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Thermal Conductivity of Germanium from 3°K to 1020°K
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The thermal conductivity of germanium has been measured from 3°K to 1020°K. From 3°K to 300°K a
longitudinal heat flow method was used. A radial flow method employing small samples was used from
300°K to 1020°K. The advantages and special experimental techniques required in this radial method are
discussed. From 3°K to 10°K the results are explained by a simple combination of boundary plus isotope
scattering in which all phonon-phonon processes can be neglected. At all temperatures below 940°K the
heat is carried by phonons, but at 940°K a sharp rise in the thermal conductivity indicates the presence of
a second conduction mechanism which may be electron-hole pairs.

INTRODUCTION

HE thermal conductivity of germanium at high

temperatures has been measured several times
by longitudinal heat flow methods. See, for example,
McCarthy and Ballard,! Pankove,? Ioffe,® Kettel* and
Abeles. This method has also been used extensively
below room temperature by White and Woods,5 Car-
ruthers et al.” and Geballe and Hull.?

This conventional method of measuring thermal con-
ductivity employs a steady-state flow of heat along a
rod-shaped sample. A heater is attached to one end of
the rod, and the other end is in thermal contact with a
heat sink. Two thermocouples are also fastened to the
sides or ends of the rod at appropriate points a distance
L apart. Under steady-state conditions the heat gener-
ated in the heater flows down the rod and establishes a
thermal gradient. The thermal conductivity K is then
computed from the formula

K=QL/AAT, 1)
where Q is the heat energy input per unit time, 4 is the
cross-sectional area of the sample, AT is the temperature
difference between the thermocouples.

Serious errors due to radiation losses can occur in this
method at high temperatures, but it is satisfactory at
low temperatures. To compensate for these losses one of
the two techniques is usually used: (A) One provides
one or more radiation shields around the sample. Ideally
these shields should fit snugly around the sample.
Heaters must be attached to the shield so that the tem-
perature gradient along its length exactly matches that
of the sample. (B) An alternate method is to compute
the radiation losses from an estimated emissivity of the
sample, and combine this with the measured radiation
loss of the heater alone. In the present high-temperature

1 K. A. McCarthy and S. S. Ballard, Phys. Rev. 99, 1104 (1955).

2 J. Pankove, Rev. Sci. Instr. 30, 495 (1959).

3 A. F. Ioffe, Can. J. Phys. 34, 1342 (1956).

4 F. Kettel, J. Phys. Chem. Solids 10, 52 (1959).

5 B. Abeles, J. Phys. Chem. Solids 8, 340 (1959).

6 G. K. White and S. B. Woods, Phys. Rev. 103, 569 (1956).

7J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M.
Ziman, Proc. Roy. Soc. (London) A238, 502 (1957).

8T, H. Geballe and G. W. Hull, Phys. Rev. 110, 773 (1938).

experiment a radial geometry was used in order to
eliminate such radiation troubles. In the low-tempera-
ture part of the experiment below 300°K the longi-
tudinal method was employed.

THE RADIAL FLOW METHOD

In the radial flow method heat is generated along the
axis of a cylinder. It flows radially outward and under
steady-state conditions establishes a steady temperature
gradient along the radius. See Fig. 1 for a description of
the samples. Therefore, a heater wire must be placed
along the axis of the cylinder and two thermocouples be
placed at different radii. The thermal conductivity is
then computed from the formula

e Q In(ry/71)

) )
2xLAT

where Q is the heat energy input per unit time along the
axis of the sample, 7; and 7, are the radial positions of
the inner and outer thermocouples, respectively, AT is
the measured temperature difference, and L is the length
of the sample.

The advantage of this method for germanium is that
radiation loss from the heater is completely eliminated.
This method was first reported for solids by Callendar
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Fi6. 1. The radial heat flow method for measuring the thermal
conductivity of germanium. The heater wire and the two thermo-
couples are shown embedded in the split cylinder. One of the two
end caps is shown.
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and Nicolson.? Kingery® has demonstrated that the
radial heat flow from a cylinder will have negligible
error from end effects if the length-to-diameter ratio is
greater than 12 to 1. By an actual analysis of the
problem of the finite cylinder it can be shown that an
error of less than 0.5%, is made if the length-to-diameter
ratio is greater than 4 to 1.

Normally most investigators that have used the radial
flow method for solids have tended towards large sam-
ples, e.g., 15 cm in diameter and 60 cm in length. This
is not necessary. As shown here, this method can be
used on small samples if sufficient care is exercised. As
the sample size is made progressively smaller the
thermocouple locations come closer together. Hence
large heat inputs are necessary for a reasonable tem-
perature gradient. With the thermocouples close to-
gether it is difficult to measure the exact radial distance
of each thermocouple from the center. Fortunately the
precise location of the thermocouples is not as critical
as in the longitudinal flow method, since the radial
distances of the thermocouples appear as In(rs/71). In
the present experiment the uncertainty in this term is
about 2209, and accounts for most of the error in the
absolute value of K.

EXPERIMENTAL DETAILS

For the radial flow experiments above 300°K a bar of
very pure (zone melted, p=30 ohm-cm at 300°K,
n-type) polycrystalline germanium was carefully ground
to 1.27 cm in diameter and cut to about 6.1 cm long.
The average crystallite size was measured as 0.2 cm by
standard metallographic techniques. The sample was
carefully sliced in half lengthwise using a 0.0254-cm
thick diamond cutting wheel. The flat surface of each
half was carefully polished to remove cutting marks.
Thus the two halves fitted together quite well upon
assembly. In this manner there is little chance for loss
of heat by radiation, conduction, or convection out
through the cut. Then three square slots 0.0254 cm wide
were cut lengthwise in one of the halves for the center
heater, the inner thermocouple, and the outer thermo-
couple, respectively. The heater was a single strand of
nichrome wire, and platinum vs platinum—109, rho-
dium was used for the thermocouples. These wires were
then cemented in their respective slots. Figure 1 shows a
drawing of the leads imbedded in the sample. Sauereisen
Insalute No. 1 was used for the high-temperature
cement. It is a sodium silicate base cement. By careful
use of this cement it was possible to avoid contact of the
wires with the germanium up to the highestztempera—
tures used. The halves were then assembled andiheld
together using two aluminum oxide ceramic end caps.
Stainless steel screws in these caps were used to provide

®H. L. Callendar and J. T. Nicolson, British Assoc. Report,
1897; Encyl. Brit. 6, 890 (1910-11), 11th ed.

o W. C. Kingery, J. Am. Ceram. Soc. 37, 88 (1954).

11 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids
(Clarendon Press, Oxford, 1959), 2nd. ed., No. VIII, p. 221.
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a radial compression of the sample. The screws were
isolated from the sample by platinum spacers resting
on germanium. This method held the two halves very
tightly together at all temperatures.

In high-temperature work it is very important to
avoid low-melting eutectic points. Unfortunately ger-
manium will alloy with many metals at high tempera-
ture. This temperature of alloying may be quite low. For
example gold and germanium will alloy at 623°K. Nickel
and germanium alloy at 1048°K. While no eutectic
temperature for platinum and germanium has been re-
ported in the literature, it was discovered that one exists
at about 1070°K. For the thermocouples 0.0127 cm
platinum vs platinum— 109, rhodium wires were used.
The thermocouple junction could not be any larger than
the wire because of the narrow slot in which the
thermocouple was placed. For this reason the junction
was gold brazed. Gold near its melting point (1336°K)
alloys slightly with platinum, and makes an excellent
brazed joint barely discernible from the platinum wire.
Silver would also make a useful brazing material but its
melting point (1236°K) is only slightly above the melt-
ing point of germanium (1210°K).

The heater circuit consisted of a single wire through
the center of the cylindrical sample, and this appeared
to be the best arrangement. Nichrome wire, 0.0127 cm
in diameter, was chosen for the heater wire. This gave a
heater resistance of about 1 ohm per cm. The Nichrome
was spot-welded to platinum lead wires. Since in this
method one only needs the power input per unit length,
it was feasible to place the potential leads at the ends
of the sample. Since the resistivity of Nichrome does
not vary appreciably over a maximum temperature
difference of 20°C, the power input per unit length at
the middle of the sample is nearly the same as the aver-
age value over the whole length. The heater was powered
by direct current supplied from an 18-v battery of
wet cells.

At room temperature the thermal conductivity of ger-
manium is 0.60 w/cm-deg. For a reasonable tempera-
ture difference of about 2°C approximately 6 w/cm
must be supplied to the heater. With the power input
and simple radiation cooling in air the sample would
quickly increase its temperature to about 600°K. Hence
in order to obtain room temperature measurements a
good heat sink of low thermal impedance is required. It
was found that a water cooled bath of silicone oil (G. E.
No. SF8140) met this requirement. The oil bath was
constantly stirred to keep its temperature uniform. This
bath was used for measurements up to 523°K. For ther-
mal conductivity measurements from 573°K to 1020°K
the sample was placed in air inside an aluminum oxide
tube in a resistance-heated furnace. Even at 1020°K the
oxidation of the germanium sample was negligible. The
heater power of the furnace and the power delivered to
the heater wire in the sample were varied such that a
temperature difference of about 2°C was maintained
between the inner and outer thermocouples in the sam-
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F16. 2. The thermal conductivity of germanium from 3°K to
1020°K. The data below 300°K were measured in a longitudinal
heat flow apparatus, and are compared with previous work. The
curve above 300°K is from Fig. 4.

ple. The maximum temperature of 1020°K was enforced
by the accidental burnout of the heater wire at a hot
spot.

The measurements in the longitudinal flow experi-
ment below 300°K were made on a high-purity single
crystal of germanium in a different apparatus,”? and
have an absolute accuracy of about 45%,. This crystal
was p type containing about 10" residual copper atoms
per cm?, and thus it was intrinsic # type at 300°K. It
was made from natural Ge in which all of the Ge isotopes
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Fic. 3. The thermal conductivity of germanium at 3°K as a
function of the sample diameter. A combination of boundary plus
isotope scattering is needed to explain the results.

2 G. A. Slack and R. Newman, Phys. Rev. Letters 1, 359 (1959).
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occur in their natural abundances.®®® Its dislocation
density was about 3X10%® per cm? and its size was
0.94 cm by 0.94 cm by 3.2 cm long.

EXPERIMENTAL RESULTS

The results of the low-temperature experiment are
shown in Fig. 2 together with those of several previous
investigators.5—® The agreement at temperatures above
50°K is quite good. Both the present work and that of
Carruthers ¢t al.” give a thermal conductivity of 0.60
watt/cm deg at 300°K. At temperatures below 50°K
the present conductivity values are higher than previous
ones because the sample diameter is larger. The fact
that there is a size effect even up to 50°K has been noted
before.’* This size effect is quite pronounced at the
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F16. 4. The thermal conductivity of germanium from 300°K to
1020°K as determined by the radial heat flow method. Note the
rise at 940°K. Data of previous authors are also shown.

lowest temperature of 3°K, and the conductivity vs
sample diameter is plotted in Fig. 3. For the present
sample the thermal conductivity at 3°K is about two-
thirds of the limit imposed!'® by diffuse boundary scat-
tering alone.

The results of the radial experiment at temperatures
above 300°K are given in Fig. 4, as well as results
of previous investigators.*~5 The geometrical factor
L 1In(ry/r;) in Eq. (2) is somewhat uncertain because
of the small value of 7,. This uncertainty is a constant
factor independent of temperature. Hence the absolute
value of K determined from Eq. (2) was multiplied by
1.24 in order to match the high-temperature results to a

( 13 G). T. Seaborg and I. Perlman, Revs. Modern Phys. 20, 585
1948).

4T, H. Geballe and G. W. Hull, Bull. inst. intern. froid,
Annexe 1955-3, p. 460.

15 H. B. G. Casimir, Physica 5, 495 (1938).
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conductivity of 0.60 watts/cm deg at 300°K. The tem-
perature dependence of the results in Fig. 4 is exactly
that which was measured. The present results lie be-
tween those of Ioffe and Abeles at 300°K, and lower
than either above 700°K. It is believed that the present
data are more nearly characteristic of germanium than
previous work since spurious radiation losses from either
the heater or the sample have been eliminated. Such
losses only tend to make the apparent thermal con-
ductivity too large, particularly at high temperatures.
The data of Kettel are rather noticeably affected by
this trouble.

The results show that above 300°K the thermal con-
ductivity of germanium varies as 7-!2 and that the
extrapolated lattice thermal conductivity at the melting
point is 0.12 watt/cm deg. An abrupt rise in the thermal
conductivity is observed at 940°K, and is qualitatively
similar to that found by the other investigators.

ANALYSIS OF RESULTS BELOW 300°K

A comprehensive study of the thermal conductivity
of germanium below 100°K has been published by
Callaway,'® and will not be repeated here. His main
conclusion was that the thermal conductivity below
100°K of germanium with its natural isotopes is de-
termined by phonon-phonon scattering, point impurity
(i.e., isotope) scattering, and boundary scattering. The
effects of normal three-phonon scattering are included
since they modify the phonon spectrum. The analysis
of the data below 10°K can be made in a much simpler
fashion, as Callaway points out, since both the normal
and umklapp processes are unimportant at these low
temperatures. Consider the following expression'’ for
the thermal conductivity in the Debye approximation:

AnkA TS 917 () atevda
K= f @3
0

2213 (e=—1)2 ’

where x= (hv/kT), I(x) is the phonon mean free path as
a function of temperature 7" and phonon frequency »,
the average phonon velocity is v, the Debye temperature
is 6, and %k and % are Boltzmann’s and Planck’s con-
stants, respectively. The only important variables in
Eq. (3) are T and I(x). If at all temperatures I(x)=L,
the sample diameter, then K is always finite and has the
same temperature dependence as the specific heat of the
solid. This gives an upper limit to K at room tempera-
ture and above of about 105 w/cm deg for ger-
manium when L=1 cm. Clearly this is much too high.
The next step is to include point impurity scattering in
the theory. It was pointed out by Peierls'® that point
impurity scattering by itself will not lead to a finite

16 J, Callaway, Phys. Rev. 113, 1046 (1959).
1 G. A. Slack, Phys. Rev. 105, 829, 832 (1957).
18 R. Peierls, Ann. Phys. 3, 1055 (1929).
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thermal conductivity. Most authors'®~® have resorted
to invoking phonon-phonon scattering combined with
the point impurity scattering in order to produce a finite
thermal conductivity. However, since boundary scatter-
ing alone yields a finite thermal conductivity at all
temperatures, a combination of boundary and point
impurity scattering will yield a finite value. Further-
more, since phonon-phonon scattering becomes rela-
tively unimportant at temperatures below the maximum
in the thermal conductivity curve, this simple combina-
tion of point impurity plus boundary scattering provides
an accurate prediction of the results at these tempera-
tures. When impurity scattering alone is present /(x)
is given by'?

ly= (H/2")(6%/T"), *)

where H=ao/220BT, a.®is the average volume per atom,
and BT is the isotope scattering parameter. In deriving
Eq. (4) the following approximation® was used:

9="hv/1.161ka,.

This approximation is not too bad for germanium. The
mean free path for boundary scattering is the sample
diameter, L. The appropriate? I(x) to substitute in
Eq. (3) is (J,'+ L)L It is convenient to introduce a
reciprocal temperature parameter, (7!, which is the
value of ¥ when /,= L. In the low-temperature region,
where 7<6, the result is

e Y

T ()= (6/1)(H/L)*. (6)

The dependence of K on T can now be determined. This
gives the pure boundary scattering value at very low
temperatures (} — «) of

K =25.98 (4w kt/1213) LT*, o)

which isindependent of I'. At intermediate temperatures
the integral in Eq. (5) can be evaluated from values of
I, previously published.'” At very high temperatures
(t— 0) the value of K is independent of temperature
and finite. Its value is very nearly

K =4 (4 kt/w215) LAH6P, (8)

Here K varies as I'-%. The expression for K (7T) in Eq. (5)
can be evaluated for germanium using!” v=23.81X10°%
cm/sec, §=362°K at 0°K,22 gy=2.83X 1078 cm, I'="5.86
X10~41 and B has its theoretical value of 1/12. At high
temperatures (¢<0.1, 7>150°K) this gives K=45
watt/cm deg for L=1 cm. The behavior of K vs T

BT, Pomeranchuck, J. Phys. U.S.S.R. 6, 238 (1942).

2 P, G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951).

A F, Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, New York, 1940), p. 111.

2 P, H. Keesom and N. Pearlman, Phys. Rev. 91, 1347 (1953).



786 G. A. SLACK

100

SLACK AND
/ GLASSBRENNER

S
T

KLEMENS

(2]
T

CALLAWAY

lF

THERMAL CONDUCTIVITY, WATTS /CM DEG

GERMANIUM
o DATA
L=lem

03

0.l 1 I { 1
1 3 10 30 100 300

TEMPERATURE, °K

Fic. 5. Several theories of the low-temperature thermal con-
ductivity of germanium. All of the theories give the correct be-
havior below 10°K. The curve by Slack and Glassbrenner neglects
all phonon-phonon processes, while the other two authors consider
them in different approximations.

for this simple combination of boundary plus isotope
scattering is shown in Fig. 5, as the uppermost curve.
It should be noted that this curve was computed exactly
from the numbers above using no adjustable constants.
The fit to the experimental data points is surprisingly
good on the low-temperature side of the maximum.

The thermal conductivity of germanium has also been
computed with the effects of phonon-phonon scattering
included. In the method suggested by Klemens® the
effects of the normal phonon processes are included by
use of a cutoff approximation. The integrals involved in
this method have been evaluated,'” and the results are
shown as the middle curve in Fig. 5. This curve is a
calculation from the approximate theory without any
adjustable parameters. The effects of both normal and
umklapp phonon processes are included by Callaway.'®
By use of one adjustable parameter he was able to fit
the data up to 100°K, as shown in Fig. 5. All three
approximations give the same results at temperatures
below 10°K, and shown that the neglect of phonon-
phonon scattering is valid here.

The size dependence of the thermal conductivity at
3°K can now be analyzed in terms of a combination of
boundary plus point impurity scattering. It is assumed
that the boundary scattering mean free path is equal to
the equivalent sample diameter. This is the diameter of
a circle of the same cross-sectional area as the sample.
This is a good approximation if the phonon scattering
at the crystal surface is perfectly diffuse. If the scatter-
ing is partially specular, then the mean free path will
exceed the sample diameter.? For no point impurity

2 R. Berman, F. E. Simon, and J. M. Ziman, Proc. Roy. Soc.
(London) A220, 171 (1953).

AND C. GLASSBRENNER

(i.e., isotope) scattering K increases linearly with L, as
shown in the diffuse boundary scattering curve in Fig. 3.
For the combination of isotope plus diffuse boundary
scattering the variation of K with L at 3°K was de-
termined from Eq. (5). The results are the lower curve
in Fig. 3. The experimental points from the different
authors agree reasonably well with the theory. The
preparation of the crystal surface was not the same in
all cases. The fact that no points fall below the lower
curve in Fig. 3 indicates some specular reflection proba-
bly occurred. In the present experiment the crystal
surface was cut on a diamond wheel and then moder-
ately etched to provide a diffuse reflecting surface. The
agreement of this point at 1.06 cm with the theory is
almost too good. Previous experiments on the size de-
pendence of boundary scattering show that KC1,% SiO,,%
and diamond?® exhibit a slower than linear increase of K
with L, whereas experiments on Al,O3 ?® exhibit a linear
increase. The difference is probably caused in part by
the fact that in the first three cases a combination of
boundary plus point impurity scattering is present,
whereas in Al,O; boundary plus umklapp scattering is
present.’” The umklapp scattering decreases more
rapidly with decreasing temperature than point im-
purity scattering, and so it is not important at tem-
peratures below the conductivity maximum.

ANALYSIS OF RESULTS ABOVE 300°K

For temperatures above the high-temperature value
of the Debye temperature of germanium?$ of 400°K the
theory?” of phonon-phonon scattering indicates that A
should vary as T This is close to the observed varia-
tion of 712, The difference between —1.2 and —1.0 is,
however, thought to be real, but of no tremendous
theoretical significance. The polycrystalline nature of
the sample cannot alter the behavior above 300°K, since
the 0.2-cm crystallite size will produce crystallite bound-
ary scattering only below about 30°K.

From 3°K to 940°K practically all of the thermal
energy is transported by phonons. The abrupt rise in
the thermal conductivity at 940°K makes it appear as
though another mechanism of heat transfer enters the
problem. This mechanism might be photons,?# exci-
tons,? or electron-hole pairs.33 There is also the possi-
bility that a phase change or a specific heat anomaly in
germanium might exist at high temperatures. Phase

24 W. J. deHaas and T. Biermasz, Physica 5, 47, 619 (1938).

25 R. Berman, E. L. Foster, and J. M. Ziman, Proc. Roy. Soc.
(London) A231, 130 (1955).

26 F. A. Johnson and J. M. Lock, Proc. Phys. Soc. (London)
72, 914 (1958).

27 G. Leibfried and E. Schlémann, Nachr. Akad. Wiss. G6ttin-
gen, Math. physik. KI. 4, 71 (1954).

28 L, Genzel, Z. Physik 135, 177 (1953).

2 F. R. Charvat and W. C. Kingery, J. Am. Ceram. Soc. 40
306 (1957).

% B. I. Davydov and I. M. Shmushkevitch, Uspekhi Fiz. Nauk
24, 21 (1940).

P, J. Price, Phil. Mag. 46, 1192 (1955).
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changes are ruled out by x-ray studies® between 20°K
and 1110°K, heat capacity studies® between 870°K and
1170°K, and electrical resistivity measurements* from
770°K to 1250°K.

The photon contribution to the heat transport de-
pends on the optical absorption coefficient as a function
of photon wavelength, a(\), the index of refraction, #,
the absolute temperature, 7', suitably integrated over
the Planck distribution, E(\,T). The theory has been
carefully worked out by Genzel.?® Only when ad>>1,
where d is an average dimension of the sample, and
where dgrad7<XT can a true photon thermal conduc-
tivity be defined. In this case the photon thermal con-
ductivity, K,, is

drn? 1 AEQNT)
K,= f — ————dA\. 9)
3 Jo a(\) oT

If « is independent of wavelength this reduces to
K,=161*T?%/3c, (10)

where o is the Stefan-Boltzmann constant. The values
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F1G. 6. The optical absorption coefficient of intrinsic germanium
versus photon energy at several temperatures. The curve at 300°K
is based on literature data. The other curves are estimated from
literature data on free carrier absorption.

2 H. Nitka, Physik. Z. 38, 896 (1937).

B E. S. Greiner, J. Metals 4, 1044 (1952).

# A. 1. Blum, N. P. Mokrovskii, and A.R. Regel, Izvest. Akad.
Nauk. S.S.S.R. Ser. Fiz. 16, 139 (1952).
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TaBLE I. Approximate photon contribution to.the
thermal conductivity of germanium.

Av a r
T°K in cm™ w/cm deg
600 30 3.5X107%
1000 630 0.8X1073
1200 3500 0.2X1073

of » and a(\) for germanium at temperatures near
1000°K have not appeared in the literature, so it is
necessary to estimate these quantities from other data.
The temperature and wavelength dependence of # up to
300°K has been studied,® as has its value at high im-
purity concentrations,® and for the desired accuracy of
a factor of 3 in K,, a constant value of #=4.0 is taken.
The optical absorption coefficient, a(\), has been care-
fully measured®”* at 300°K, and is plotted in Fig. 6.
Above 300°K the absorption of light by free electrons
and holes becomes important in germanium for A>2
microns. At shorter wavelengths intrinsic absorption is
always present. The concentration of free carriers at
high temperatures can be obtained from electrical meas-
urements.® The « values corresponding to these concen-
trations can be estimated for electrons® and for holes*
from data taken on heavily doped samples at room
temperature. The total absorption coefficient is the sum
of the values for electrons and holes taken separately.?
Employing these data and the shift of the band gap with
temperature,®® the value of a(\) for several tempera-
tures, estimated to within a factor of 3, is given in
Fig. 6. Just below the melting point of germanium the
minimum value of « is above 10° cm™. Approximate
average values of a over the Planck distribution were
used to compute K, from Eq. (10) as shown in Table L.
These K, values are negligible compared to the measured
values of K. For temperatures below about 500°K ger-
manium becomes optically transparent (i.e., ad~1), and
Eq. (10) is no longer applicable. The important quantity
becomes the direct radiative heat loss, Q,, from the
heater wire compared to the amount of heat, Q., con-
ducted away by the germanium. This direct radiative
loss, Qr, is about a 0.0049, correction at 500°K in the
present experiment, and less at lower temperatures. It

35 M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem.
Solids 8, 204 (1959).

38 W. G. Spitzer and H. Y. Fan, Phys. Rev. 106, 882 (1957).

37 R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954).

38 W. C. Dash and R. Newman, Phys. Rev. 99, 1151 (1955).

®F. J. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954).

“H. Y. Fan, W. Spitzer, and R. J. Collins, Phys. Rev. 101,
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should be noted that in optically transparent materials
like alkali halides® K, is important at high tempera-
tures. The intrinsic free carriers in germanium at high
temperatures make K, negligible. The result of a negli-
gible radiation heat loss, Q,, from the radial sample
heater, because it is imbedded in optically opaque ger-
manium at high temperatures, is to be compared with
the large radiation losses from the heater which are
possible in a longitudinal heat flow method. This is the
main advantage of the radial method of measuring
thermal conductivity.

The possibility of an exciton contribution to the ther-
mal conductivity has been suggested by Ioffe.? Excitons
in germanium have been studied by Macfarlane et al.,%
and found to have a binding energy of 0.006 ev. This
binding energy is quite small compared to #7 at 1000°K
of 0.086 ev. Thus excitons will be easily dissociated, and
there will be very few at high temperatures to contribute
to the thermal conductivity, as has been pointed out
by Herring.*# The unbound electrons and holes, will, on
the other hand, contribute to the heat transport.

The contribution of the free electrons and holes to the
thermal conductivity is composed of two parts. The
first of these is the Weidemann-Franz contribution
produced by the electron (and hole) gas. The second is
the bipolar diffusion of electron-hole pairs under the
influence of a temperature gradient. In the first process
each carrier transports an energy of about 27", whereas
in the second the energy transported per carrier is of the
order of the band gap. Price’s™ formulation gives for the
sum of these two terms the electronic thermal conduc-

44 C. Herring, J. Phys. Chem. Solids 8, 543 (1959).
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tivity, K., of

Ke:2(01+0'2)T(‘/f)2

e

0102 k 2 A 2
(D) [ o] av

[og 1+G’ 9 e kT
where ¢, is the electrical conductivity due to electrons
alone, o3 that due to holes, ¢ is the electronic charge, & is
Boltzmann’s constant, and A is the indirect band gap
of germanium at temperature 7. The electrical conduc-
tivity as a function of temperature of intrinsic ger-
manium has been measured from 260°K to above the
melting point.?*3 The electrical conductivity increases
monotonically up to the melting point with a nearly
constant activation energy. There is no abrupt change
in the electrical conductivity near 940°K as there is in
the thermal conductivity. The data of Morin and
Maita® have been used to estimate o up to 1210°K.
The variation of A with temperature was taken to be*
A=0.772—0.000365T ev from 300°K to 1210°K. With
these numbers the value of K, was computed as a func-
tion of temperature, and the results are given in Fig. 7.
It turns out accidentally that between 900°K and
1210°K the theoretical value of K. increases almost
proportionally to 73. This is the same temperature de-
pendence possessed by any errors caused by poor correc-
tions for thermal radiation. See Kettel* for example.
Thus considerable care has to be exercised in order to
obtain true experimental values of K,.

The two available experimental points from Fig. 4
are also plotted in Fig. 7. For these points it has been
assumed that

Ktot:Kq+Kc) (12)
where the lattice thermal conductivity, K, above
940°K is obtained from an extrapolation of the linear
portion of the curve. The experimental values of K, are
of the same magnitude as the theoretical ones computed
from Eq. (11), but they appear to rise much more
rapidly with temperature than the theory would predict.
This discrepancy is not understood. Further experi-
mental work is necessary in order to obtain data be-
tween 940°K and the melting point of 1210°K. The
most that can be said is that bipolar diffusion of elec-
tron-hole pairs is the only mechanism that is of the right
order of magnitude to account for the excess thermal
conductivity of germanium above 940°K. The agree-
ment with the experimental data is, however, only
qualitative.

CONCLUSIONS

The thermal conductivity of high-purity germanium
has been measured from 3°K to 1020°K. From 3°K to
300°K a longitudinal heat flow method was used. The
results agree well with previous data. Germanium might
be a useful thermal conductivity standard in this tem-
perature range. In the region from 3°K to 10°K the
data are explained in terms of a simple combination of
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boundary and isotope scattering. The predicted varia-
tion of thermal conductivity with sample diameter was
found. From 300°K to 1020°K a radial heat flow method
was used which reduced the problem of heat transport
by spurious thermal radiation to negligible values. At
940°K an abrupt rise in the thermal conductivity was
observed. This rise may be due to bipolar diffusion, but

FROM 3°K TO 1020°K 789
the agreement between experiment and theory is only

qualitative.
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A perturbation expansion for the ground-state energy of an
antiferromagnetic spin system is obtained in terms of a linked-
spin-cluster expansion similar to Goldstone’s linked-Feynman-
diagram expansion for the interacting Fermion system. From the
energy perturbation series, perturbation series for the long- and
short-range order may be obtained. Using these perturbation
series, the ground-state properties are calculated through seventh
order and compared with the results obtained by other investiga-
tors. In all cases, the values obtained here for the ground-state
energy are lower than those which have been obtained by purely
variational means. The results for the long-range order are

I. INTRODUCTION

ECENTLY Orbach! has examined the ground state

of a linear chain of spins one-half coupled together

with a combination of the Heisenberg and Ising anti-
ferromagnetic interactions. He was able to obtain exact
values for the energy and short-range order of such a
spin system by use of an iteration procedure on an IBM
701 computer. By such a method, he showed the varia-
tional predictions of Kasteleijn? were in error. That is,
Orbach showed that the kink in the curve of short-
range order versus relative Ising anisotropy predicted
by Kasteleijn was nonexistent. Kasteleijn also pre-
dicted the long-range order of such a linear spin system
was zero until the relative amount of Ising anisotropy
reached the value at which the kink existed in the short-
range order curve; thereafter, with an increase of
anisotropy, the long-range order was found to rise
rapidly to perfect order as the interaction approached
the limit of pure Ising coupling. Though Orbach was
unable to calculate the long-range order by his exact
method, he did point out the dangers of relying on

* This research was supported in part by the Air Force Office
of Scientific Research.

1t Now at Physical Sciences Research Department, Sandia
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1 This work is based on a thesis submitted to the Graduate
School, The Ohio State University, in partial fulfiliment of the
requirements for the Ph.D. degree, June, 1959.

1 R. Orbach, Phys. Rev. 112, 309 (1958).

2 P. W. Kasteleijn, Physica 18, 104 (1952).

radically different from the variational results but agree quali-
tatively with those obtained by spin-wave theory; however, the
method is free of the usual objections which are voiced to spin-
wave treatments of antiferromagnetism. The present work is
incomplete in that limits on the error introduced by using only a
finite number of terms of the perturbation series to calculate the
physical properties are not obtained. But the author feels that the
merit of the present work is in the method rather than the results
since it provides a consistent framework both to settle the con-
vergence question and to treat the antiferromagnetic spin system
at finite temperatures.

approximate methods, such as Kasteleijn’s, for pre-
dicting the long-range order behavior of antiferro-
magnetic spin systems.

For the two- and three-dimensional antiferromagnetic
spin systems, no exact treatment for any of the physical
properties of the ground state exists except for the
trivial case of the pure Ising interaction. Anderson?® has
given an approximate semiclassical spin-wave treat-
ment which predicts an ordered ground state for two-
and three-dimensional antiferromagnetic spin systems
when the spins are coupled by pure nearest-neighbor
isotropic exchange interactions. Using a hybrid spin-
wave variational method, Kubo® has obtained nonzero
long-range order predictions for the ground state of
one-, two-, and three-dimensional lattices when the
spins are coupled by nearest-neighbor isotropic anti-
ferromagnetic exchange interactions. Kubo’s prediction
of an ordered ground state for the linear chain, as he
himself pointed out, cast unfavorable light on his
approximation, since Anderson? had predicted disorder
for the linear chain under the same circumstances.
However, as has been pointed out by Orbach,! the

3 P. W. Anderson, Phys. Rev. 86, 694 (1952).

47To be precise, Anderson predicts an ordered ground state
when an infinitesimal anisotropy of axial symmetry is present.
In the remainder of this paper it is to be understood, when we
refer to the isotropic exchange interaction, that an axially sym-
metric infinitesimal anisotropy is assumed. Such an anisotropy is
merely to make the z axis the preferred spatial direction.

8 R. Kubo, Revs. Modern Phys. 25, 344 (1953).



