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Frictional Stress Acting on a Moving Dislocation in an Otherwise Perfect Crystal
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The problem of the frictional stress suffered by moving dislocations in otherwise perfect crystals is investi-
gated. This is done without calculating the core energies of dislocations, but by considering stresses and
strains on the slip plane. The level of frictional stresses obtained is much higher than reported previously.
Since common glide dislocations in metals with close packed structures apparently do not suffer signi6cant
frictional stresses, mechanisms are discussed which tend to reduce their effect. A new such mechanism is
discovered. It is based on the idea that the positions of dislocation axes are not de6ned with precision, but
only within one to a few times the average displacement of the oscillating atoms. The expected result of this
is a depression of the frictional stress for close packed metals even at very low temperatures, almost no eGect
on dislocations in crystals with diamond structures, and a temperature dependence proportional to
e " '~ t' ~ for NaCl type salts and, probably, for bcc metals.

1. INTRODUCTION the other crystal half, which is facing it across the slip
plane; and that the forces of interaction act only
through these atomic rows, and with the magnitude
which is appropriate to their exact position. The energy
of misfit of every pair of atomic rows can then be
expressed as a function of the distance between the
dislocation axis and the pair. This energy is a function
of the exact position of the dislocation axis with respect
to the crystal lattice. Summing over the mis6t energies
of all the pairs of atomic rows from minus infinity to
plus infinity renders an expression for the total energy
of misfit. This, again, depends on the exact position
of the dislocation axis. The corresponding periodic
force, acting on the dislocation because of the atomistic
structure of the crystal, and commonly called the
"Peierls-Nabarro force, " is then found through
diGerentiation.

The result of the calculation and its various re6ne-
ments has been that vD, , the maximum value of
this force, which has the character of a frictional stress
on any moving dislocation, is about 10 4p, and smaller,
where p is the modulus of rigidity. Moreover r&
was found to depend exponentially both on the "width"
of the dislocation and on Poisson s ratio, v, becoming
the smaller the wider the dislocation and the smaller
Poisson's ratio. Only Huntington, although 6nding
the same type of function for the frictional stress,
arrives at much higher numerical values, namely
1.7X10 'p, and 3.2)&10 'p, .

'HE question as to the magnitude of the frictional
force with which an otherwise ideal crystal

resists the motion of a dislocation has already been
treated in several papers. ' ' Most of these are based
on a paper by Peierls, ' and its clari6cation and develop-
ment by Nabarro. ' They approached the problem as
follows: Imagine that an otherwise ideal crystal, con-
taining one straight dislocation, is split along its slip
plane, but that the original stresses and strains are
maintained in the two resulting crystal halves by ap-
plying suitable tangential forces to the cut. These are
the same forces with which the two atomic planes,
which were facing each other across the slip plane
before the cut was made, have interacted due to their
misalignment. It is now assumed that the two crystal
halves with the applied surface forces behave according
to simple elastic theory. Obviously, the internal stresses
tend to spread out the strain, i.e., tend to spread out
the dislocation, while the tangential surface forces tend
to contract the region of serious misalignment, i.e.,
tend to contract the dislocation. Equilibrium is reached
when the tangential forces just balance the elastic
stresses in the two crystal halves.

Depending on the exact law which is assumed to
connect the forces of interaction with the relative misfit
between the two crystal planes, diferent solutions may
be found, for the equilibrium distribution of the dis-
placements as well as the tangential forces.

As a next step, it is assumed that every atomic row
parallel to the dislocation axis in one crystal half
interacts only with the corresponding atomic row in

2. CRITICISM OF PREVIOUS THEORIES

' R. K. Peierls, Proc. . Phys. Soc. (London) 52, 34 (1940).' F. R. N. Nabarro, Proc. Phys. Soc. (London) 59, 256 (1947).'F. R. N. Nabarro, in AdfJcnces nz Physics, edited by N. F.
Mott (Taylor and Francis, Ltd. , London, 1952), Vol. 1, p. 269.

4 J. D. Eshelby, Phil. Mag. 40, 903 (1949).' G. Leibfried and H.-D. Dietze, Z. Physiit 126, 790 (1949);
131, 113 (19S1).' H.-D. Dietze, Z. Physik 151, 156 (1952); 152, 107 (1952).

r A. J. Foreman, M. A. Jaswon, and J. K. Wood, Proc. Phys.
Soc. (London) A64, 156 (1951).

H. S. Huntington, Proc. Phys. Soc. (London) $68, 1043
(1955).

The Peierls-Nabarro calculation and its - various
relnements require a high level of mathematical
competence, but while the elegant treatments of this
dificult problem must be greatly admired, one should
realistically concede that the numerical answers gained
are unreliable. Two considerations make this amply
clear:

(i) The physical reason why lattice friction exists at
all—and which has been recognized all along —is the
fact that the dislocation core energy is bound to vary
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I'"IG. 1. Atomic
displacements as a
(100), f100} edge
dislocation moves
through a cubic
primitive lattice by
a distance b/2.

is required for the sustained movement of the dis-
ocation. For a typical metal with p=b=2. 8 A and

p, =5X10"dynes/cm' we 6nd EU,=1.2)&10-s
ev/'atomic plane, if 7-~,„is chosen as 10 'p.

This is an unbelievably low value, representing only
two to four hundredths percent of typical core energies.

urely, core energy calculations with their unavoidable

this accur
approximations and simplifications do n t b fno y ar reac

is accuracy, let alone that correspondin to th 'll

muc ower estimates of 7D,„which may be found
in the literature.

~ ~

n o e approxi-abarro' states that "On account of th
mate method of calculation employed, the two sym-
metrical configurations of the dislocation (see Fig. 1)
have the same energy. "

This remark amplifies the argument under (i). The
conclusion is inescapable that the erst-order eQ'ect in
t e periodic change of core energy has been lost
completely.

~ ~

with the precise position of the dislocation axis, since
the atomistic configuration in the core hore c anges periodi-

c g 0

cally. Nabarro' has illustrated thi
'

b
senting three diGerent positions for an edge dislocation

as lg. 1.
in a simple cubic lattice. His Ggure has been redrawn

Let us evaluate what is the percentage change of
core energy which corresponds to a frictional st f

p or ess. We assume that the core energy is given

U.= Up+-,'hU, cos(2~rs/p+ q), (1a)

1dU, x 2w=—DU. sin/ —s+p f.
b ds bp (p ) (2)

Consequently, a minimum resolved shear stress of

with AU the total Quctuation of core energy durin
onec cle s hy, s the coordinate perpendicular to the dis-

ergy u ring

ocation axis in the slip plane, p the distance between
the "Peierls-Nabarro crests" i th d'in e irection of s, and
p an arbitrary phase angle. For a (100), (100} edge
dislocation in a cubic primitive I tt p l
the Burgers vector, but in other lattices and for other

frictional stress acting on the dislocation then becomes

3. LATTICE FRICTIONAL STRESS CALCULATED
FROM AN APPROXIMATE METHOD

For the above reasons a new approach to the problem
of lattice friction seemed to be needed. 0
andan unsophisticated method is to estimate the fractional
change in core energy. This will be in the nature of an
or er of magnitude calculation, but crystal structure
and atomic or ionic properties could be taken into
consideration, and the numerical results could be more
reliable than those available so far. In the cases of

trical energy contributes roughly as much to core
energy as strain energy does, and since the former will
Quctuate very much while the latter will stay more

t
nearly constant, we expect the variation of core ener
o be in the order of one third. Conversely, typical fcc

metals have wide cores. Still it would b
'

fou e surprising if
their core energy fluctuated by much less than 0.1%.

By combining an expression for the elastic part of
core energy per unit length, U,—b/4'(1 'h—

rD (b/3P)Pp, — (2b)

i0-3««O. S an
wheie p=b, U,/U, . According to the argument abn a ove,

p . , and thus the frictional stress becomes
rather larger than assumed previously.

4. LATTICE FRICTIONAL STRESS CALCULATED
BY A MORE REFINED METHOD

A second, more reined but still quite simple, calcu-
ation gives similarly high values for the frictional stress

acting on a moving dislocation. It follows the Peierls-
Nabarro method to some extent, but circumvents
entirely the calculation of core energies:

Consider unit length of an arbitrary but straight
dislocation, the axis and slip plane of which coincide

rc) m~= (~/bp)&U. (2a) ' See reference 3, p. 370.
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FIG. 2, Peierls' and Nabarro's
solution for 7~, the resolved shear
stress acting on the sli plane due
to the presence of a 100), {100)
edge dislocation in a cubic primi-
tive lattice, Eq. (6). Poisson's
ratio has been taken as v=0.3.
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with the s axis and the plane y=0, respectively. Let
r))r(x) be the shear stress which is set up due to the
mis6t between the two planes bordering the slip plane.
For x»b this must be equal to r~(x))b) =7,„=A/x,
where A for an edge dislocation is given by A, =pb/
2)r(1—)) and. for a screw dislocation by A, =IJb/2x,
which is the shear stress set up by a dislocation on its
own slip plane as it is calculated from elasticity theory.
The detailed behavior of the function rsvp(x) for x
comparable to or smaller than b is unknown, but it
must vanish for x=0, it must be antisymmetrical in x
so that r~(x) = —r~( x), and the f—unction must have

3ust one extremum on either side of the s axis. These
deductions are qualitatively obvious, and are in full

agreement with the particular solution derived by
Nabarro' for an edge dislocation in a cubic primitive
structure (Fig. 2).

No lattice force will act on the dislocation if it
happens to be in a symmetrical position, as for instance
those represented in Fig. 1, because for each row of
atoms at +x, , experiencing the force br))r(x;), there
will be one at —x;, experiencing the force br'( x;)—

br))r(x, ). Differe—nt conditions obtain if the dis-

location is in an arbitrary position with respect to the
lattice. Let the jth atomic row be situated at x; and
be subject to the displacement e(x,). If the dislocation
moved through the in6nitesimally small distance ds,
the jth atomic row would change its displacement from
the value m(x, ) to the displacement appropriate to its
new relative distance from the dislocation axis, which

is N(x; —ds), i.e., the jth row would move through the
distance —ds(dl/dx)*;. Since it is subject to the tan-
gential force br~(x;) the work done thereby is

ze, = dsbr~(x, )(dN/dx)—, while the work done by all

the rows of atoms equals the work done on the dis-

location, so that

+00 f'dQ )
dsbr))r(x;) i

—
i

=dsbrD,
Q~'~QQ Edx) *,

(3)

the sum to be taken over all rows of atoms in both
crystal halves.

Equation (3) represents the same relationship which
was used by Nabarro in connection with barrier prob-
lems as Eq. (24) in part III of reference 3. Equation
(3) is exact, but in order to evaluate it, several approxi-
mations and assumptions are introduced. Our 6rst
assumption is that the work done by all atomic rows
in the upper half will be closely similar to that done in
the lower half, so that the sum may be multiplied by
2 and then taken over just one crystal half. It is further
assumed that the lattice force has its highest value
when the dislocation is midway between the two sym-
metrical positions (see Fig. 1), and that in a cubic
primitive lattice the atoms then are at or close to

7b/4, 3b/—4, +b/4, +—5b/4, +9b/4 . In that case,
and if the terms are rearranged as +b/4, 3b/4, +5b—/4,

7b/4, , the —sum consists of terms of alternating
sign and with, in average, the greatest possible di8er-
ences in magnitude from term to term. Hence,

-).~ (4e+1 q ~dgp
(4)

4 ) dxi )(4.+,),4)) ),

If the terms are taken in the order indicated above,
the sum in Eq. (4) is bound to converge rapidly since,
for x&'5b, dg/dx must already be close to zero, and
r))r(x&5b) —A/x as stated above. That the sum should
converge so very rapidly is entirely logical from a
physical standpoint, since the frictional force is due
to the periodic changes in the core energy and, hence,
is determined by the behavior of the atomic rows which
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constitute the core. Also it. must be expected that,
within very large limits, lattice friction does not depend
on the size of the specimen.

Fortunately it is possible to estimate the value of
the sum without making any detailed assumptions
about the functions rsvp and dm/dk. Because the terms
of the sum vary very rapidly, because only the first
few terms determine the value of the sum, and because
the terms have alternating signs, it is obvious that the
value of the sum cannot be too diAerent in magnitude
from one half its largest term. This, in turn, is esti-
mated as —',r„;&(sb/rs) since, on the one hand, the shear
stress in the core must reach its highest possible value
for an undisturbed crystal, —which is ~„;t,—,and since
outside of rp, the radius of the core, the displacement
is close to b/4, while the factor -', is introduced to take
account of the fact that dg/Ck has its largest value at
the axis, where ~~ vanishes. Thus

we get,

so that

(du ) (1—v)

Edx) pN m(1+mls)
(8)

PN7 D max
p = ' (s —) (4m+&)

sin( —2 tan 'P)

(1+8)
(1—v)p

(9)

The functions (6), (7), and (8) together with the func-
tion Leer(du/Ck) jpN are represented in Figs. 2 and 3.

Summing, as indicated before, in the order n=0, —i,
+1, —2, +2, , the sum Sin (9) converges as rapidly
as expected, and, for v=0.3, is close to 0.225. This
renders

&o max. (b/8&o) 7'Or it. (5) pNr~, =L2(1—v)/s)0. 225pNr. „.
=0.143(1—v) pNT. ,;i—0.1pNT„;i=0.016p,, (10)

5. APPLICATIONS OF THE METHOD TO THE
PEIERLS-NABARRO DISLOCATION AND

TO DISLOCATIONS IN CLOSE
PACKED LATTICES

In order to test this latter result, Eq. (4) was evaluated
numerically for the particular functions pNr~ and upw
derived by Peierls and Nabarro for the edge dislocation
in a simple cubic lattice. These are, for b= a, rp= with A equal to

and, with Eq. (2b), (d, U,/U, )pN ——4.8%%uo.

The value of pNro ~, —0.143(1—v)pNr„;, , Eq. (10),
gained from Eq. (4), may be compared with Eq. (5)
if rp is defined more precisely. Probably the most logical
and simple definition for this parameter is

and

pN7~(x) = —pNr, »i, sin( —2 tan 'P), (6)
&cri%

pb
or A, =—, (11)

2~'

upN ———(b/2s) tan —'tt, (7)
depending on whether an edge or a screw dislocation

where $= 2 (1—v) x/b and pN7„;i p/2'. For (de/Ck—)—pN is being considered. For the Peierls-Nabarro dislocation

l,2

FIG. 3. Peierls' and Nabarro's
solution for I, the displacements
on either side of the slip plane of a
(100), (100) edge dislocation in a
cubic primitive lattice, Eq. (7),
and the functions (de/Cx)pN PEq.
(8)j and (rsr(dN/dx))pN, (v=0.3).
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this becomes, with v=0.3, pNro
——fi/(1 —v)—1.4b, and

vNr~, ——P(1—v)/8)vNr. „t——0.125(1—v) pNr.„,. Thus,
agreement within 12.5% exists between the two
answers, a result which greatly strengthens our con-
&dence in the accuracy of Eq. (5), and leads us to
believe that it probably is reliable within a factor of 2
or so. Therefore we shall study it a little further and
rewrite it into

s-(1—v)
. 2=i7D max= 7crit

s.(1—v)
(Sa)

for an edge dislocation, respectively,

tt7 I) Diax— Tcrit P (Sb)

"A. H. Cottrell, Dislocations. and Plastic I'"/om in Crystals
(Clarendon Press, Oxford, 1953), p. 10.

for a screw. Here q has been introduced as the ratio
tt/rcrit.

Since, for typical glide dislocations in fcc and hcp
metals, q

—30,"and with v=0.3, we obtain from Eqs.
(Sa and b) frictional stresses of about 6)&10 'tt and
9X10 'p, , acting on moving edge and screw dislocations
in the close packed lattices; corresponding, according
to Eq. (2b), to p=0.2% if we assume b= p Note t. hat
the frictional stress obtained for a screw dislocation is
higher than that for an edge dislocation. This is due
to the fact that the stresses around a screw dislocation
are somewhat lower than those for an edge dislocation,
leading to a smaller ro.

At this point the question arises which feature in
the Peierls-Nabarro calculation caused the great error
in the final result for v~,„. Huntington, ' who has
considered the various assumptions, explicit or implicit,
contained in the Peierls-Nabarro calculation, concludes
that the model of Peierls and Nabarro has a "peculiar
symmetry. " Namely, comparing the atomic positions
above and below the slip plane, "One configuration can
be obtained from the other by reflection in the slip
plane and reversal of the signs of all displacements"
and further, "The model does not distinguish between
the directions of I in determining p,„(our rst) .
When disturbing this symmetry, Huntington did indeed
get a value for pN7~ of 0.017', quite similar to the
value derived above.

While it has been shown above that the frictional
stress on a dislocation moving in a mathematically
precise crystal lattice has been greatly underestimated
in previous papers, even these much too small values
for v-D have seemed to be too high, in view of the
fact that, at least in certain crystals, dislocations move
at stress levels of 10 5p, or 10 p, .

Various reasons were given why the frictional stress
might have been overestimated or why a dislocation
would move at stresses below rg&, . Foreman, Jaswon,
and Wood, ' for example, showed that the dislocation

width in actual crystals should mostly be larger than
that derived from the Peierls-Nabarro calculation.
This conclusion doubtlessly is correct, but it would
hardly aGect our result very greatly since v&, is
only inversely proportional to the diameter of the
dislocation core. Dietze' has discussed the eGect of
temperature motion, and of the changes resulting in
the calculations if it is recognized that the forces of
misfit are not actually transmitted through point atoms.
Again, although such considerations have a strong eBect
in the framework of the Peierls-Nabarro calculation,
they do not affect our result materially.

On the other hand, several e6'ects which may reduce
lattice friction seem just as important now as previously.
For example, Shockley" has pointed out that a dis-
location would not normally lie in a "Peierls-Nabarro
trough, "and that parts which move first could pull the
rest of the dislocation along. Also the geometry of
actual crystal lattices can greatly modify the level of
the frictional stress; and thermal activation helps
dislocations to overcome the "Peierls-Nabarro hills. "
Whether the latter eQ'ects listed, however important
they may be from case to case, hold the complete answer
is problematic, though; particularly now that we find
the frictional stress so much higher.

6. UNCERTAINTY IN THE POSITION OF A
DISLOCATION AXIS DUE TO UNCOR-

RELATED ATOMIC OSCILLATIONS

-'. Contemplating this problem, one aspect presented
itself which seems to have been overlooked in the past,
namely that the position of a dislocation axis is not
defined with absolute accuracy but only within certain
limits. Instinctively, one may feel that these limits
should be very narrow, since so very many atoms are
involved and since their positions in turn are rather
well defined. However, a simple calculation shows that
this is not necessarily so.

As the result cannot depend much on the angle
between the dislocation axis and the Burgers vector
let us consider a screw dislocation first: The displace-
ments of the crystal atoms due to the presence of a
screw dislocation parallel to the s axis of a Cartesian
coordinate system are given as tt, = (b/2tr)8, where 8
is the angle included between the radius vector and an
arbitrary direction in the x-y plane. If the position of
any given atom was known with point accuracy I,
would be known exactly, and observations on only
two atoms would be sufhcient to determine the exact
position of the dislocation axis. In reality the atoms
vibrate with a root mean square displacement I, and
measurements carried out by an observer positioned
on, say, the jth atom in the crystal could determine
the coordinates of the dislocation axis only to an ex-

"W. Shockley, oral communication, quoted by N. F. Mott
and F. R. N. Nabarro, Report on Strength of Solids (Physical
Society, London, f948), p. 1.
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~ As b (&. rp

b, ln(R/rp)
(12)

With reasonable values for ro, R and n/b' this is 5~" n.
Hence, from the displacements of all atoms outside

of the core, the position of a dislocation axis cannot be
determined with an accuracy better than about the
amplitude of the atomic vibrations, even if observations
were continued for any desired length of time.

Important though this result may be it is not the
complete answer to our problem, since the ceriter of
the core may still be de6ned with greater or lesser
accuracy than 5~", depending on the atomic arrange-
ment in the core. This second part of the problem is
treated more easily for an edge dislocation.

%e refer back to the beginning of the paper where
it was stated that the width of a dislocation is deter-
mined by the balance between the forces of misfit and
the elastic stresses in the two crystal halves. Also we
remember that the highest shear stress which can be
supported by any given crystal plane in the absence
of dislocations is i. i=A/«. From this it seems a
reasonable model to consider a cross section of the core
of a positive edge dislocation as represented by two
rows of uniformly spaced atoms, facing each other

pected accuracy of As = (2irr, /b)u, if r; denotes the
distance between the jth atom and the dislocation axis.

%e assume that the dislocation is sufficiently Qexible
so that only the atoms in a plane perpendicular to the
dislocation axis will determine the position of the
dislocation axis in that plane. This is a quite reasonable
assumption for small axis displacements and, moreover,
the Anal result will hardly be aGected even if the atoms
in the neighboring planes should exert some inhuence.
Ke may then conclude that all atoms in a ring of width
dr; dehne the position of the dislocation core with an
expected accuracy of

2'll' pre B (27i'fg(X) '

b(2irr;dr;/e)l b & dr; 3

(where n is the area per atom in the plane considered),
because the e-fold repetition of a measurement dimin-
ishes the expected error by the factor 1/Qn.

From the theory of errors" the average error M of a
result gained from several series of measurements, each
with its individual average error m, , is known to be
M= fP; (1/mP)} &. Hence, the root-mean-square de-

viation with which the position of the dislocation axis
may be determined by observing all atoms outside of
the dislocation core is given by

across the slip plane. The spacing in the upper row will
be a„L2«/(n+~~) j and that in the lower half a& = $2r0/
(I—$)], with n=2ro/p and «=pb/2n. (1 v)r—„Ii. The
parameter p stands for the period of the lattice perpen-
dicular to the dislocation axis, which is presumed to be
equal to the distance between the "Peierls-Nabarro
hills" in the direction normal to the crystal axis.

Due to the uncorrelated vibrations of the atoms, the
position of either of the two rows of atoms will be
uncertain within bi|,=Au/gii, and the relative position
of the two rows by &28a/V2,

A relative displacement Ax between the two rows of
atoms causes the shift hs=l p/(a~ —u„)]Ax of the
dislocation axis, and, consequently,

ai —u„(n/2)'
(13a)

may be taken as the root mean square uncertainty in
the position of the dislocation axis.

From a„=pii/(e+~~) and a~= pn/(e —-', ) follows
a( a„p/I= p—'/2«—, so that

F«l'
~~™21—

l
&=&

Epj
~b/p

ir(1—v) r„;g
(13b)

For a screw dislocation the factor (1—v) is exchanged
for

This then is the Chggseness of the axis of a dislocation,
and is quite distinct from thermal activation which may
shift the axis of a dislocation: As a consequence of their
vibrations, the atoms in a crystal containing a disloca-
tion deviate from the ideal, mathematical pattern which
would constitute a dislocation, so that physically the
position of the dislocation axis is not defined precisely.
b~' is a measure of the resulting uncertainty. This
uncertainty is very similar in concept to that in
Heisenberg's uncertainty relationship. It is meaningless

.to state the position of a dislocation more accurately
than within this limit.

Equation (13b) probably is an underestimate. For
one thing ss, the root mean square displacement, must
be considerably larger for the loosely bound atoms in a
dislocation core than the value appropriate to a perfect
crystal. Also, it is not necessary for the complete rows
of atoms to shift in order to shift the dislocation axis
as measured from the atoms nearest to the center of
the core, the region on which our interest is focused.
Hence n in Eq. (13a) is overestimated, . and is smaller
than the value 2ro/p which was used to.gain Eq. (13b).
To some extent these two errors are balanced by the
fact that (ag —a„) is larger at the center of the core than
the average over the complete core which was used in
Eq, (13b). We shall try to compensate for these un-
certainties by multiplying. 6&. ,with a factor of 2.
However we should keep in mind that the Gnal value

"See, for example, F. Kohlrausch, Praktische Ehysik (B. G.
Teubner, Berlin, 1943), Vol. I, p. 16. 8g ——2bg' ——4(rp/p) &u " (13c)
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1 dZ, hU,
t

d z+"
exp/ —(x/bg)']

b ds 2(zr)iB~b ds" „O'. ESTIMATE OF THE AVERAGE DISPLACEMENTS
OF OSCILLATING CRYSTAL ATOMS

is uncertain by at least a factor 2, particularly as n The lattice force on the dislocation then becomes
itself is not well known, nor even well de6ned.

up ——(Iz/2zr) (mk8D) **. (14b)

For low temperatures the value of N may be estimated
as follows: Consider aB the atoms in a crystal as un-
correlated oscillators for which @zan= —Ex so that
x=2 sin((E/m)'*t+p] with E=4zr'mv', where m is
the atomic mass and s the vibrational frequency of the
atoms. For O'K, the energy, A=2m'u'nzA', becomes
the zero-point energy Eo=hvp —k0D, where 0~ is the
Debye temperature, h=6.6X10 " erg cm is Planck's
constant, and k=1.4&(10 " erg/'K is Boltzmann's
constant. Thus, Ao, the magnitude of the vibrational
amplitude at absolute zero, becomes

A p = (k/zr) (2mk8~)-'.

To this, uo, the root-mean-square displacement of the
atoms at O'K, is connected as up=Ap/v2, so that

(2zr

)&cosi —x+ y(s) idx, (15a)

where y(s) = (2zr/p)s+ yp, and the suKx T is meant to
remind the reader that the diffuseness of the dislocation
axis due to thermal motion is taken into account.

Equation (15a) can be solved by substituting

cosp(2zr/p)x+ y(s)7= cost (2zr/p)x] cosy(s)
—sinL(2zr/p)x] siny(s).

The second of the resulting two integrals vanishes
because the function exp/ —(x/b~)'] sin(2zr/p) x is
symmetrical in x, while the value of the 6rst integral
is given in the appropriate tables as

expL —(ax)'] cosJ3x= expt —(8/2a)'].
a

For temperatures T higher than 8D the Einstein model
would yield" and. thus, Eq. (15a) becomes

p('") ."= -.,—-pL-(-8./p) ]-
27r ds

u= (k/2zr) fmk8s(e'p'r —1)}—'

with 0g, the Einstein temperature, related to 0D as
0~= &0D. For T&&0g this becomes /2zr

cosi —s+yp i
I. (16)

u= Pz/2zr)(mk8~)-'*(T/8g)&= —;up(T/8g))&. (14d)

z~D, , the smallest stress required for the continued

TAKING INTO ACCOUNT THE UNCERTAINTY motion of a dislocation, taking into account the un-

IN THE AXIS POSITION correlated vibrations of the atoms, then is given by

In the previous section it was shown that a dis-

location axis is disuse with a root mean square de-
viation of 6g. Assuming a Gaussian distribution, we

therefore 6nd the energy of a dislocation core as

E,= U, ( s)xexpL —(x/8~)']dx. (15)

to get

y = (2zr/p) x+ yp (lb)

(2zr 2zr
U.= Up+ ', hU, cos~ —s+—x+-yp ~. (1c)

&p p i
"N. F. Mott and H. Jones, The Theory of the Properties of

3IIetals and Alloys (Dover Publications, Inc. , New York, 1936).

Following Eq. (1a), we assume U, to vary sinusoidally
with respect to x, the coordinate 6xed with respect to
the lattice, as well as s, the position of the dislocation
axis, i.e., we introduce

T&D max &D max exp/ (zrbA/p) ] &D maxe (1~)

if b~ is expressed according to Eqs. (13c) and (11),and
a critical radius Ro is defined as

Rp (T)= (p/4zru)'p

For core radii larger than Ro, &r&, is substantially
smaller than v-D, the frictional stress calculated for
a dislocation in a mathematically de6ned crystal
lattice, while for ro smaller than Eo it is +7 g) —TD

We thus 6nd a new type of temperature dependence
for the frictional stress, which is rot due to thermal
activation. Thermal activation is caused by the cor-
related thermal motion of the atoms, while the present
e6ect is due to the "uncertainty relationship" which is
found for dislocations due to the Nricorrelated atomic
vibrations.

In order to gain some numerical result, let us take
p=b=2. 8 A and up=0. 1 A, a value probably appro-
priate for typical crystals at absolute zero temperature.
Then Ro—5b. Actual dislocation core radii for almost
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all substances and slip planes, with the exception of
the common glide dislocations on the close packed
planes in fcc and hcp structures, are smaller than this
limiting value, since, according to Eq. (11), it corre-
sponds to a critical stress amounting to only 4 or 5%
of the modulus of rigidity. It would seem, then, that
for glide dislocations on f111} in fcc crystals and
(0001} in hcp crystals lattice friction becomes very
small, even at the lowest temperatures.

Another numerical example may be linked to the
measurements made of u for the cases of NaC1, KCl,
and NaF."" At room temperature I was found
uniformly at about b/18, and a measurement made for
KCl at 86'K rendered u—b/30. We again assume that
P=b and find (Es)R.T.=2b, and (Ro)ss x=S.Sb. With
rs/b Is/Sr—„;tLsee Eq. (11)) this means that a marked
temperature dependence due to the cause under dis-
cussion is expected already at 86'I if, for the relevant
slip planes in these substances, r„;t&IJ/25. If, on the
other hand, r„;t—itt/10, a much more likely value, "
then the temperature ef'feet would become marked at
and above room temperature.

Finally, for diamond, germanium, and silicon, ro,
the core radius, is probably only about equal to the
Burgers vector, corresponding to a large critical stress,
and the present temperature e8ect in these materials
can be expected to operate at very high temperatures
only, if at all below their melting point.

In order to express the exponent (s.8g/P)' in terms
of more obvious parameters we introduce b/p=g&1,
apply Eq. (14d) for I, and make use of Lindemann's
relationship that OD= C(Tsr/2 V &)&. In this latter
equation T~ represents the melting temperature, 2
the atomic weight, V the atomic volume, and C a
constant which is equal to 115when cgs units are used. "
After rearranging the terms and expressing 7.~, and
rs according to Eqs. (Sa) and (11), we obtain, for an
edge dislocation,

T&D msx

s.(1—v) pgs T-
&crit exp f ~ (18)

4lt ~ (1 s) rcrit Tjr

while for a screw dislocation the factors (1—i) are
missing in the expression for rD, as well as in the
exponent.

The factor in the exponent varies somewhat with the
crystal structure. It is given by

32hs1V@s ( u

9s kCs (btti"s)
(18a)

with g= b/p, u the lattice constant, and gati the number

"L Wailer and R. W. James, Proc. Roy. Soc. (London) 117,
2)4 (1927).

't R. W. James and E. M. Firth, Proc. Roy. Soc. (London)
117, 62 (1927}."R.W. James and G. W. Brindley, Proc. Roy. Soc. (London)
121, 155 (1928}."J.I. Schonka, Phys. Rev. 43, 947 (1933}.

of atoms per unit cell. All the other symbols have the
same meaning as before, namely, h= Planck's constant,
S=Avogadro's number, k= Boltzmann's constant,
C=Lindemann's constant, and b=Burgers vector. f is
a dimensionless constant. For common crystal struc-
tures and lattice constants, f has a value close to
9X l0 ', but at best it is expected to be reliable only
within the factor 2 or 3. Moreover, since Eq. (14d) was
used, Eq. (18) will be fulfilled approximately for
T& 20D but not for lower temperatures.

At the present moment it is doubtful how strongly
the exponential factor in Eq. (18) will influence the
frictional stress acting on glide dislocations in bcc
metals. First, it will be necessary to make a more
reliable determination of the critical parameter f
Furthermore, r„;t, must be evaluated as well as the
parameter g= b/p, which, as pointed out already, may
be different even for diferent dislocations on the same
slip plane.

Actually, Eq. (18) is less suited for making numerical
estimates about the level of the frictional stress than
Eq. (1'7), mainly because Eq. (14d) is only very
approximate. It was, however, introduced to show the
expected dependence of p~D, on the various parame-
ters. Since the crystal structure probably determines
the value of p/r„;t within fairly narrow limits, Eq. (18)
shows that srD, „/p depends only on T/Tsr when

comparing substances of the same type and crystal
structure, as for example the bcc metals. %e might
understand, then, why sodium and potassium are so
very soft at room temperature, whereas iron is of
intermediate hardness, and tungsten, molybdenum and
other high-melting bcc metals are quite strong up to
several hundred degrees centigrade.

9. SUMMARY AND CONCLUSIONS

The contents and conclusions of the preceding in-
vestigation may be summed up into ten points.

(i) Most previous calculations of the frictional stress
acting on moving dislocations in otherwise perfect
crystals are unreliable. In them, the core energy of
dislocations has been calculated by approximate
methods and the frictional stress was gained through
the difterentiation of expressions for the core energies.
The core energy Quctuations which correspond to
typical frictional stresses derived in the past are in the
order of one in two thousand to one in millions and less.
It is clear that the accuracy of the approximate calcu-
lations of core energy could not possibly have reached
the levels claimed for them implicitly.

(ii) By circumventing evaluations of the core energy,
and instead considering the stresses and strains in the
two atomic planes bordering the slip plane from either
side, a general expression is obtained for the force
acting on a dislocation in an arbitrary position.

(iii) Two fairly obvious assumptions are made to
transform this general expression into an equation for
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,„, the minimum stress which must be applied
externally for the sustained motion of a dislocation in
an otherwise perfect lattice. A trick is then used to
rewrite the equation into a very simple form, which is
7'n m x= (&/8&o) &aiit, , with ro the radius of the dislocation
core, and with r„;t, the critical shear stress of the slip
plane if no dislocations are present.

(iv) The equation rD,„——(b/8ro)r„;t, is tested by
applying it to the Peierls-Nabarro dislocation and
comparing that result with the numerical answer
obtained from the relationship before simpli6cation.
Since the two answers differ by only 12.5%%u~ it is as-
sumed that the simpli6ed equation is adequate.

(v) The above equation for rD, is used to deter-
mine the magnitude of the frictional stress for common
glide dislocations in typical close packed lattices, as
well as the corresponding Quctuations in core energy.
These are found as 6)&10 4p, for edge dislocations,
9&10 4p for screw dislocations, and a fractional change
of about 0.2% in core energy. The frictional stresses
acting on dislocations in other structures are sub-
stantially higher.

(vi) Knowing that dislocations in close packed
metals, like Zn or Al, move at very much lower stress
levels than those calculated, a reason is sought why
the frictional stress does not necessarily operate. Several
such reasons have been discussed in the past. Some of
them including thermal activation, are probably most
important in nature, while other effects are found to be
insignificant in the framework of the calculations given.

(vii) One effect, which the author believes to be
very important, apparently was overlooked in previous
investigations. It may be called the "uncertainty
relationship for dislocations. " Due to the fact that
atoms are not mathematical points, but vibrate, their
positions do not ideally conform to the pattern of a
dislocation with a precisely de6ned axis, An uncertainty
in the position of the dislocation axis exists which is
similar to, or several times larger than, I, the root
mean square displacement of the crystal atoms.

(viii) Unfortunately, only a very few measurements
of u are available, and no reliable simple relationships
exist to connect it to other known parameters. However,
the best estimates which can be made at this time

indicate that the uncertainty in the position of dis-
location axes is effective to reduce the level of the
frictional stress on common glide dislocations in crystals
with close packed lattices, even at the lowest tempera-
tures. They further indicate that no great reduction in

, may be expected from this effect for dislocations
in materials with a diamond structure. Salts of the
NaCl type, and perhaps bcc metals, represent inter-
mediate cases.

(ix) With the help of Einstein's formula for 8, on
the one hand, and Lindemann's relationship,
OD=C(T~/A V~)&, on the other, the following formula
for the frictional stress is found:

T&D max

m(1 —v) ( pg T )
r„;,' exp

~

f-
4' E (1—~)r.„t, T~J

Although the numerical value of f is somewhat un-
certain, the type of dependence of the frictional stress
on the critical stress, 7;„&, and on T'~, the temperature
of melting, is interesting and seems to fit the obser-
vations on bcc metals.

(x) From the level of the frictional stresses, it is
possible to calculate the Quctuations of core energy.
This should be helpful in future calculations on the
role of thermal activation in this Geld of effective
lattice friction. On the basis of the formulas developed
it is also possible to treat the case of changes in core
energy which are not simply sinusoidal. For this, two
or more solutions will be superimposed on each other.
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