lattices. In the case of a 12-6 potential the lattice with
the largest cohesive energy is a close packed lattice. ~7

The values of the C's appropriate to a close packed
lattice" are listed in Table II.

A classical law of corresponding states, assuming a
close packed lattice, can be obtained from Eq. (6) and
Table II as follows.

The volume V of a close packed lattice of E atoms is
given by V=2:EE.', where E is the nearest neighbor
distance. Defining E*:E/Eo, V*=—V/cVo'—=2 'X' we
can write Eq. (6) as

E*=-,'(Cgpv* 4—2CpV* ').

The volume Vpp* and the cohesive energy Epp' at tem-
perature O'K and zero pressure are given by

=0
+pope

' J. de Boer, Progress in Low-Temperatlre Physics, edited by
J. C. Gorter (North-Holland Publishing Company, Amsterdam,
1957), Vol. II, Chap. I.

'The cohesive energies of a fcc and a hcp lattices diRer only
by one part in 104, and such small diRerences are beyond the
accuracy of the present calculations.

The bulk modulus Ppp*, and hence the comPressibility,
at, O'K and zero pressure can be obtained from the
definitions

and

Pe dE@/d Vg (12)

~V*- ~V* (~V*) o

~'= —Pop* 1+Phoo +PpooI
I + . , (13)

Voo* — Voo* E Vpp*)

where hV*=—V*—Vpo and I'* is the pressure measured
in units of p/0'.

Using Eqs. (7), (10), (12), and (13) one gets

(14)Pop~ = Vpp~(d'E*/d V*')ye =y,p ——75
and

p,"=Voo*'(d'E*/dV*') v*=v„ /2poo*= —4.5. (15)

The sound velocity can be calculated on basis of two
assumptions a,bout the elastic constants'. (1) isotropy,
cu c» = 2c44, and (2) Cauchy relation, clap = c44. Under
these assumptions one has

&'= 3'&'= (p»/p) * (16)

poo'= 6.4(~/M) i. (19)
' C. Kittel, Introduction to Solid State Physics (John Wiley k

Sons, Inc. , New York, 1956).

where p is the density and c' and c' are the longitudinal
and transverse wave sound velocities, respectively.
Vnder the same assumptions the bulk modulus, '
p—= —V(dI'/dv) = (c~~+2c~o)/3, is given by

p= Scu/9.

From Eqs. (12)—(15), (16) and (17) one gets

c' =3'c'= {(9o/SM) V~'(Pop*/ Vpp*)

X I
1+2Pi"&V*/Voo*+ . .j) ' (1g)

which at temperature O'K and zero pressure reduces to

cpp' ——11.1(p/M) &,

a11CI.
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8= irtC (64r'iV/ V) '
where c is defined by

3/c'= 1/cP+2/ciao,

(20)

(21)

and represents an average sound velocity. Under the
assumptions leading to Eqs. (17)—(19) one gets

Even though the concept of a Debye temperature 8
is purely quantum mechanical, i.e., 8 is linear in A, one
can define a Debye temperature on the basis of an
elastic continuum model' as

of the interatomic potential, Eq. (2), one can use non-
overlapping single-particle wave functions. ' In this case
all the sects connected with symmetry or antisym-
metry of the nuclear wave function vanish, i.e, , all the
exchange integrals are equal to zero. Roughly speaking
these exchange integrals, in units of e, are of the order
of exp( —-(Xo/8)'}= exp( —4/X), see Eq. (52), and
hence they are quite negligible in comparison with the
cohesive energy for all inert gases except He (see
Table I).

Ke choose our variational wave function C as

c=0.64c'. (22)
e(xi,xo, . xy)=g po;(x, —X~) (29)

Making use of Eqs. (17)—(22) and of the definition of
3 we can write, in units of e,

and for simplicity we take'
8*=4.75XV'" '

y [(v4/v p)op 4v 4'(1+2' potIv4/v @)]1 (23)
P&(~&) ( / ) I ~'/ I / I ~'/ I ~ ~' ~ /

and
From Eqs. (10), (14), (15), and (23) one obtains for the

y, (;)=0 for, ~&a/0,
Debye temperature at O'K and zero pressure,

Opp~ =40.A.
A constant g analogous to a Grueneisen constant can

also be defined as

g—= —(d ln8'"/d ln V*),

where the vectors X; describe a close packed lattice, "a"
is a variational parameter, and g, =x;—X;.

The expectation value of the Hamiltonian H con-
tained in Eq. (3) is given by'

(H/iVp)= E*=h'(po—/a)'+E *

which in view of Eq. (20) can be written as

g = —,
' —(d inc/d ln VP).

From Eqs. (18) and (26) we can write

goo= —(Pi +p),

which according to Eq. (15) becomes

goo=3 83.

III. QUANTUM MECHANICAL LAW OF
CORRESPONDING STATES

(26)

(27)

Ã N N V t4 (g)p, i(g)
+-ZEROS

2 ~i 4'=i ~=«~ X;,(2s+ 1)!(2t+ 1)!
s+t~

Xw I'&'+"'[X"]=—E*+E„*+tIU* (31)

where the first term represents the kinetic energy, E,&*

is the potential energy of a st~atic lattice given by the
right-hand side of Eq. (7), X,;=X;—X;,

w(x)—=xv(x), wi"i[y]—=[d w(x)/dx"]. =„

For a real solid X/0, and the results contained in
Eqs. (5)—(28) will be somewhat modified by the effects
of nuclear zero point motion. In this Section we present
a discussion of these eGects based on a variational
Heitler-London wave function previously used by the
author. ' The quantum mechanical corrections will be
expressed in the form of a power series in A, i.e., in 5,
and the results will be expressed in the form

Fp*=Fpp*(1+aiX+apX'+ . ))

where Ii represents some property of the solid such as
cohesive energy, compressibility etc. ; Fop* stands for
the classical value of this quantity as given by one of
the Eqs. (10)-(28), and Fp* for its value when quantum
mechanical effects are taken into account. '

In order to avoid infinities arising from the singularity

' A double zero subscript indicates the value of a quantity at
a temperature of O'K and zero pressure when X is taken equal to
zero. A single zero subscript indicates T=O'K, p =0, but 'A &0.

..()-=I e l~(~)l'dr. (32)

The last term, AU*, on the right-hand side of Eq. (31)
represents a correction to the static potential energy
arising from the nuclear zero point motion. %hen the
lattice summation in Eq. (31) is performed [see Eqs.
(15) and (6)], one gets

where
AU*= A(P+ Bn4+ Cc44+

2 =pop i[SSC44X "—20CpX '],

(33)

(34)

and n—= 44/4rp, p„= (s/a)'"t4, Cp, and C44 are tabulated
constants' (see Table II), and 8 and C are given' by
equations similar to Eq. (34).

From Eqs. (30) and (32) we obtain
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and
Py = 2.79. (36)

If &((1 one 6nds' Lsee Eq. (52)$, as a result of the
variational calculation, that c((0., and hence we can
neglect terms involving powers higher than cP in hU*.
In this approximation we can write Eqs. (33) and (31)
as

ay= 1.85, (47)

where 8—=A&, and we introduced abbreviations such as
(E.i")« for (d'8, &*/dV*')v~-v„~.

From Eqs. (7), (8), (10), and (40) we obtain the
following numerical values: (E,&")o0=82, Boo'= —78,
Boo"—267 and (E„")Op=—800, which with Eq. (46)
give

a~=4.6. (48)

E*—E,i*+A'n '+An', (38) From Eqs. (10), (45), (47) and (48) we can write

n02(V*) =LA &(V"). (42)

Substituting Eq. (42) into Eq. (38) we obtain for the
optimized energy"

Z*(V*)=E.,*(V*)+2XA'*(V*). (43)

The volume Vo*(X) at O'K and zero pressure is given

by the solution of the equation

(BE*/8V*)y* —p,e

=9/iiV*(E„;"+2XA~)jv*=v,*=O. (44)

Equation (44) can be solved numerically' for given
values of X. An approximate analytical solution, in the
form of a power series in X, can be obtained as follows.

Ke write

Vo*(X)= Voo*+ (aiX+agP+ ), (45)

where VQQ*=0.916 is the volume at O'K and zero pres-
sure as given by the classical law of corresponding states
Lsee Eq. (8)). Expanding 8/BV*(E„*+2XA )~in a
Taylor series about Vpp* and collecting terms in powers
of X we can write Eq. (44) as

X (aiE, i"+2B')Op+A'(2uiB" +a2E„"
+2&2& i"')00+& ( )oo+ ' =0, (46)

'ONote that in the present approximation the expectation
values of the kinetic energy, E*, and of the corrections to the
potential energy, AU*, are equal, a result which bears a re-
semblance to the consequences of the virial theorem as applied
to harmonic oscillations.

where, in view of the numerical values in Eqs. (35),
(36) and Table II, A is given by

A = (2965X '4 —715X '). (39)

For a close packed lattice V*=2 &X', and in this case
we can write

~ =59OV*-~4»—284V*-»3. (40)

We note that Eq. (38) is meaningless for large volumes
since A (V*) becomes negative for V*)1.44.

Starting with Eq. (38) we can derive results corre-
sponding to those contained in Eqs. (10)—(28) as follows.

For a given volume the optimizing value ep of the
parameter n is found by use of the variational theorem,
l.e.)

(&&*/~&) = .~v*&=0,

which in view of Eq. (38) gives

Vo*(lb ) =0.916+1.853 +4.6X'+ (49)

The mean square deviation P=—((r;—R,)') of an
atom from its lattice site is given by Eqs. (30) and (32)
as

(50)

which, in view of the definitions following Eq. (34), can
be written as

/+2= (h/~)2 —p ~2

Equations (36) and (42) give for the optimum value
f gg

8~'= 2.79XA *(V*),

which when expanded in a Taylor series about Vpp" gives

80*'=P(VO*)/0. 3'= 2 79LC+ (Vo* VoD*)C + ' ' ' ' jo»

where C=—8 '=A &. Substituting numerical values for
COO=Boo '=1/23, Coo'= —Boo'/Boo2=78/530=0. 143
and Vo —V«*——1.85K LEq. (49)j one obtains

8O*'——0.121K(1+6.1X). (52)

Eo*=—E*(VO*)= (E,( +AU*i':,i'-
+)~V'&,i"+ .)00*

+2K(B+AV*B'+ . )oo
= —8.61+46K—1402 (53)

where use has been made of the numerical values for a~,
(Z„")pp* etc.

The bulk modulus Po* at O'K and zero pressure can
be obtained in an analogous manner from (see Eqs. (12)
and (13)j

AV* f' AV*
&*—=—po*

~

1+pio +
Vo* & Vo

where AV*—= V —Vo*, and E,* is given by Eq. (43).
From Eq. (43) we can write

Pe= (24.3Ve s—28.9Ue 3)+114XVe 'oisf(Vs)
—=C(V*)+XQ(V*), (55)

f(V"')= (1—0.27 V*')/(1 —0.48V*')'*

The cohesive energy Ep* at O'K and zero pressure
can be found from Eqs. (40), (43), and (49) by expand-
ing the right-hand side of Eq. (43) in a Taylor series
about Vpp . One obtains
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can be taken equal to unity since its value lies between
0.99 and 1.02 for V* between 0.70 and 1.05.

Expanding P*(V*) in a Taylor series about Vo*, and
remembering that P*(V0*)=0, one gets

Pe(Vg) P(Us V'e)P+1(Ue Ve)2P»

+0(V*—Uo*)'P"'+ ]0
(U4 Ve)|P/+(Ue V Q)PI/

+2(Vo*—Uoo*)2P"'+ ]oo

+2(V*—Vo*)'LP"+(Uo*—Uoo*)P"'

+2(Vo*—Voo*)'P'+ .]00+ . . (57)

Comparing Eqs. (54) and (57), and using Eqs. (45) and
(47), one obtains

po"'= —Vo*LP'+aiXP"+X2(a2P"
+-2ai'P")+ ] (58)

1.4

go

& 2.2

2.0 0.05 O.IO 0.15

p o~p 00 (61)

The longitudinal sound wave velocity c' can be ob-
tained in a manner similar to Eqs. (16)-(18),i.e.,

c'= (ge/5M)'LU*'(Po'/Vo*) (1+2P 'hU*/Vo*)]' (62)

or using Eqs. (45), (47), (60), and (18)

co'=coo'(1 —7.4X+ 14.4X-')"—coo'(1—3.8X). (63)

A Debye temperature can be de6ned in a way analo-
gous to Eqs. (20)—(24).At 0'Kand zero pressure one gets

8o*=8oo*(1—3.8X)(1—aiX/3Voo)=8oo*(1 —4.Q.). (64)

In a way similar to Eqs. (25)—(28) we can define a

"J.W. Stewart, J. Phys. Chem. Solids 1, 146 (1956).

pro= —(-'V0*2/po*) )p"+aiXP"
+X'(a2P"+-21a12P'')+ ]. (59)

Neglecting terms cubic and higher in X one can write

Po*——(Voo*+aiX+a2X2) LC'+), (Q'+aiC")
+X'(aiQ"+a2C"+-', ai'C"')]oo= —Voo Coo'*

X(1+XLai/Voo*+ (Qoo'+arC00")/Coo'*]

+~ La2/Uoo+ (ai/VOOC00) (Qoo+aiC00 )
+(a1Q00 +a2C00 +sa1 Coo )/Coo]

—Poo*(1—9.4K+28.2X2), (60)

where use was made of the values: a~=1.85, a2=4.6,
t/'op*= 0.916, Coo' = —82, Coo" = 800) Coo"' = —7200,

Qoo = —556 and Qoo =2630.
Likewise we could obtain Pro from Eq. (59), and write

Pi'=Pi'(1+hZ+eh'). It turns out that the term linear
in X has an almost vanishing (—0.04) coeRcient.
Furthermore pi is obtained from experiment, by fitting
the high pressure data to a convenient analytical for-
mula such as the one proposed by Birch," and
Pro—=Pi(V*=V0') iS in general quite diferent frOm

pi(V*WV0*). For these reasons we prefer to write at
O'K and zero pressure

FIG. 1. Reduced volume at O'K and zero pressure as a function
of the quantum mechanical parameter X. The present calculations
break down for Vo"/Voo &1.57. The circles from left to right
correspond to experimental values for Xe, Kr, A5, Ne ', and H~ .

constant gp analogous to a Greuneisen constant. From
Eqs. (27) and (61) we obtain

go=goo= 3 83. (65)

An independent definition of a Debye temperature
O' can be given in terms of the zero point energy
E„*=X*+AU*=ZXA—&(V), see Eqs. (31) and (43), by
means of the relation

(9/8)ko=E„. (66)

Using the values: 8=A'*=23, 8'= —7—8, 8"=267 at
Vpo* one can write

A&(V0)—23(1—6.3K+12.4)P)

and hence from Eq. (65)

Oo*——40.8X(1—6.3K+12.QP).

(67)

(68)

"D.G. Henshaw, Phys. Rev. 111, 1470 (1958).

IV. COMPARISON WITH EXPERIMENT

In this Section we compare our results, Eqs. (49)—(68)
with the available experimental data.

Figure 1 shows experimental points' "" for Vo*
as a function of ). The solid line corresponds to our
Eq. (49), and the dashed one to the linear approxima-
tion Voe—0.916+1.85K. The agreement even for
Ne(X=0.066) seems to be very good. For solid deuterium
(X=0.137) the agreement is less good, as might be ex-
pected since in this case the quantum corrections to the
volume amount to about 30'Po. Nevertheless the dis-
crepancy is only about 6% and it can be removed by
reducing the value of o for H22 (see Table I) by about
2%
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0.6
= 40.6 (1-4.5X)

) = 40.s (1-63)+12.48)
= so.7 (1-s.s) )

0.7

0.8

Qp

80

0.05 0.10 0.15

25 I

0.02
1

0.04
t

0.06 O.OS

Fzo. 2. Reduced cohesive energy as a function of the quantum
mechanical parameter X. The circles from left to right represent
experimental values5 for Xe, Kr, A, and Ne.

1.0

0.8

'Kj
extr.

0.6—

c) A(65

0.4—
OA(77

In Fig. 2 the experimental values' for the cohesive
energy are compared with our Eq. (53). The agreement
again is very good including Xe. For deuterium,
(X=0.137) not shown in Fig. 2, the agreement is again
not so good indicating that our procedure of (1) keeping
only quadratic terms in Eq. (33) and. (2) expanding
E*(Vp) in a power series Lsee Eq. (53)j is not adequate
except for X(0.10.

Figure 3 shows experimental data~" for the initial
bulk moduli. The theoretical results seem to be in good
agreement with the low-temperature data. High-

Frc. 4. Reduced Debye temperatures in units of X. The solid
line 80* represent theoretical results when the Debye temperature
is defined from the elastic constants I Eqs. (16)—(24) and (64)].
The solid line O~p* correspond to (9/8)kO~=Ep. LEquations (66)
—(68)7. The dashed line was arbitrarily drawn through the circles
which represent experimental values. '

temperature data" for the initial bulk modulus of 2 are
also shown in Fig. 3 in order to illustrate the necessity
of using low-temperature data when comparing theoreti-
cal with experimental values.

In Fig. 4 the Debye temperatures as given by our
Eqs. (64) and (24) on the one hand and Eq. (68) on the
other are compared with the experimental values. ' The
agreement is only fair, and this seems to indicate that
the assumptions leading to Eqs. (20)-(24) and (64) are
not quite valid. The dashed line in Fig. 4, drawn arbi-
trarily through the experimental points, corresponds to
ep*/X=34. 7(1—3.8X). In this connection it is worth
mentioning that the sound velocities for A as given by
Eqs. (63) and (16)—(19) are also larger (by about 7%)
than the extrapolated experimental values. "Table III
shows the experimental values and our results for A.

A strict comparison of the volume derivative of the
compressibility, i.e., Pr in Eqs. (13), (15), and. (61), is

not possible. However from the experimental values of
Stewart" it is possible to obtain values for Pr at higher
pressures as follows. The parameter t in Birch's equa-

0.2— TABLE III. Sound velocities for solid argon.

cp' (m/sec) cp' (m/sec) cpp/cpp

1

0.05
I

O.l 0.15

Theoretical
Experimental

1610
1510

940
810

0.58
0.54

FIG. 3. Initial bulk moduli as a function of the quantum
mechanical parameter. Experimental data: Kr, A(0'K) from
reference 5; A(65'K), A(77'K), ¹(4'K)and HP('4 K) from
reference 12.

& Experimental values from reference 13.

"J.R. Barker and E. R. Dobbs, Phil. Mag. 46, 1069 (1955).
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TAsLE IV. Summary of the classical and quantum mechanical laws of corresponding states,

Classical
Quantum
mechanical
Eq. No,

Vo*

0.916
0,916

X (1+2.02K+5M)
49

—8.61—8,61
X {1—5.34K+16M)

53

pe

24.3V*-s -28.9V~-2
(24.3V+ 5 —28,9V~ 3)

+114XV+ '0~2

55

p

75
75

X {1—9.4~+2»2)
60

PIO gil:2

—4.5 0—4.5 0.121K
X(1+6.»)

61 52

C0l

11.1 {e/M)
11,1 {~/M)&
X (1 —3.8X)

63

g0+ g0

40.6X 3.83
40.6) 3.83

X (1 —4.5~)
64 65

tion" is connected to our Pre by the relation

Pre = 2$/3 —15/6 (69)

as can be seen by expanding the Birch function in a
Taylor series about y= 1 (i.e., zero pressure). From our
theoretical value of pro= —4.5 Lsee Eq. (61)7 we obtain
P= —3.0. The values of $ that give the best over-all fit
of Stewart's data" are: —4.0~0.5 for Xe at O'K and
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0.9

0.70

t

IO

p 00 atmos)
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FIG. 6. Compression of Ne and A at O'K. The experimental
values are from Stewart ""

20
pff

1''zG. 5. Reduced volume as a function of the reduced pressure
for several inert gases at O'K. The lowest curve, P, t*, corresponds
to the classical static value in which nuclear zero point motion
ef'fects are neglected.

—4.9+O.S for A at 65'K. Considering that these ex-
perimental values are obtained from the high pressure
data we may characterize the agreement between theory
and experiment as good.

The agreement between the value g=3.83 for the
average Gruneisen constant defined by Eqs. (25)-(28)
and (68) and the accepted values" may also be con-
sidered as good.

Finally we discuss our results for higher pressures.
Figure 5 shows the reduced volume V* as a function of
the reduced pressure P*, as given by Eq. (55). These
results coincide with those from a more tedious calcula-
tion in which higher powers in n are kept in Eq. (33).
In Fig. 6 the theoretical and experimental results for
Ne at O'K" for A at 22'K" and 65'K" are compared.
The agreement again can be considered as good."

V. CONCLUSION

From the discussion of our results in the preceding
Section we may conclude that a simple Heitler-London
model is sufhcient to provide a quantitative account of
the deviations from the classical law of corresponding
states. " Furthermore the Heitler-London model used
in the present calculations is simple enough to allow
these corrections to be expressible in simple analytical
form, and thus it provides a law of corresponding states
in analytical form which includes quantum mechanical
eGects due to nuclear zero point motion. Table IV sum-
marizes the quantum mechanical law of corresponding
states as given by our Eqs. (31)—(68) and also lists the
corresponding classical results LEqs. (7)—(28)7.
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