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The results of a previous, perturbation theoretic treatment of
d bands in the body-centered cubic lattice are extended in several
respects: The methods of the previous calculation are applied to
deter'mine energy levels at the points I' and X in the Brillouin
zone of the face-centered cubic lattice. As before, the crystal
potential is that of a lattice of point charges, screened by a uniform
distribution of electrons. The perturbation expansion of the wave
function of a d electron is developed for the body-centered cubic
lattice. Calculations are reported for two states near the top and
bottom of the d band, including terms of first order in the potential.
These functions have the characteristic property that the wave
function of a state near the top of the d band is more compact
than that belonging to a state near the bottom. The energies

of four states for the body-centered lattice axe computed as a
function of the binding parameter Zu by a more accurate method
than that employed in the previous work, making possible an
estimation of the accuracy of perturbation theory and the depend-
ence of bandwidth on binding parameter. The role of crystal field
effects in the tight-binding limit is discussed, and the circumstances
are determined under which the d band may split into sub-bands
based on functions of different cubic symmetries. Estimation of
the value of the binding parameter for which such separation
occurs strongly suggests that this split does not occur for the
actual transition metals. Finally, the effects of spin-orbit coupling
on the band structure are studied in the tight-binding approxima-
tion. A formulation of h y perturbation theory for fg bands is given.

I. INTRODUCTION
' 'T is the purpose of the work reported on this paper
~ ~ to continue the general study of d bands in cubic
lattices. A beginning was made in a previous calculation
(afterwards referred to as I) in which perturbation
theory with symmetrized linear combinations of plane
waves as basis functions was used to study d bands in
the body-centered cubic lattice. ' A simple crystal
model was employed which consisted of a lattice of
point charges (atomic number Z, lattice parameter a)
screened by a uniform distribution of negative charge.

The study of a simple model as an approach to an
understanding of some features of the electronic
structure of the transition metals was undertaken for
the following reasons: First, the complexities of a
self-consistent energy band calculation for a multivalent
element with d electrons on the basis of the Hartree-
Fock equations are so great that considerable further
progress in the techniques of band calculation is
probably required before quantitative results can be
expected. Second, even if such a self-consistent calcula-
tion could be made for some particular metal, it
might not yield much qualitative information with
respect to the dependence of band structure on lattice
symmetry and the relevant parameters of atomic
spacing and atomic number. Such information is
required for a real understanding of the properties of
these metals and their alloys. Third, at various times,
greatly different theories of the electronic structure of
the transition metals have been proposed, some without
any support in band theory, in an attempt to interpret
experimental observations of their properties. This
study should at least be of assistance in determining
the circumstances in which more detailed theories may
be expected to apply.

Of course, many features of the electronic structure
of real crystals have to be neglected in our considera-

' J. Callaway, Phys. Rev. 115, 346 (1959).
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tions. Probably the most serious omission is the neglect
of spin-dependent (exchange) interactions between the
d electrons. It is hoped that the gain in simplicity and
in qualitative understanding will compensate to some
extent for the necessary discard of some of the complica-
tions of reality.

The principal object of this paper is to determine
insofar as possible, the qualitative behavior of the
d-band structure as one passes, continuously, from the
case of free electrons to that of tightly bound electrons.
Principal emphasis is placed on the body-centered
cubic lattice (since there are two points in the Brillouin
zone which have full cubic symmetry), but a beginning
is made in the study of another structure, the face-
centered cubic lattice. The wave functions of d electrons
are briefly investigated, and some consideration is given
to the eGects of spin-orbit coupling.

The perturbation analysis of I may be applied to
states in any structure, provided only that the sym-
metry of the state is such that low-energy s and p
functions are not incorporated in the wave function.
In Sec. II, the face-centered cubic lattice is considered.
Results are given for 6ve states at the symmetry points
i' and X (see Fig. 1). Unfortunately, the point X does
not possess the full cubic symmetry of the corner H in
the Brillouin zone of the body-centered cubic lattice.
Consequently, one of the states of the d band at X(Xi) '
contains s functions as well, so that its energy cannot
be found by this method for interesting values of the
relevant parameters.

In view of recent discussions of the wave functions
of d electrons in metals (with particular attention to
iron), ' it is interesting to apply the perturbation
methods to a calculation of wave functions as well as
energies. This is done in Sec. III for two states pertain-
ing to the body-centered cubic lattice: H», which is

~ Notation according to L. P. Bouckaert, R. Smoluchowski, ancl
E. P. %igner, Phys. Rev. SO, 58 (1936).' J. H. %'ood, Phys. Rev. 117, 714 (1960).
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FxG. 1. Brillouin zone for the face-centered cubic lattice.
Points and lines of symmetry are indicated.

close to the bottom of a normal d band, and H25,
which is near the top. The perturbation series is in
fact a Fourier series for a set of correction functions
which are added to the basic plane wave function with
coefFicients proportional to appropriate powers of the
binding parameter Za. The d part of the first such cor-
rection function (corresponding to first-order pertur-
bation theory) is evaluated numerically for the two
states considered. The result reported by Wood, ' that
states at the bottom of the d band have smoother
wave functions than those at the top is evident here.
The correction function tends to make the simple
plane waves less smooth, thus altering them in the
direction required to produce atomic wave functions.

The energy of any state for the model crystal con-
sidered here depends on the binding parameter Za as
follows:

aE/Z= f(Za).

Perturbation theory yields an expansion of the function
f(Za) for small values of the argument. The function
f(Za) is proportional to (Za) ' for small Za. The first
three terms in this expansion were obtained in I for
the four states considered. It is desirable to determine
the region in which this expansion is reliable and,
particularly in view of interest in systems with narrow
d bands, to determine as much as possible about the
energy bands in the limit of large Za. (Here we consider
only the behavior of the energy bands, and do not
investigate the question of the adequacy of the energy-
band approximation itself. ) Two methods are employed
to study this problem.

It is possible to make considerable improvements
with respect to perturbation theory by numerically
diagonalizing a portion of the Hamiltonian matrix
(using a basis of symmetrized linear combinations of
plane waves). The results of this calculation are reported
in Sec. IV for/the four states pertaining to the body-
centered cubic lattice studied in I. The results indicate
that the three term expansion of perturbation theory
gives reliable results up to Za=25. For larger values of

the binding parameter, perturbation theory gives an
overestimate of the band width.

For large values of the binding parameter a tight-
binding approximation is appropriate. This is discussed
in Sec. V. It is found that the bandwidth must go to
zero exponentially as the binding parameter increases.
Crystal Geld e6ects in this model, however, decrease
only as (Za) ' and thus ultimately dominate overlap
effects for su%ciently large Zu. 4 Consequently, the d
band must split into two sub-bands, one based (in the
language of the tight binding approximation) on
functions of xy, ys, and sx symmetries (tss) and the
other on the e, functions x'—y' and 32'—r'. By compar-
ing the crystal field splitting of the d levels with the
bandwidth calculated on the basis of the tight-binding
approximation, we obtain an estimate of Za=70 for
the binding parameter at which this splitting first
occurs.

A detailed calculation of d bands in a real crystal
would have to include the effects of spin-orbit coupling.
The e8ects of spin-orbit coupling on d band structure
are studied in Sec. VI, in the tight-binding approxima-
tion. A general formulation of effective mass theory for
d bands in the presence of spin-orbit coupling is also
given.

II. THE FACE-CENTERED CUBIC LATTICE

The methods of I are immediately applicable to the
face-centered cubic lattice. The Fourier coefficients of
potential are (in atomic units):

V(k) = —8~Z/Qsk'= —8Z/vran' for kAO,
(2-1)

V(0) =mZ/2a.

In these equations Os=as/4 is the volume of the unit
cell and k= (27r/a) n t where n= (ei,es,es)j is a reciprocal
lattice vector.

The Brillouin zone for the face-centered cubic lattice
is shown in Fig. 1. We consider here the two points
of highest symmetry, F and X. At F, the irreducible
representations of interest are FI2 and F25 which are
doubly degenerate and triply degenerate, respectively,
(neglecting the spin degeneracy). At X, we are con-
cerned with the representations X2, X3, and X~. The
first two are not degenerate; X5 is doubly degenerate.
For the particular point X=(2m/a)(1, 0,0) (there are
three inequivalent points X); Xs transforms as y' —s';
X3 as ys, and X5 as xy or xs. The representation X&,
which is the completely symmetric one and thus includes
s states, contains the d function whose symmetry is
2x' —y' —s'. Linear combinations of plane waves
transforming according to all the representations of
interest have been constructed according to the
procedure described in the Appendix of a previous
paper. ' From these, the matrix elements of the potential,
which are linear combinations of the Fourier coe%cients

~ J. Callaway and D. M. Edwards, Phys. Rev. 118,923 (1960).' J. Callaway, Phys. Rev. 99, 500 (1955).
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FIG. 2. The dimensionless quan-
tity aE/Z is given as a function of
Ze for the 6ve states considered.
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(2-1) are easily obtained. The perturbation series
carried to second order then yields the following results:

Xs. E= 78.957/a' —0.6159Z/a —0.00319Z'

I'ss '. E= 118.43/a' —0.8281Z/a —0.00484Zs,

I'is '. E=157.91/a' —1.0933Z/a —0.00692Z', (2-2)

Xs. E= 197.39/a' —1.4329Z/a —0.01057Z'

Xs. 8= 197.39/a' —0.9023Z/a —0.01777Z'.

The results are shown in Fig. 2, where the dimensionless
parameter aE/Z is plotted as a function of Za. The
convergence of the expansions appears similar to that
found in I for the body-centered cubic lattice. The order
of levels given here (for small Za) is the same as that
found for copper by Howarth in a cellular method
calculation. '

Comparison of the energies of corresponding states
pertaining to the body-centered and face-centered
cubic lattices is interesting in that it illustrates the
eGect of the different boundary conditions on the wave
functions. The comparison should be made in such a
way that the volume of the atomic cell is the same in
each case. The volume of the atomic cell in the body-
centered lattice is as'/2; in the face-centered lattice
it is af'/4. We now define a new "lattice parameter" a'
such that a"/2=ar'/4, where aq is the ordinary lattice
parameter for the face-centered cubic structure used
in (2-1) and (2-2). When we express a'E/Z as a function
of Za', the results may be compared directly with pre-
vious calculations for the body-centered cubic lattice.
This is done in Fig. 3 for the states F~2 and F25. It is
seen that the states at the center of the zone are
separated by a greater amount in the face-centered

' D. J. Howarth, Proc. Roy. Soc. (London) A220, 513 (1953).

lattice than in the body-centered lattice, for small
values of the binding parameter. In the body-centered
structure, these states are degenerate in an empty
lattice.

The behavior of the energies of the states F25 and F~2
for large values of Zu as suggested by the perturbation
series for the face-centered structure cannot be correct.
It has been shown in previous work that F2~ must lie
below F~2 at large Za. ' The separation there is due to
the crystal field splitting mentioned previously. Con-
sequently, use of only three terms of the complete
perturbation series is certainly inadequate for Za& 88,
the point at which crossover of these levels is predicted.
Ke shall see later that the limit of usefulness of these
series is more likely to be about Zu= 30.

V,N, g'
4'm, x'= N~, v'+ ...~~ Z '(i,k) —Z,s(i,k)

(3-1)

where the u, ~' are the wave functions for the unper-
turbed system. The (unperturbed) energies of these
states are E,'(i,k). In the following we shall suppress
the labels i,k, understanding that summations include
only states belonging to the same irreducible representa-
tion. The t/", are matrix elements of the crystal
potential. There are no matrix elements connecting

III. d ELECTRON WAVE FUNCTIONS

The perturbation technique employed for a calcula-
tion of the energies of states at symmetry points of
the Brillouin zone may also be applied to determine the
wave function at these points. The perturbation
series for the wave function P„,~' (mth state belonging
to the ith irreducible representation of wave vector k)
may be written as:



734 JOSEPH CALLA WAY

FIG. 3. Companson of levels at
the center of the zone for the
face-centered cubic lattice (solid
lines) and the body-centered cubic
lattice (dotted lines).
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diferent irreducible representations. These matrix
elements are linear combinations of I'ourier coefficients
of the potential; consequently they are proportional to
Z/a. The energy denominators are proportional to
1/a' so that the first order perturbation term is propor-
tional to the binding parameter Za. Each higher term
includes an additional matrix element and an additional
energy denominator, thus providing an additional
power of Za. The perturbation series thus corrects the
unperturbed function I by adding functions whose
coefKi.cients involve increasing powers of the binding
parameter. These correction functions are expressed as
Fourier series.

The basic functions u, are symmetrized linear com-
binations of plane waves. ' In order to obtain a qualita-
tive picture of the wave function, it is desirable to
project out of the plane waves the spherical waves of
principal interest: those with l=2. Of course, all
spherical harmonics consistent with the cubic symmetry
of f will be present in (3-1). Let C (r) be the l=2
component of P„; and x, the same component of u, .
These functions must contain the appropriate (normal-
ized) Kubic harmonic, Es;. Let

C „=F„(r/a)F;s;(e,$),

X-=f-(r/a) I' s'(eA)
(3-2)

The function f (r/a) is proportional to a spherical

~ A table of symmetrized linear combinations of plane waves
for the body centered cubic lattice may be obtained from the
author. This table has also been deposited as document No. 6391
with the .ADI Auxiliary Publications Project, Photoduplication
Service, Library of Congress, %ashington 25, D. C. A copy may
be secured by citing the Document number and by remitting
$1.25 for photoprints or $1.25 for 35-mm micro61m. Advance
payment is required. Make checks or money orders payable to
Chief, Photoduplication Service, Library of Congress.

Bessel function Since

~ik (j) r
m

A
(3-3)

where the sum runs over an 3~-fold degenerate set of plane
waves whose propagation vectors k,„(j) are reciprocal
lattice vectors, and the coefficients a,„,, are chosen to
yield a wave function of the appropriate symmetry,
the function f may be expressed as

in which
f (r/a)= —4n.X js(k r),

X.=g; (a.,;/gX)K„(S,y,). (3-5)

In these equations k, , 8;, p; are the spherical polar
components of ir; with respect to a fixed set of axes.
It has been assumed here that the a,; are of unit mag-
nitude, This condition may not always be satisfied;
but the resulting modification of (3-3) is trivial. We
may now combine Eqs. (3-1) through (3-4} to obtain
an expression for F (r/a):

Let the coefficient of Za in (3-6) be designated g (r/a).
This function has been evaluated numerically for the
d electron states HI2 and B25 pertaining to the body-
centered cubic lattice. Since H&2 is close to the bottom
of the band and B~5 is close to the top for small Za,
we can obtain a qualitative idea of the variation of
the wave function over the band from these two states.

F (r/a)= —4n X„j,(k„r)

(aV, /Z)X,
+Za Q j„(k,r) . (3-6)

~ a'(F '—F,s)
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FIG. 4. First order correction g(rgo)
function g (r/o).

The computation included 102 plane waves for H~2

and 144 for Hss . The two functions g (r/u) are shown
in Fig. 4. In Fig. 5, the functions F (r/a) are shown as
obtained from (3-6) for Za=20.

Approximately 89% of the charge density for B'&s

and 80% of the charge density are in the t, = 2 angular
momentum state for this Za. Corresponding values
for the free electron functions are 87% and 68%,
respectively.

The correction function has the expected property of
reducing the amplitude of the wave function at large r
and increasing it at small r, thus tending to produce
wave functions of atomic character.

The wave functions of electrons in the d band of
metallic iron have been studied recently by Wood'
and by Stern' in order to determine whether the charge
distribution of electrons in the metal might be more
nearly uniform than in the free atom. These authors
have emphasized that electrons at the bottom of the
band have disuse wave functions; those at the top
have compact wave functions. The present calculation
shows this property does not depend on the crystal
potential and is characteristic even of wave functions
in an empty lattice. lt is interesting to see explicitly
that the perturbation correction of the free electron
wave functions, which tends to make them more nearly

8-

FIG. 5. Radial part of t =2
component of the d state wave
functions, normalized so that
J'nDF (r)rrdr=1.
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' F. Stern, Bull. Arn. Phys. Soc. 5, 169 (1960).Also see F. Stern, Phys. Rev. 116, 1399 (1959).

0.'4 0'.5
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Pro. 6. Variation oi aE~/Z with
Zu for the four states in the
body-centered cubic lattice accord-
ing to sixth order plane wave
expansions (solid lines) and ertur-
bation theory (broken lines .

like atomic d functions, preserves this property of the
free electron functions. Both of the functions presented
here are, as expected, more diGuse than those obtained
by YVood for metallic iron.

IV. INTERMEDIATE BINDING

As the binding parameter Zc becomes large, the
perturbation series expansion of the energy ceases to
be useful. For an intermediate regime of values of the
binding parameter, we may proceed as follows: We
set up the matrix representation of the Hamiltonian
according to the standard procedure still using plane
waves for basis functions, and diagonalize a finite
portion of it. The matrix elements of the potential are
still linear combinations of Fourier coeKcients of po-
tential. By considering the dimensionless variable aE/Z,
one can so arrange the matrix equation so that the
o6 diagonal elements of H are constant, while the
kinetic energy part of the diagonal elements contains
1/Za. It is then not dificult to obtain numerically the
energies of the states as functions of Za. This has been
done for the four states I'~2, I'25 H25, and H~2 pertaining
to the body-centered cubic lattice which were considered
in I. Sixth order matrices were considered in each case,
thus including all plane waves through type (27r/a)

(2,2,2) for I' and (2w/a) (3,1,1) for K The results are
shown in Fig. 6, where they are compared with the
perturbation solutions found in I.

Deviations from the results of perturbation theory
begin to be seen around Za=20 or 25. As expected, the
energies of the states decrease more rapidly with
increasing Zc than is predicted by perturbation theory.
The order of levels remains the same, however. For
Za& 50, perturbation theory predicts qualitatively
incorrect results.

For values of the binding parameter for which this

procedure is adequate, the width of the d band is,
approximately, the separation between H25 and H~2.
This separation is shown in Fig. 7. It is evident that
the bandwidth decreases in an essentially exponential
manner for large Za. To a good approximation, we can
write:

E(H2$ )—E(H&2) = (16Z/a)e —"s'. (4-1)

%'e find, approximately, k=0.07. It is probable, how-
ever, that this procedure yields an underestimate of the
rate of decrease of the bandwidth.

V. TIGHT BINDING

As the binding is increased, the convergence of the
plane wave expansion becomes poor since the kinetic
energy terms in the diagonal matrix elements of the
Hamiltonian become small. The tight-binding approxi-
rnation is then appropriate. A simple form of the
tight-binding method in which only two center integrals
are included and the lack of orthogonality of the d
functions on different atoms is neglected has been
applied to the transition elements by Slater and Roster, '
and others. ""

If the interaction between electrons on nearest
neighbor atoms alone is considered, the d-band structure
in the body-centered cubic lattice is symmetric about
its midpoint (in energy). When crystal field eGects or
second neighbor interactions are included, this sym-
metry is removed. We consider here principally the
effect of including the nonspherical components of the
crystal 6eld.

The fourth-order multipole terms in the crystal

' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954)."G. C. Fletcher and E.P. Wohlfarth, Phil. Mag. 42, 106 (1951);
Q. C. Fletcher, Proc. Phys. Soc. (I-ondon) A65, 192 (1952).

"M.'SuBczynski, Acta. Phys. Polon. 15, 287 (1956); 16, 157,
161 (1957).
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potential of a point charge lattice tend to lower the
energies of states (in cubic lat tices) whose wave
functions are based on the Kubic harmonics xy, ys, 2x

()» functions) with respect to those of symmetry
x' —y'; 3s' —r' (e, functions). This effect is automatically
included in the plane wave calculation described in
the previous section; it may be included in a tight-
binding calculation by adding a k-independent term
(6Dq in the conventional notation) to the diagonal
matrix elements for functions of e, symmetry and
subtracting a term (4Dq) from the diagonal matrix
elements of the t2, functions. "There are no off diagonal
elements of the crystal field. KBects due to bonding of
the d orbitals, often discussed in the literature of crystal
6eld theory are naturally included in the tight-binding
calculation.

Qualitatively, it is easy to see that the crystal field
tends to split the d band into two sub-bands based on
the functions of e, and t» symmetries, respectively.
The effect is illustrated clearly in Fig. 8, in which the
energy bands are shown along the L100] axis in the
Srillouin zone of the body-centered cubic lattice. The
curves are obtained from a crude calculation using the
results of SuGczynski" for interaction integrals. The
calculation employs an unscreened Coulomb potential
2Z/r around each ion (for this reason energy values

.00S-

.004-

.003

.002- --«L,

.00) ~ &

0.00
/~2$'

.00)-

-.002-

-,003-

+004

".+005

f-.006

FIG. 8. Effect of crystal Geld splitting on d bands along the
L100) axis according to the tight-binding approximation. Broken
lines correspond to P=20, solid lines to P=25.

Eg= (n'/6!)lr'e —l " ( )

and let E~ be the nearest neighbor distance, the band
quantities are functions of the variable

cannot be compared directly with those of the previous
section) and considers second neighbor interactions, but
neglects the lack of orthogonality of wave functions on
di6erent atoms. Crystal Geld effects are included as
described previously, numerical values being obtained
from reference 4.

If we consider hydrogenic d state radial wave func-
tions:

W a

l5 25 go 35

The curves in I"ig. 8 are drawn for p=20 and p=25,
respectively (rra=46. 2 and 57.7, respectively). The
case P=20 is one in which the crystal field splitting
TODAY is about one half the bandwidth produced by
the interaction integrals. In the case p = 25, correspond-
ing to the extreme tight-binding limit, the crystal
field splitting is about eight times the bandwidth. For
the present purposes, the bandwidth produced by the
interaction integrals is delned as the separation between
B» and H» in the absence of a crystal 6eld splitting.
From the work of Suffczynski" one has, considering
first neighbors

FIG. 7. Bandwidth (deGned as the separation between H2~ and
H12} as a function of Zu from the plane wave expansions.

'2 A review of crystal Geld theory is given by %. MofFitt and
C. J. Ballhausen, Ann. Rev. Phys. Chem. 7, 107 (1956}.

(a/Z)LE(Hss )—E(His)]=0.04562P'(1+1/P)e &. (5-3)

Several interesting qualitative results may be noted.
First, the effect of the crystal field in separating the d
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levels into two sub-bands is clearly seen. Similar results
may be expected in other crystallographic directions,
although some degeneracy present in this case will be
removed. Second, it will be observed that the band
formed from the t2, functions is broader than that
based on the e, functions. This occurs because the
width of the t2, band is determined by the integral
(tEdo)t. (The notation used here is that of Slater and
Koster for two center integrals'; however, here the
subscripts 1 and 2 refer to nearest and second nearest
neighbors in the body-centered cubic lattice. ) The
width of the e, band is determined by (ddor)t. Since
(ddo)i is proportional to pee ~ while (ddt)i is propor-
tional to p'e s, the conclusion follows. Third, the
splitting of the degeneracies of the bands along the
100 axis is accomplished by second neighbor interac-
tions. The splitting of the eg band is determined by the
(ddtr)2 integrals while that of the t2, band depends on
the (ddor)2 integrals. Consequently, the eo band is split
to a greater extent. Also, the second neighbor integrals
fall off exponentially as exp( —2P/v3), so for large p,
the splitting of the sub-bands falls o6 more rapidly
than the bandwidth. The discussion in regard to point
three applies, however, only to bands along the L100j
axis. There is a first order interaction splitting of the
sub-bands in other directions.

Finally, we wish to estimate the value of na at which
the crystal field splitting of the bands is equal to the
overlap splitting. The crystal 6eld e8ect is obtained
from reference 4 as:

(a/Z)10Dg=1. 492X104(«) 4. (5-4)

It is easily determined graphically that the overlap
splitting given by (5-4) equals the crystal field splitting
for O,@=48.5. For values of na greater than this, we
may expect the d bands to be split into two sub-bands.
As a rough approximation, we may set n=2Z/3, where
Z is the ionic charge (this is the value for a pure
Coulomb potential). If we consider a=6 (iron has
a=5.4), then for the splitting to occur, we must have,
approximately, Z= 12. It would seem to be unreasonable
to expect a model involving completely separate d
sub-bands to apply to iron, as has been proposed by
Mott and Stevens" and others.

The rough calculations of this section may be
criticized in two respects: neglect of the lack of ortho-
gonality of the wave functions on the different atoms,
and the neglect of the screening of the Coulomb
potential. A more accurate tight-binding calculation
including these eGects is being carried out by Mr. D. M.
Edwards. The results will be reported at a later date.

VI. SPIN-ORBIT COUPLING

The consequences of including spin-orbit coupling
in band theory have been discussed in a general way by
Elliott, who has given character tables for some of the

"N. F. Mott and K. W. H. Stevens, Phil, Mag. 2, 1364 (195II').

double space groups of principal interest. " The only
application to d bands of which I am aware is that of
Lehman, who has considered the 6d band of the actinide
metals. " He has considered, in what amounts to a
tight-binding approximation, a face-centered cubic
lattice with (effectively) a moderate value of the binding
parameter and a relatively large spin-orbit coupling.
The effects of spin-orbit coupling are also of interest in
the case of narrow d bands. Our treatment here will
concern principally body-centered cubic lattices,
although much of the discussion will apply to any
cubic structure.

The most striking effect of spin-orbit coupling is the
removal of degeneracies. The F25 state, which is sixfold
degenerate when spin is included is split into a doubly
degenerate level F7+ lying above a fourfold degenerate
level Fs. If we write the spin-orbit coupling as a pertur-
bation in the approximate form

V,=gL S, (6-1)

the separation between these two states is 3f/2 provided
f is small compared to the separation between the
original F25 level and the F» state. The latter, F~2,
level is not split by the spin-orbit interaction. (It is
however, raised in energy by an amount proportional
to P.) The splittings at H are similar to those at I'.

There are two representations for states along the
$100) axis: he and Ar For .this axis I'7 —+Dr and
I's~ De+Dr. The state 65 fourfold degenerate in the
absence of spin-orbit coupling is split into the doubly
degenerate 66 and 67. Since bands of the same symmetry
do not cross, there is a profound modi6cation of the
band structure near the points of cross over. Since the
i00 axis is now the only one with nontrivial symmetry
properties, no accidental degeneracies or crossovers of
bands will be permitted on other axes, and significant
effects on the band structure must be expected.

To determine the form of the bands in detail, it is
convenient to use the tight-binding approach. It is
desirable to express the matrix representing the spin-
orbit coupling on the basis of Kubic Harmonics. These
functions (always assumed normalized) have the
symmetry xy, ys, xs, x' —y', 2s' —x' —y', (numbered 1
through 5, respectively). They may be combined with .

spin functions for up and down (+ and —) spin. One
first constructs the matrix of L S on the basis of
spherical harmonics according to the procedures given
by Condon and Shortley" and then transforms to the
basis above. %hen this is done, the resulting 10X10
matrix may be factored by rearrangement of rows and
columns into two essentially identical 5)&5 matrices.
On the basis of functions (in order): x'—y'(+),
2s' —x' —y'(+), ixy(+), xs(—), t'ys( —), a 5X5 matrix

' R. J. Elliott, Phys. Rev. 96, 280 (1954).
"Guy %'. Lehman, Phys. Rev. 116, 846 ($959).
ie E. U. Condon and G. H. Shortley, Theory of Atomic Spectra

(Cambridge University Press, New York, 1935), p. 120.
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of symmetry xy and 2z'-x' —y' (only functions of
the same spin are connected in this way), " then the
Hamiltonian matrix can be put in the form:

(6-3)

The matrix of the entire effective Hamiltonian may
now be constructed. If, for example, His is the (real)
tight binding matrix element connecting the functions

in which M and E are the following 5&(5 matrices
(same basis as 6-2, extended by including functions of
reversed spin)

H44

H45
M= iHi4+l-

|/2
. —l-/2

H45

H55
iH15

l-v3/2

f v3/2

g+iHi4
iH15
H11

—l/2
("/2

i-/2
l.&3/2-l./2

H33
iHss —f/2—

—l/2
lv3/2
l/2

iHss —t/2
H22

(6-4)

0
0

&7= 0
H43

—iH42

0 0
0 0
0 0

iH13
—zH~2 H12

H43
H53

—iH13
0
0

$H42

iH52

0
0

The tight-binding matrix elements may be expanded
in powers of k. If the integrals representing interactions
between neighbors are regarded as parameters to be
determined either from experiment or from a more
rigorous theoretical calculation, we have a formulation
equivalent to that called k y perturbation theory by
Rane. " The only significant difference between this
approach and that adopted by Kane for germanium,
silicon, and indium antimonide is that we do not
diagonalize the spin-orbit coupling initially since the
separation between the states F» and I'» will ordinarily
be greater than the spin orbit splittings. Consequently,
states of definite j, m, are not particularly suitable basis
functions.

The matrix elements may be written:

Hii=dg+A (k '+k ')+Bk '
H12=Ck ky,

H1g= Ckyk„

H14= 0~

H15= —2Dk k„,

Hss=dg+A (k„s+k.s)+Bk,',
H23= Ck.ky,

Hs4= V3Dk„k., —
H25= Dk„k„
Hss=dg+A (k,'+k,s)+Bk„',
Hgg4=V3Dksk„

H35= Dk,k„
H g4= d,+E(k '+k„')+Fk,s,

H4s= G(k '—k„'),
Hss= d,+J(k.'+k„')+Itk,s.

The quantities d&, d„A E are the parameters in
terms of which the bands are described. These expres-
sions may be obtained either by expansion of the
tight-binding matrix elements or directly from sym-
metry considerations. The following additional relations
are also obtained:

E=J ',v3G, —-
F=J sV3G, —-
IC=J—V3G.

(6-6)

2E= (Hss+Hss —l/2) + (Hss —Hss)

25&'
X 1+ + . (6-7)

Hss —Hss 4(Hss —Hss)'

The energies of the hy states are determined as the

"These matrix elements may be obtained from the work of
Sister and Koster (reference 9) provided allowance is made for
crystal 6eld effects in the manner described in Sec. V."E. O. Kane, J. Phys. Chem. Solids 1, 83 (1956);1, 249 (1956).

This discussion applies to any cubic crystal and
could be used, for instance, to describe a d-band
semiconductor with band extrema at k=0 if such
exist.

For a general point in the Brillouin zone, it is neces-
sary to diagonalize the full 10X10 Hamiltonian. For
points along the L001j axis, considerable simplification
is possible, since all oG diagonal matrix elements of the
tight binding Hamiltonian are zero and H2&=H~3.
The secular equation may then be factored into two
identical quadratic and two identical cubic equations.
The quadratic equation gives the energies of the
levels of 66 symmetry; the cubic, the b7 levels.

The energies of the 66 states are given by
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Fro. 9. Effect of spin-orbit coupling on d bands along the [100)
axis for P =15, ol/Z=O 016 (so.lid lines). Dotted lines are bands
without inclusion of spin-orbit coupling.

roots of the equation (we put E=E1»+f —X):

g'+ (&+g 5t /2)X'+—[y(b 3i'/2) 2—bt']X = t—y&, (6-8)

in which y=H44 —B~~,. 8=H22 —H~~. The quantity 8

vanishes at k=0, so that at this point a root (Fr+),
E=H»+g is found. The remaining two different
(F„+) roots at k=O, given by (6-7) and (6-8) agree since
at that point &44=&55. These results agree with those
of Lehman. "

Equations (6-7) and (6-8) have been applied to
sketch the d bands along the 001 axis of the Brillouin
zone of a body-centered cubic lattice. The tight binding

formulas of Sec. V were used. The evaluation was made
for P=15, (na=34.6). A relatively large spin-orbit
coupling af'/Z= 0.016 was employed in order to
emphasize for illustrative purposes the effect of the
spin-orbit interaction. The results are shown in Fig. 9.
The most important result of the spin-orbit coupling
is the removal of several degeneracies: not only are the
I'2~ and B25 levels split, but most of the accidental
degeneracy along the axis is removed as well. There is
only one crossover of 66 and 6& levels. A small increase
in the bandwidth (if determined from these four
states) can also be noticed. One observes that it might
be possible to have some carriers of small effective mass
present even when the overall d bandwidth is small.

By way of application to the actual transition metals,
the eGects of spin-orbit coupling on the band structure
must be qualitatively similar to those encountered in
this simple example. Of course, in the iron series, the
spin-orbit coupling will not be as large compared to
the bandwidth as that used here.

In the extreme tight-binding limit discussed in Sec.
5, in which crystal field effects have caused a splitting
of the d bands into sub-bands based on functions of
tl2, and t,, symmetries, the principal e8ect of spin-orbit
coupling will be to split the lower, 52„band by an
energy approximately 3i/2 (We. have assumed 10Dq
)&f.) Except for this splitting, the form of the bands
will be that shown in Fig. 8 for P= 25.

ACKNOWI EDGMENTS

I am indebted to Mr. D. M. Edwards and to Dr. M.
Su6czynski for discussions and correspondence on many
aspects of the d band problem. The help of Mr. R.
Abrines with respect to the material in Sec. II is
gratefully acknowledged. This work was begun when
the author was visiting professor in the Department of
Mathematics, Queen Mary College, University of
London. I also wish to thank Dr. R. A. Buckingham
and the staff of the University of London computing
center for their assistance with the calculations described
in Sec. IV.


