
ELE CTRI CAL RES I ST I V IT Y OI' H EAU Y RARE —EARTH M ETALS

magnetic scattering. We consider the resistivity as a
sum of the residual resistivity (p...), the magnetic
contribution (p „),and the phonon contribution (pnI, ).

We assume that by extrapolating the linear high-
temperature part of the resistivity curve back to zero
degrees E we eliminate ppQ The resistivity intercepts
thus obtained are shown as p,„~ in Table II. Also shown
in Table II are the p„, and the p „.The latter are
obtained by subtracting the p„, from the p, &. This
method is somewhat simpler than the method used by
Anderson and I egvold" and follows the free electron
model. "The two methods yield about the same results.

"6.S. Anderson and S; Legvold, Phys. Rev. Letters 1, 322
(1958).

» A. Sommerfeld and H. Bethe, Hossdbssch der Physi% (Verlag
Julius Springer, Berlin, 1933), Vol. 24, part 2, p. 499.

In Fig. 9 we have plotted the p „contributions as
functions of two different parameters. 'The S(S+1)
parameter is the one used by Anderson and I egvold26

and the parameter $(J+1)jJ/S' has been suggested by
Brout and Suhl."
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The conductivity of an n-type semiconductor has been ca1culated in the region of low-temperature T and
low impurity concentration nz. The model is that of phonon-induced electron hopping from donor site to
donor site where a fraction E of the sites is vacant due to compensation. To 6rst order in the electric 6eld,
the solution to the steady-state and current equations is shown to be equivalent to the solution of a linear
resistance network. The network resistance is evaluated and the result shows that the T dependence of the
resistivity is p 0:exp(es/kT). For small X, ss= (e'/Kp) (4s Nn/3)&(1 —1.35E&), where Kp is the dielectric con-
stant. At higher K, eg and p attain a minimum near X=0.5. The dependence on nD is extracted; the agree-
ment of the latter and of e& with experiment is satisfactory. The magnitude of p is in fair agreement with
experiment. The inQuence of excited donor states on p is discussed.

I. INTRODUCTION

A T sufficiently low temperatures, transport effects
in doped semiconductors are not due to free

carriers but occur as a result of charge transport
between impurity states. The term isrspurity cossductI', oss

denotes this type of transport. When the impurity
concentration is high, the impurity states overlap
strongly and lose their localized character. It is often
said that an iIIspuri, iy bard is formed and that con-
duction takes place in this "band. " At low concen-
trations banding does not occur and conduction takes
place by hoppissg of electrons from occupied to un-

occupied localized donor states.
In recent years, many interesting experimental data

on impurity transport have been published. Data are

*This work is based on a dissertation submitted by one of us
in partial fulillment of the requirements for the Ph.D. degree at
Rutgers University.

[This work was supported in part by the Once of Naval
Research.

$ Present address: Physics Department, University of Illinois,
Urbana, I11inois.

available for the resistivity and Hall effect, ' ~ e6ects of
strain, ' and magnetoresistance'9 in the temperature
range of impurity transport.

We restrict our discussion throughout to those cases
in which impurity banding" does not occur and the
hopping process is important. The hopping process was
suggested by Conwell10 and by Mott. The same
mechanism was independently proposed by Pines,
Abrahams, and Anderson" in connection with the
study of electron relaxation processes in Si.

' C. S. Hung and J. R. Gleissman, Phys. Rev. 79, 726 (1950).' H. Fritzsche, Phys. Rev. 99, 406 (1955).' S. Koenig and G. Gunther-Mohr (Appendix by P. J. Price),
J. Phys. Chem. Solids 2, 268 (1957).

4 H. Fritzsche, J. Phys. Chem. Solids 6, 69 (1958).
~H. Fritzsche and K. Lark-lorovitz, Phys. Rev. 113, 999

(1959).
OT. A. Longo, R. K. Ray, and K. Lark-Horovitz, J. Phys.

Chem. Solids 8, 259 (1959).
I J. S. Blakemore, Phil. Mag. 4, 560 (1959).
s H. Fritzsche, J. Phys. Chem. Solids 8, 257 (1959).' R. Keyes and R.J.Sladek, J.Phys. Chem. Solids 1, 143 (1956)."E.M. Conwell, Phys. Rev. 103, 51 (1956).
» N. F. Mott, Can. J. Phys. 34, 1356 (1956).
's D. Pines, Can. J. Phys. 34, 1367 (1956).



746 A. M ILLER AND E. ABRAHAMS

In this work, we shall compute the electrical resis-
tivity for impurity conduction in the low concentration
range. The model we shall use may be described as
follows: Consider a semiconductor with BED donors and
~V~ acceptors, X-&X~ (n type). At the low tempera-
tures of interest the acceptors will compensate E~ of the
donors and there will be Ã~ ionized donors, Ã~ ionized
acceptors and XD—Ã~ electrons remaining in donor
states. At low concentrations, the overlap between
wave functions of neighboring impurity sites is small
and the banding or "resonance" energy between the
sites is much smaller than the energy difference between
the sites due to the variation of local electric fields. "
The local fields are produced by nearby ionized ac-
ceptors and donors. The electrons are then well localized
and neighboring impurity states are nondegenerate. If
one of the S~—1V„donor electrons is close to one of
of the Ã„vacant donor sites, it can hop into the avail-
able site and the transfer is accompanied by the emis-
sion or absorption of a phonon in order to conserve
energy. The donor concentrations below which this
model is appropriate are about 6)(10" in e-type Ge
and 2&(10' in e-type Si. A study of the higher con-
centration region has been made by Kasuya. "Kasuya
and Koide" have considered the low concentration
region as well and their model is similar to ours. "

In the model we have described, charge transfer will
be random in the absence of an external electric field
and there will be no net current. An electric field pro-
duces an average gradient of donor state energy in the
field direction which will cause an increase in the
transfer rate to sites of lower field energy. Thus, a net
current will Aow in the field direction.

In Sec. II, we compute the transfer rate for electron
transfer. In Sec. III, we consider the current. In Part
A of this section, we derive the distribution function
and transform to an equivalent resistance network. In
Part 8, we compute the I ermi energy for the distri-
bution. In Part C, we extract the temperature de-
pendence of the resistivity and in Part D we analyze
the activation energy and the compensation depend-
ence. We conclude Sec. II in Part K with the completion
of the derivation of the resistivity expression and a
discussion of the majority concentration dependence.
In Sec. IV we compare our work with experiment and
comment on a few related matters.

Some of the computational details are unfortunately
quite complicated. They are described in detail in the
Ph. D. thesis'~ of one of us (AM). Some of these details
are described briefly in the Appendixes.

"The importance of the influence of local fields was erst
pointed out to us in unpublished work of P. W. Anderson (see
reference 12}.

'4 T. Kasuya, J. Phys. Soc. Japan IB, 1096 -(1958)."T.Kasuyasnd S. Koide, 'J. Phys. Soc. Japan 13, 1287 (1958).
' The present work and that of reference 15 are independent

studies.
'7Allen Miller, Ph.D. dissertation, Rutgers University, 1960

(unpublished). Available from University Microfilms, Ann Arbor,
Michigan.

II. TRANSITION RATE FOR ELECTRON
TRANSFER

We shall compute the transition rate for an electron
hop using the deformation potential approximation for
the electron-phonon interaction. The electron wave
functions are taken from the effective-mass theory. ""
The wave functions for the lowest energy states (un-
perturbed by nearby impurities) of an electron on the
ith donor is

4'(r) =Z .F.(r)~.(r),
@=1

where p„(r) is the Bloch function for the pth con-
duction band minimum of which there are n. The F~(r)
are hydrogenlike envelope functions which, to a good
approximation, are of the form

F~(x,y,s) =(ma'b) '*exp{—L(x'+y')/a'+s'/b'j'), (II-2)

where the s axis is parallel to the axis containing the
pth minimum. The constants a and b are the transverse
and longitudinal radii of the orbit, respectively. They
are given by a=A(2m&/E. ») 'and b=(m, /m&)'a E,b,.
is the observed ionization energy for the donor ground
state while m, and m~ are the transverse and longitudinal
effective masses.

In the present problem, we are concerned with the
nature of the wave function at distances far from the
impurity. We have therefore obtained Eq. (II-2) and
the expressions for u and b by extending a procedure
used by Kohn and Luttinger" for the case of isotropic
mass (m, ™&)~ That is, we obtain the asymptotic solu-
tion of the equations which determine F„(x,y, s) Lcf.,
Eq. (5.4) of reference 18), using E,b, for the eigenvalue.
When the mass anisotropy is taken into account,
Eq. (II-2) is obtained.

Values for E,b, are available from both "thermal"
and "optical" methods. Since these differ slightly, we
tabulate a and b in Table I, using both sets of data.

The u~ appearing in Eq. (II-1) are the coe%cients
of the appropriate linear combinations of the F~(r)p„(r)
which diagonalize the tetrahedral crystal field per-
turbation. In Si" and Ge, the ground state is the
symmetrical combination n~=e '* (I=6 and 4, re-
spectively). In Ge, the erst excited state is the de-
generate triplet whose wave functions have the form
of Eq. (II-1) but with the coefficients:

(g) (1 1 1 1)
P %2~ 2& 2~ 2J

Suppose now that i and j are neutral and nearby
ionized donor sites, respectively, separated by
R=R;—R; with donor state energy difference

» W. Kohn, Solid-State Physics, edited by F. Seitz; and D.
Turnbull (Academic Press, Inc. , ¹wYork, 1957},Vol. 5, p. 257.

»%. Kohn and J. M. I.uttinger, Phys. Rev. 98, 915 (1955}.
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q"=~.lf.+~A . (II-3)

A=E,—E;. The latter arises because the local and
applied fields di8er at the two sites. The wave functions
of an electron at i and j are %"; and 0; which are solu-
tions of an effective-mass Hamiltonian containing the
potential due to donors i and j as well as the nearest
ionized acceptor. The Coulomb fields of all the other
ionized donors and acceptors are assumed to cancel,
on the average. Thus, we write

Host Donor
~ (A)

Thermal Optical
~ (A)

Thermal Optical

As
P
Sb

As
Sb

Sb{3)a

20.2
21.2
22.6

60.5
69.5
72.0

19.4
21.1
21.6

55.7
69.0
71.3

8.9
9.3
9.9

13.6
15.6
16.2

8.5
9.3
9.5

12.9
15.4
15.8

TABLE I. Donor state orbit radii in S and Ge.

We determine the linear combination, Eq. (II-3),
for 0'; by a variational calculation on the Hamiltonian

H = T+V, e'/xsr, —e'/Korj, —
where T is the effective-mass kinetic energy operator,
V is the potential due to the nearest ionized acceptor,
r;(,~ is the distance of the electron at r from the donor
at R;(,g, and Ks is the static dielectric constant.

The result of the calculation is

a;/a, = (6/2W) L11 (1+4'/5+4W'/g') ']
~h~~~ /). =(P,, V.P;) (P;,V,f;—) is the zeroth order
E,—E and

a This line refers to the excited triplet state of Sb ir1 Ge which lies about
6X10 4 ev above the ground state. H. Fritzsche, Phys. Rev. 115, 336
(19S9), and D, Wilson and G. Feher (private communication).

absorption, is

(H') = iEr (Pique, /2 pa Vs) 1(W/&) Lg, ,e"'lf, )
—g, ,e"y,)j, (11-11)

where we have dropped a term involving an overlap
matrix element between i and j. This term may be
shown' to be small, and we do not include it.

The matrix element is evaluated as follows: We write

P;(r—R)=g, (r) where R connects i to J. The square
bracket of Eq. (II-11) becomes

W =I.—57+ (P; V.P,) 5(&,,V.Q;—), (II-4)
L 1= (e"'—1)(0',e"'lt') (II-12)

I = —8',Le'/~or'3A),

~= —(O', Le'/«r, 3'),
~=(4'A )

(II-6)

We call t/V the resomumce energy. The last two terms
of Eq. (II-4) are small and we therefore write

8'=I—SJ.
For low concentrations, we have W(&A so that

q"=4'+(W/~)A,
q' = ll —(W/~)li'

The matrix element for the transition of a donor
electron from site i to the ionized state j is given by

(H') = (4;,Artful, )+/S. (4;,8q. ,), (II-10)

where we have used the deformation potential
theorem. " In Eq. (II-10), Err) and K'; are the change
in energy and wave function due to a dilation p. It is
not difficult to show' that the second term of Eq.
(II-10) is small compared to the first; we therefore
drop it henceforth.

The dilation is

rf= V 5R(r) =i(fi/2psVs)f P, q'*[bs exp(iq r) —c.c.$,

where po, V, s are the density, volume, and velocity of
longitudinal sound; b~, b~ are annihilation and creation
operators for longitudinal phonons of wave vector q.

We compute the matrix element of Eq. (II-10) using
the wave functions of Eq. (II-9).The result, for phonon

'0 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

In evaluating this matrix element, we use the wave
function as given by Eq. (II-1). The procedure is
identical to that used by one of us previously. " Ke
assume an isotropic mass and recognize that both
F~(r) and exp(iq r) vary slowly over a lattice spacing. "
The result is

0= (e"'—1)I 1+(o*q/ )'3 '

where a* is an average orbit radius. " Inserting this
result into Eq. (II-11) and squaring, we get, for
absorption,

I(H') I'= (&&r'/2pe Vs) (W/~)'q~. (1—cos» R)
XL1+ (qu*/2)'i ' (II-13)

The transition rate is

V"= (2~/&) (V/g~s) "IH'I'8(»q —~)dq.

The nonoscillatory part of
I
H'I' contributes

V,,=(Z, / p,s I')W I~In„(11-14)
where we have, in accordance with reference 23, re-
placed the square bracket of Eq. (II-13) by unity. We
have written the transition rate for absorption, 6&0.
If 6)0, fs, is replaced by e,+1. The cosq R term of
Eq. (II-13) contributes a term whose ratio to Eq.

"Elihu Abrahams, Phys. Rev. 107, 481 (1957), see Eq. (6) ff.
~ For no= 10'' cm 3 and a compensation of 5%, q=d/As=10s

cm '.
~' Note that this result justihes the use of an isotropic mass in

this part of the calculation since the mass appears only in
1+(a~q/2)' =1.
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where
XexpL —(r„'+r &)/a), (II-16)

rj = aDX x;)2/—a'q (y y;)'/—a'+ (s—s,)'/b']~,

with the s axis parallel to the axis of the pth valley.
We approximate the integral in Eq. (II-16) by replacing
r by r„' in the denominator and evaluate it in confocal
elliptic coordinates. The result is

L= (e /K()a') Q (2 ("*n„"'e '& "E„(1+a/E,)
Xe ~&i' (II-17)

where

g —a(g. .2/a2+y .2/a2+s. 2/b2)$ g. —g

The overlap integral 5, Eq. (II-7), which is required
for TV is evaluated by an identical procedure. The
result is

5=p (2 (')"(2„")e '2'"(1+8„/a+A„'/3a')
Xe 8~la (11 18)—

Finally, J may be evaluated from Eq. (II-6). The
result if J= —e2/)(()E where we have dropped a small
term proportional to exp( —2E/a*).

Introducing Eqs. (II-17, 18) and our result for J
into W=L—SJ, we get, to lowest order in a/E„,

j
W~'= (2e'/32()a')'Q ~ n (')'a (')(2 ")(2

gg jp, ei(p' —p) .R—(R~+R~r) /aP

24 Our result, Eq. (II-14) disagrees with that of reference 15.
There is an error in that paper in that the third term of their Eq.
(22) is neglected whereas it is actually the most important one.

(II-14) is —(bs/M) sin(RA/ks) B. ecause of the oscil-
lating sine factor, this term will not contribute ap-
preciably to the conductivity. Once we know the
resonance energy 5', we shall have completed the
discussion of the transition rate, Eq. (II-14).'4

In order to compute W, Eq. (II-8), we 6rst evaluate
the transfer integral L from Eq. (II-5). The procedure
is similar to what we have already done in the com-
putation of the electron-phonon matrix element, Eq.
(II-11) ff. We have

L= —(e2/)(0) Q„~ (2 (')*a '&)e—'& R

X(F„(r R)u„—, F„(r)u~ e '&& &')'/r)-, (II-15)

where we have written u„(r) exp(ip r) .for the Bloch
functions p„(r) and used the fact that u„(r—R) =u~(r).
The superscripts on 0,„, 0,„ indicate the possibility
that the states on i and/or j may not be the ground
donor state, in which case one must use the appropriate
set of e for the state in question.

Similar arguments to those used previously" lead
us to the conclusion that the leading term in I comes
from p=p' since F(r—R)F(r)/r is slowly varying.
However, the isotropic mass approximation is not a
good one in the present case, so we use Eq. (II-2) for
F„(r).Equation (II-15) becomes

L= —(e%()n.a'b) p a (')"(2~&')e '2' ~(dr/r)

The terms for which pAp' will oscillate and make no
net contribution to the conductivity. In the beginning
of this section, we have seen that for all states of
interest, ~(2„(o

~

'= 1/22, where n is the number of valleys.
Therefore we get

n

t
W

~

2= (2e2/322K2a2) 2 p g 'e 2ii~i~

y=l

In the case that the mass is sufFiciently anisotropic, the
angular average of S' is

(i W
i
') = (2e2/3a()a')'(1/22) (2ra/4(2R) VPe-' ', (II-19)

where (2= (a/b)' 1. T—o compute the average, we have
assumed (2R/a))1 which is valid in Si and Ge. If,
however, the mass is exactly isotropic, then so is

~
W~2

SinCe E„=R.In thiS CaSe, the faCtOr (2ra/4(2E) & in Eq.
(II-19) must be replaced by unity.

The result, Eq. (II-19), shows that the only effect
of the Bloch functions in the effective mass wave
functions is an interference between the minima which
reduces the resonance energy 5' by a factor e '."

III. THE GURRENT

A. The Steady State

In this section we consider the current in an applied
field F. Imagine a surface of area 5 perpendicular to
F. Let i and j denote sites above and below 5, respec-
tively. The Greek letters (2, p, etc. will denote different
states on the same donor, e.g., singlet, triplet. Finally,
let the distribution f, be the probability that the state
n on donor i is occupied.

The current density is the net rate of charge Qow
across S.In an independent electron model, it is given by

j = (e/5) 2 2 Ef' (1 Zv f~') U—'(.) i(e)
nP i)s, j&s

—fie(1 —Q„ f")U~ (p),'( )j (II'I-1)

where e is the magnitude of the electron charge,
U;(„),, (e) is the transition rate, Eqs. (II-14, 19), from
the state (2 on i to p on j and it must be remembered
that i is above S and j is below.

If F=O, there will be no net charge transport and
the square bracket in Eq. (III-1) vanishes for each pair
of sites. If F&0, the U,; are altered, favoring sites of
Iow field energy and a current will Qow.

The f; are determined by the steady-state condition

Z 2 Lf' (1—2 fF)U'( ),i(e)
a i (re-'j)

—fie(1—2 f")Ui(e) '(.)j=O (III-2)

2'A similar interference effect occurs in the theory of the
hyperfine interaction of a donor electron in Si with the Si~ nuclei.
See reference 18, Sec. 7c.
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since the right-hand side is just the number of electrons
in donor states. To obtain Eq. (III-3), we have made
use of the reciprocal relation

U;(,),;(e) e p(PE, )=U, (e),;( & p()8E, ), (III-5)

which may be obtained from Eq. (II-14).
If F/0, Eq. (III-3) is no longer the solution. In

order to solve for the f;~ in the presence of F, we write

f' =LZ. exp'(e' —e")+«pP(e' —t') j-', (111-6)

and attempt to find the e;~. We use this form for f,
in the steady state condition, Eq. (III-2), and we make
use of the reciprocal relations, Eq. (III-5), but with
the electric field energy included in the energies of the
states. These steps lead us to the foBowing expression
for the steady-state condition (where we have taken
care to keep only terms which are linear in the electric
field P chosen in the x direction):

where

V'& ),)(e)/Z'( ).J(e) =0
a, i(~j)

(111-7)

and

V;(~),, (e) ——e(e—ep E,e+Ep+ eF (x;——xg), (III-S)

Z ( ), (e)=~L1+Z exp&( —E'+f))
XL1+2,-pO(-E; +f)l
&«xp&(E —f')P~U*(-), '(e)j ' (»1-9)

In Eq. (II-S), x; is the x coordinate of the ith donor.
In the same way, the current, Eq. (III-1), becomes

since the left side is Bf,e/Bt I. f F=O, Eq. (III-2) is
solved by

f' =LE exp(PE")+expP(E; —&)]-', (III-3)

where P=1/kT, E~~=E,~ E—, E;~ is the energy of
state n on donor i when F=0, and f' is the Fermi energy.
The latter is determined by

(III-4)

element of resistance Z;( ),,~p). Between junctions in
the same neighborhood, we have impedances Z;~ ~, ;~p).

At this point, we can note that the resistivity must
vary rapidly with majority concentration since Z,;
~ exp(2R/a). This is in accord with experiment.
Furthermore, we see from Eq. (III-4) that the Fermi
energy f'=+ ~ when Nz 0——and f'= —~ when
1V&=Ni). Thus, from Eq. (III-9), every element Z= 0&)

in both cases and the resistivity must have a minimum
for some compensation K=1V~/ND between 0 and 1.
That this must be so is clear since for E=O there are
no vacant sites and for E=i there are no electrons.
Such a minimum has recently been observed. "' %e
also note that each Z varies exponentially as 1/T which
is also consistent with experiment. '

B. The Fermi Energy

We evaluate the Fermi energy from Eq. (III-4)
which may be written in the form

N =g L1+expP( —E+f- )j- (HI-11)

where E; is the ground-state (singlet) energy on i and

t, is the singlet Fermi level, that is, what t would be
in the absence of excited states. f itself may be obtained
froIIl

ee!g= eer Q'e e~a— (III-12)

where 6 is the energy of the state o. above the ground
state (the ground state, ()& =0, is included in. the sum).
Note that in the above we have used Eq. (III-3) for
fp which is consistent with our approximation to first
order in the electric 6eld. Terms depending on F occur
only in the potential drops V;;, Eq. (III-S).

To evaluate Eq. (III-11), we transform the sum to
an integral by introducing a density of ground states
F(E). The energy distribution arises from the local
6eM variations due to the spatial distribution of ionized
acceptors. The zero of energy is taken as the energy of
the donor ground state in the absence of acceptors.
%e have

J=Z 2 V'& ),~(e)/Z'( ),)(e) ~

a, P i&S,jC$
(III-10) &~=&D

&o

Ii (E)(1+e &)dE,

The result of the development so far is to cast the
problem into the form of a resistance network with
impedance elements Z, & &,,&e& connecting the states u, P
of the sites i, j, with corresponding potential drops
V;( &,,&e&. The steady-state condition, Eq. (III-7) is
Kirchhoff's first law for the network; Eq. (III-S) is
KirchhoR's second law. The current is given by Kq.
(III-10).

In order to compute the resistivity of the crystal,
we must Gnd the equivalent resistance of a network of
E~ sites each of which consists of a neighborhood of
junctions which correspond to the different states on
each donor. Every pair of junctions is connected by an

where y=P(E f,). An integra—tion by parts gives
(with K= Ng/1VD)

K=1—P ()(E)dEL(1+e")(1+e ")j ', (III-13)
0

where &)(E)=

JOSEF(E')dE'

is the number of singlet
states with energy less than E. For low temperatures,
the denominator of the integrand is sharply peaked at
y=0 (E=f~). If i)(E) is slowly varying we may remove
it from the integral and evaluate it at f', . This pro-

~' A. L. McWhorter, Bull. Am. Phys. Soc. 4, 186 (1959).
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cedure may be justified in detail. "The integral may
now be performed and the result is

1—K=eg,)/(1+e—erg). (III-14)

In order to determine e(i g), we need to know F(E).
In our model, F(E) is determined by the Coulomb
repulsion due to the nearest ionized acceptor. Thus
E=e'/asr&, where rr is the distance to the nearest
acceptor. If we use the Poisson formula, P (rr)
=3(rt'/r~') exp( —rr/r~)s for the distribution in rt, we
6nd

F(E)=3(E~'/E4) exp( —E~/E)', (III-15)

where Eg=e'/ger~ with r~ defined as (3/4grn~)'*, the
average distance between acceptors. A simple inte-
gration now gives w(E) and Eq. (III-14) becomes the
defining equation for the singlet Fermi level i g:

1—K=exp( —E~/fg)'L1+exp( —Pi'g) j '. (III-16)

The total impedance of a chain is then

Z, =11TPt)t ZPr(Z)dZ+1VPs, ZPs(Z)dZ,

where 1V is the number of chain elements. P, (Z)dZ is
probability that the jth smallest impedance in the
allowed solid angle has a value in dZ. p, is the proba-
bility that a chain element is the jth smallest in the
allowed region. Either an outgoing element is the
smallest (j=1), or the incoming one was, in which
case the outgoing element is the second smallest (j=2).

Since the length I. of the crystal is large and the
impurities are distributed at random, each of the least
resistance chains will have the same resistance and we
shall have to take them in parallel. The number 3E of
such chains will be estimated later. The resistivity of
the crystal is then

An analysis of Eq. (III-16) shows that there are three
interesting regions of compensation:

O&E&e-~E l,= —(1/P) lnK; (III-17a)

where

p= Prpr+Psps,

p;= (E/LM) ZP; (Z)dZ.

(III-19)

(III-20)

e Pz"&-K&1 e Pz—~ -i g= —E~/in&(1 —K); (III-17b)

1 e»"&K—&~1, i g
——(1/P) ln (1—K). (III-17c)

For all available data, Eq. (III-17b) is appropriate. In
this intermediate case, when E is small enough, the
logarithm may be expanded and we have simply

i g
=Eg), (111-18)

where ED —e'/Kgb, fD (3/4grn—D)i In th——e a.bove, gs~

and nD are the acceptor and donor concentrations.

In order for our method to be valid, we must later show"
that p;+&&)p;, namely that the restriction to smallest
possible impedances is a good approximation.

We now begin the computation of P:,(Z). In what
follows, we only consider elements lying in their
allowed solid angles. Let g(Z) be the probability of
ending at least one element between 0 and Z. Then the
probability of exactly j—1 elements with values less
than Z is given by the Poisson distribution

C. Resistance Network

We have to compute the resistance of a network with
widely varying impedance elements given by Eq.
(III-9). We proceed by decomposing the network into
chains each of which threads the length of the crystal
in the direction of the field. We select those chains
which essentially determine the net resistance, namely
those which consist of small impedances pointing
primarily in the Geld direction. The paths of very large
total impedance will not affect the total network
resistance. A set of such "paths of least resistance" is
found in what follows.

From a given site, the chain is continued by the
following rule: Construct a solid angle centered on the
field direction of magnitude 4~(E) where y(R) is some
function, to be determined later, of the distance E. from
the site. Pick out that site (usually the closest one)
which is connected to the starting one by the smallest
impedance element in the allowed solid angle. In this
scheme, one must exclude the incoming element which
has just reached the starting site in order that the
chain not go back on itself. In the end, we determine

y(R) by a variational method which appropriately
emphasizes the Geld direction and small impedances.

Thus, the probability that the jth smallest lies between
Z and Z+dZ is given by

P, (Z)dZ=g'(Z)dZgg '(Z)e g(z&/('j 1) I (III 21)

To proceed, we must calculate g(Z). This is done
most conveniently by treating E as the variable rather
than Z. We may express Z;( ~;(p) in terms of E;,
E;" E,s, and U;t &,;ts~ fr—om Eq. (III-9). The tran-
sition rate U;t ~, &s& is given by Eq. (II-14) in terms of
the resonance energy 8' which in turn, Eq. (II-19), is
a function of R;;. The results of Part 3 of this section
give the Fermi energy. YVhen these steps are carried
out, we get an expression for Z which is complicated
by temperature-dependent exponential factors origi-
nating from the excited donor states. However, in
Appendix A we show that the result is simply expressed
in terms of the impedance elements in the absence of
excited states. The result for the net impedance between

"The fact that the condition p;+~/p;))1 is met can he seen from
the evaluation of p; vrhich concludes this section. From Eq.
{III-303, dropping the small terms in v(813, we see that the
required ratio is

(A;+q/A;) (2r D/3a)& = (1/j)(2m/3a)~&&1.
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sitesi and j is

Z~~ =Zg. ~~3~

Z,„,=aR,;V&'~i.h;(T)h, (2'),

(III-22)

(III-23)

r

g (Zo) =4n Ii) y (R)R'F (E)dEdR, (III-27)

h;, (T)= $1+ expP (—E;+f',)j
XL1+expP (—E+f,)j, (III-24)

h. (2') = (PE'i)-'L~xr P(E' t —
)g

—expP (E;—f,)j, (III-25)

g =g(9'/2) (ppg~/E ) (ii $%~) (irngi) &. (III-26)

In Eq. (III-22), l, is a factor given by Eq. (A-2) of
Appendix A; it depends on the energy differences
between excited and ground states. Z, ,;, is the im-

pedance in the absence of excited states. In Eqs.
(III-24, 25), E; is the ground-state energy of the ith
donor and E;;=E; E,. Eqs. —(III-22—26) express Z as
a function of the distance between the sites R(=R;,),
E(=Eg) and A(=E;i).

With this notation, we get for the probabi1ity of
finding at least one impedance between 0 and Zp

if we assume that this function does not vary rapidly
near the extremum, we find that the latter occurs at a
value, R, considerably larger than r&, the average
donor separation. This reflects the fact that impedance
elements of greater than average length, while not
occurring often, tend to retard the Row considerably.
The result of the saddle-point investigation is instruc-
tive with respect to the choice we shall have to make
for the allowed solid angle y(R). It turns out that
R =$2ro'/3ay(R ))& PIaE—~/6 and

p;~ expL2(2rD/3u)&y &(R )j. (III-29)

This shows that a variational calcu1ation will reveal
y= 1 near R in order to make p, small. We shall there-
fore choose y(R) = 1 for R)Ri, where both Ri and the
form of y(R) for R(Ri are still to be determined. In
any case, we must have R&(R . With these restrictions
on y(R), the result for p; is

p = (1VS/ilIII)A a'(a/rii)'*v& '(Ri)2(1+coshPt, )
XexpL1.09(rD/a) &+ (Ri/rii) '—N(R1)

—PIE(o/3 j, (III-30)
where

$(Ri) = (2rD/3~)'+N(Ri) —(Ri/rD)',

where F(E) is the density of states, Eq. (III-15). In
deriving Eq. (III-27), we have used the fact that the
probability of finding an impedance in dR is nD if dR
lies in the allowed solid angle and zero otherwise. The
distribution in 6 has disappeared from this result. The
reason is that the distribution has a maximum near
6=0 and in fact can be taken to be a sharply peaked
function of 6 without appreciable loss of accuracy in
the computation of g(ZO). The region of integration in

Eq. (III-27) is thus defined by those values of E, R
for which Z(R, E, 6=0) ~(Z0.

The evaluation of g(ZD) is performed in Appendix B.
The result is

g(Zp) =4meD
Jo

y(R)R'dR

+PE~aRp'y(Rp)I/6, (111-28)

where Z(R0,0,0) =Zo defines Ro, a is as usual the trans-
verse orbit radius, and I is a number depending only
on compensation; it is defined explicitly in Appendix
B. The term in I is small and will always be dropped,
except when it occurs in an exponential since it contains
a temperature dependence and will contribute to the
activation energy.

Having found g(Z), we may evaluate E;(Z) from
Eq. (III-21) and compute the resistivity, Eq. (III-20).
The result is that p; is expressed as an integral over R
which may be evaluated accurately by the saddle-point
method. The result depends on the choice of y(R) but

2;= /, (12a)40PN9irpos'0'/4E 'e'(j—1) !.

In the above l, accounts for the excited states (Appendix
A) and we have absorbed the constant 8 which is given

by Eq. (III-26). Only the first term of v(Ri) is large;
the others will be neglected.

D. The Activation Energy

We have proceeded far enough to discuss the tem-
perature and compensation dependence and activation
energy of the resistivity. From Eq. (III-30) we see
that the temperature and compensation dependence is
given by

p~ l.g2+e&«+e ~«je &z~lia

For compensation E near unity, the third term in the
square bracket is largest and p —+ ~ as discussed earlier.
For all data available at present, Pf,)&0 and we may
therefore write the temperature dependence as

p ~ l,ei",
(III-31)

e= i g IE~/3. —

It is only for Sb-doped Ge that excited states are
important and 1, diGers from unity. In all other cases,
we shall have a simple activation energy. In general, if
we define the activation energy by e&

——d(lnp)/dP, we

shall have

(III-32)
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The excited-state contribution e, is computed in Ap-
pendix A. In Sb-doped Ge, the activation energy is
slightly increased and in all other cases e, is negligible.

We have discussed the factor I in Appendix B. For
low compensations, I=4.05 and we have, using Eq.
(III-18) for i „the result (e ~e"(E(0.03),

oo
——ED—1.35Eg+ o,. (III-33)

For larger values of E we must evaluate I numerically
from Eq. (8-5). In addition, we use Eq. (III-17b) for

Th. e results are tabulated in units of Eo in Table II.
We see from the table that oo (and therefore p)

attains a minimum for 0.45(X(0.55.

E. Majority Concentration Dependence

The resistivity is given by Eq. (III-19). We have
evaluated p, , Eq. (III-30). All that remains is to deter-
mine Ri and y, the probabilities pi and Po and the
geometrical factor (XS/ML) which appears in Eq.
(III-30). We now discuss these quantities and extract
the majority-concentration dependence.

The number of chain elements E is related to the
length L of the crystal by

r
L=N LR cos0/4vry(R) jg&P&(R)+poPo(R)]dRdQ,

where P;(R)dR is the probability that, of those im-
pedances lying in their allowed solid angles, the jth
nearest one is at a distance lying in dR. This probability
is obtained from a relation just like Eq. (III-21) where

g is replaced by

N(R) =4meg) I y(R')R"dR'. (III-34)

L=4xeDS R'(y y') e "&"&d—R (-III-35).

To proceed, we need the form of y(R); we choose it
to minimize the resistivity. We refer to Eq. (III-30)

TABLE II. Activation energy in units of ED.

Also, 8 is the angle between R and the 6eld direction.
The 0 integration is over the allowed solid angle. We
recall that we have chosen y(R)=1 for R)Ri. For
R&R~, it is possible to show" that with good accuracy
Pi = 1, Po =0. Therefore, we have

and maximize (1/p, ). To do this, we crudely approxi-
mate the number of chains M by assuming each site
is a member of only one chain. Then ME=nDLS.
From Eq. (III-30) we then find that the terms in

(1/p;) which depend upon y and R are

dp

RI

Pi(R)dR= 1—expL —y(Ri/ro)'j =0.817.

If this is not so, we estimate that the incoming element
has a probability one-half of being the smallest in the
allowed region of the outgoing one. If it is the smallest,
the outgoing element is the second smallest. Therefore

Pi ——0.81/+ (1/2) exp) —y (Ri/rD) o]=0.909,

p2 =0.091.

Since P& also represents the probability that a chain
element points in the 6eld direction, we note that 90%%uo

of the elements do so.
Our task is now complete. The resistivities p; are

obtained from Eq. (III-30) and the conclusions of the
previous paragraph. The activation energy is given in
Table II and the eGect of excited states, contained in
the factor l„ is discussed in Appendix A. The final
result is

(1/p ) ~ (L/S)' exp/u(Ri) —(Ri/rD)'$. (III-36)

It is not difBcult to show that y=~ for all R(R~
leads to a maximum of (1/p, ). If we substitute Eq.
(III-35) into Eq. (III-36) and replace the exponential
terms in u(R) by unity, this result is exact. The justifi-
cation for this procedure is that u(R)(1; see Eq.
(III-34). On the basis of this argument, we assume for
simplicity that p is constant for R(Rj and maximize
Eq. (III-36) with respect to Ri and the value of y. The
result" is Ri——1.46', y =0.55. Therefore, L/1V
=0.352r&, and p; may be determined from Eq. (III-30)
by using M=rlDLS/X and replacing the temperature-
dependent factors (except l,) by expPo, see Eq. (III-31).

Finally, we must compute the probabilities Pi, P2.
The form of y restricts outgoing impedances to approxi-
mately a hemisphere in the field direction for R&R&
and there are no restrictions for R&Ri. Thus, if the
incoming impedance has a length less than R~, its
origin lies in the excluded region for the outgoing one
and the latter is then the first smallest in the allowed
region. The probability that this is so is

0.02
0.03
0.05
0.06
0.10
0.20

0.33

0.640
0.604
0.534
0.511
0.450
0.351

0.298

0.40
0.45
0.50
0.55
0.60
0.70
0.80
0.90

0.289
0.285
0.286
0.287
0.295
0.323
0.356
0.391

p= &(2') (regia) L1+18 2(a/r~)'j
)&expt 1.09(rD/a) '+P (oo —o,)1, (III-37)

C(T)= l.(T) (n/8)'PoXao'+posoh4a'/eoEio,

where Po we have just found to be 0.091 and X is a
numerical factor which absorbs all the factors of y
and Ri. Its value is 5.0&&10'. In Eq. (III-37) we have
explicitly displayed the majority-concentration de-
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pendence and the observed activation energy ea. The
calculated values of c3—e, are obtained from Table II.
When excited states are unimportant, l,= 1 and e,=0.

Sample
number

Activation energy X10' ev.
Calculated

X10 "cm ' Measured E=0.02 E=0.06

TABLE IV. Activation energies of Sb-doped Ge.

IV. CONCLUSION AND COMPARISON
%'ITH EXPERIMENT

A. Temperature Dependence

-5
—7
-8

—10

1.6
2.3
3.0
5.2

0 99
1.1
1.2
1.5

1.2 0.99
1.35 1.1
1.5 1.2
1.7 1.4

As was pointed out in Sec. IIID, a simple activation
energy obtains if excited states are not important. This
type of temperature dependence is generally observed. 2 6

For low compensations E, this activation energy is
given by Eq. (III-33) and is

e= (e'/Ko) (krtrD/3)'(1 —1.35E*).

For higher E, the activation energy is given in Table II
of Sec. IIID. We present a comparison of these results
with measurements of Ray" on n-type Si in Table III.

There are two sets of calculated values in Table III
since E is believed to be between 0.03 and 0.05. The
calculated values are obtained from Table II. The
agreement is satisfactory.

In Table IV we present a similar comparison for
measurements of Fritzsche4 on Sb-doped Ge near 2'K.
E is again uncertain, but believed to be between 0.02
and 0.06. Since excited states are important in Sb-
doped Ge, we have obtained the calculated values in
Table IV from Eq. (III-33), i.e., es= e+e,. Table II
provides e and e, is computed from Eq. (A-4) at
T=2'K. The value of e, turns out to be 0.13)&10 ' ev
so that the excited state increases the activation energy
slightly. Table IV shows satisfactory agreement for
X=0.06 for the activation energy and its dependence
on RD.

In Table V we present a comparison with results of
Fritzsche and Cuevas's on P-type Ge in which E is
known to be 0.4. From Table II, the calculated acti-
vation energy is 0.289 E&. The agreement in Table V
is fair."

Ke have remarked on the minimum in the resistivity
which occurs as a function of compensation for 0.45 (E
(0.55. Such a minimum has been observed' in P-type
Ge for 0.05 &E(0.6.

TABLE III. Activation energies of e-type Si.

B. Majority-Concentration Dependence

From Eq. (III-37) we see that the majority-con-
centration dependence may be tested by using the
observed values for p and ea. If we define

F=p(a/r~)L1+18. 2(a/rD)l] 'e &", (IV-1)
we have

lnF=lnC —Pe,+1.09(ro/a) &, (IV-2)

where only the last term of Eq. (IV-2) depends on mD.

We use the experimental values at 2.5'K of reference
4, and we expect that the graph of ln Y' vs (ro/a) i will

be a straight line with slope 1.09. In Eqs. (IV-1, 2) we
need a value for the transverse orbit radius u. The
samples are Sb-doped Ge and most of the conduction
occurs through the excited states when T=2.5'K
(l,=s) The s.inglet state radius is 69.2A, while the
triplet state radius is 71.6A. (These are obtained from
the mean of the thermal and optical values of Table I.)
We therefore use the weighted average a= 70.8A. The
results are shown in Table UI. The four points of

lnI' vs (r&/a)& lie very well on a straight line of slope
1.03."The agreement is satisfactory.

C. Abso1ute Magnitude of Resistivity

In the last column of Table VI we have calculated
the resistivity from Eq. (III-37). We have used, for
I-type Ge, the values x=4, s=4.92)&10' cm/sec,
Et 11.4ev,"a=7——0.8A, a=18.8.Thus, C/l, =9.6X10 '
ohm-cm. The agreement is fair. The magnitude of p is
the least reliable part of the calculation due to uncer-
tainties connected with the treatment of the effective-
mass anisotropy, the deformation potential constant,
and the spread in orbit radius due to zero-point lattice
motion. The latter will afkct the computed value of p

TABLE V. Activation energies of p-type Ge.

Sample
number

Activation energy)( 10' ev.
Sg) Calculated

X10 ' cm 3 Measured E=0.03 E=0.05
Sample
number

~A
X10 && cm 3

Activation energy X104 ev.
Measured Calculated

Sb {7-15)
As {@—6—2)
As {g-6—4+2)

6.05
6.5

14

4.7 4.6 4.0
5 4.7 4.2
5.8 6.5 5.4

1A
2 OE
3A
4A

0.756
1.19
1.45
3.20

3.23
5.2
5.2
5.9

3.8
4.5
48
6.2

"R. K. Ray (private communication).
"H. Fritzsche and M. Cuevas, Phys. Rev. 119, 1238 {1960),

and private communication.
'0 Our discussion has been carried out for n type but the tem-

perature and compensation dependences which we have derived
are also valid for p type.

"Use of the singlet state radius rather than that of the average
would make the slope 1.00. Use of the triplet radius, would make
the slope 1.05 and change the calculated p by 30%.

32 The value of the deformation potential constant EI takes
into account both shearing strain and dilation.
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TABLE VI. Majority concentration dependence in Sb-doped Ge.

Sample
number

—5
—7
—8

-10

+DX10 '5

cm 3

1.6
2.3
3.0
5.2

p (2.5'Kl
X10 6 ohm-cm

5.8X 103
3.2 X 10'

50
5.6

e3X10'
ev

0.99
1.1
1.2
1.5

20.4
17.1
14.9
11.4

ln 7'

15.3
11.9
9.56
6.01

p (calculated)
X10 ' ohm-cm

2.2X 104
10.0X 10'

138
11.0

T = (1+R/a+R'/3a')'e &"~+~o)'

Vp, = (1 R/a+—R'/3a')'e(~~+"o& '
f

E,(—~) =—, (e '/t)d-t

y =0.57722.

In the above, e is the number of conduction band
minima which are labeled by p and q, and R„ is defined
in connection with Eq. (II-17).D. Magnetoresistance in Weak Fields

It is possible to discuss the corrections to the electron
transition rate due to the presence of a magnetic field
of the order of, say, 3000 oe. The changes arise from
the modification of the electron wave functions. We
do not give the details" here but merely quote the
result that the corrections are extremely small, of the
order of 1% or less. This conclusion is consistent with
the experimental results. '

F. Time-Dependent Fields

We shall merely make a remark on the modifications
necessary if the external field is time dependent.

The steady state will not be obtained so that the
left-hand side of Eq. (III-2) must be set equal to
Bf;t&/Bt If the. transformation used to obtain Eqs.
(III-7, 10) is again made, it is found that Eq. (III-10)
still holds but that the potentials V;; are determined byE. Exchange Between Donox Sites

The exchange integral between two donor electrons,
while not germane to the present problem, is of interest
in other work, particularly in spin resonance studies. "
The integral is defined by

V;(~),;(e)/Z;(~), ;(e) =C, d(E; V;(&»)/dt)—
2'(~) &7'(P)

which replaces Eq. (III-7). In the above V;&,&,,&p&

= V;(,&

—V, &e& and C;e is defined as (e'/S)Pf;e(1 f,e)—
where f,e is given by Eq. (III-3).

This result expresses KirchhoG's rule for a circuit
similar to that described in the text. The necessary
modification is that attached to each site j(p), there is
a generator with emf of value E,&. The generator, in
turn, is connected to a condenser of capacity C;I' and
the condenser is connected to ground.

J,= P;*(h)&P;*(rs) (e'))&odors)&P, (rs)&P;(rr)drtdrs,

and may be evaluated by methods similar to those we
have used for the transfer integral I. in Sec. II. The
result is

by about 30% and the same is true of the uncertainty and
arising from the choice of transverse orbit radius. ' Be-
cause of the small transverse orbit radius in n-type Si,
the magnitude of p is extremely sensitive to the donor
concentration which is dificult to determine accurately.
We therefore do not discuss the absolute magnitude of
the resistivity of m-type Si. However, we have included
such samples in the discussion of the activation energy
since it depends only weakly on donor concentration
(eo ~ Ng)l).
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APPENDIX A. EFFECT OF EXCITED STATES

In general, the impedance Z;~ );~p) between states u
on i and P on j is given by Eq. (III-9). Let p be the
degeneracy of the excited state and 6, its energy
referred to the ground state. The degenerate states at

I„o——(e'/5«oa) ( (25/8 —23R/4a
3R2/as Rs//3 as) e (Rp+ Rq&&I—

+ (6a/R) $T„o(y+lnR/a)
+V, Ei( 2Rp/a 2R /a)— —

2T„iV„„lEi(—2Rp/—a)j),
~ G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959), and

references quoted therein; C. P. Slichter, Phys. Rev. 99, 479
(1955); G. Feher, R. C. Fletcher, and E. A. Gere, Phys. Rev.
100, 1784 (1955); A, Honig and E. Stupp, Phys. Rev. 117, 69
(1960).

3'I» has been evaluated for the hydrogen molecule by Y.
Sugiura, Z. Physik 45, 484 (1927l.
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Zij Z Zi(a), j(p)
0. , P

(A-1)

If we use Eq. (III-9) for Z;( ),j(e) and perform the sum
in Eq. (A-1), we find the results quoted in the text,
Z j=l@„Eqs.(III-22-26) where

a given site are at the same potential so we shall take
the v' impedances connecting an excited state on one
site to one on another in parallel.

We do not expect the ground state to be at the same
potential as the excited states at the same site. However,
a calculation similar to that of Sec. II shows that the
ratio of the transfer rate between neighboring sites to
that between two states on the same site is of order
(W/6) . This is small so that it is a good approxi-
mation to take all elements between two sites in parallel.

The net impedance between sites i and j is

where the limits of integration are de6ned by

Z(R, E, S=O) &Z,.

From Eqs. (III-22—25), we have

(B-2)

Z(R,E,O) =Bi,R je'~' 2$1+coshP(E f'—p)5. (B-3)

We shall perform the integral over 8 first, using Eq.
(III-15) for F(E). We define Rp and R, by

Z(Rp, 0,0)=Zp,

Z(R„f„0)=Z().

Then, from Eq. (8-2), the limits on the E integral are

0&R&R„O&E&E+(R),
R,&R&R„E-(R)&E&E+(R),

l, =(1+ve eP'){1+v'e eP'+(v/A)(1 —e eP)

Xt:(~-~.)/(1-.—( -')
+(&+&,)e-"/(1-e-e("")5)-'

(A-2)
Z(R, E+, 0)=Zp,

E+ i.,=i-, E —, (Rp(—R(-R,).

We have written jt', in the case that there is a single
u-fold degenerate excited state. The generalization to
other cases is straightforward. We note that Z, is the
impedance in the absence of excited states whose entire
eGect is contained in the factor /, .

In the limit 6,~0, l,—' —+ v+1, i.e., there is a
(v+1)-fold degenerate ground state. In the limit
b, ,—+ , l, ' —+ 1, i.e., the excited states do not con-
tribute. In the case the phonon energy 6=0, we have

l,= (1+ve eP')f1 2Pvh—,/(1 e~ ~)+—v e ~P'5 ' (A-3)

It is possible to show" that the eGect of zero-point
lattice motion on the excited state energies does not
materially acct these results or those of Sec. IIIB
which give the Fermi energy.

Finally, .for use in Sec. IIID, we need the excited-
state contribution, e„ to the activation energy. Ac-
cording to Eq. (III-32), this is the logarithmic de-
rivative with respect to P of Eq. (A-3):

1 2 —2PD,/(1 —enP') —v(1—e ~P')
+ . (A-4)

v+een' 1—eeP' —v'(1 e~P') —2Pg, v—

APPENDIX B. INTEGRATION FOR
IMPEDANCE DISTRIBUTION

We perform the integral for the expected number of
elements with impedance less than Zp, Eq. (III-22):

The result of the integration is

Bp

g (Zp) =4n jpi) t y (R)R' exp (—Eg/E+)'dR
p

Bg

y (R)R'lexp (—Eg/E —)'
~up

—exp( —E~/E+)'5dR . (B-4)

g (Zp) =4nND. y (R)R'dR+PEgaR p'y (Rp)I/6,

where the relation between Zp and Rp is Eq. (B-3) with
E=O and I is a number depending only on compen-
sation and is

iN-te-"dN, x= (E~/t. ,) . (B-5)
qJ,ip J, j

The first integral of Eq. (B-4) may be evaluated by
expanding the exponential about E = ~. The first
term predominates. The second integral is only over a
small range in E and we therefore evaluate the slowly
varying factor &(R)R' at Rp. The final result is

g(Zp) =4n jpi) I y(R)R'F(E)dEdR,
For compensations &~3%, I=4.05 and for larger

(B 1) compensations, numerical integration leads to the
results quoted in Table II of Sec. IIID.


