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analyses in terms of discrete decay rate spectra. The
resolution theorem of Part III shows that the "lines"
could be somewhat broader, but the breadth could
scarcely be comparable with the separation between
the components.

Although only two materials have been examined at

low temperatures it is noteworthy that in either case
the proportion of energy channelled through very fast
phosphorescent processes is increased at low tempera-
tures. At first sight this is hard to reconcile with the
greater rigidity of selection rules to be expected at low
temperatures.
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A many-body technique is developed for the calculation of the dc resistivity of a Fermi Quid in the presence
of a few, randomly scattered, fixed, impurities. A certain class of graphs yields an expression for the con-
ductivity which is similar in form to the standard classical transport coe%cient; but the decay time is deter-
mined by the scattering of single-particle-like excitations at the Fermi surface by screened impurities. A
propagator method similar to that used in field theory is employed throughout the paper, and the perturba-
tion-theoretic interpretation of this method is examined in some detail.

I. INTRODUCTION

'N this paper we shall examine a many-particle for-
~ ~ mulation of the theory of impurity resistance in
metals. The emphasis will be placed on an attempt to
understand the role played by the electron-electron
interactions. In order to do this most effectively, we
shall adopt the simplest possible model which retains
the essential features of interest in the physical system.
In particular, we shall consider a dense Fermi gas of
electrons moving in the presence of a uniform, positively
charged, background and a few randomly scattered
impurities. These impurities are fixed in the metal and
are charged. Such a system is known to have a finite
dc conductivity.

The present calculation will be further restricted in
two ways. In the first place, we shall work only at zero
temperature. Secondly, we shall consider only a rela-
tively simple term in the conductivity which, as we
shall see, yields a result similar in form to the standard
classical expression for the transport coefBcient. Our
physical picture will be that of electrons accelerated by
the external field and scattered by the impurities. Our
"electrons, "however, will turn out to be single-particle-
like excitations of the Fermi Ruid, and the impurities
will be screened. It is hoped that the methods de-
veloped here will be useful in extending the calculation
to finite temperatures and in estimating the higher order
effects of electron correlations.

The first part of the development will be the deriva-
tion of a formal expression for the linear response of the
system to a uniform electric field. The result, which is a
special case of Kubo's formula, ' has a simple interpre-
tation in terms of many-particle graphs. It then will. b|.;
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E(t)— —Eeat

The conductivity cr then follows from examination of
the current produced by E at time t=0 in the limit
rr —+ +0.

To iirst order in E, the state 4'(t=0) is given by
0

4(0) =4' i t dt e'~'FF'(t)e '~%'s+ —. , (2-1)0 J 0

s D. A. Greenwood, Proc. Phys. Soc. (London) 71, 585 {1958).' S. F. Edwards, Phil. Mag. 3, 33, 1020'(1958).

shown that the simplest class of these graphs leads to an
expression for the conductivity very similar to the
Greenwood-Peierls formula, ' but generalized to include
the many-electron sects mentioned above. This deriva-
tion is contained in Secs. II, III, and IV. Section V con-
tains a discussion of the process of renormalization in
many-body problems which is necessary for the in-
terpretation of the results of Sec. IV.

The actual evaluation of the conductivity will be
performed here using a method developed by Edwards. '
In Sec. VI the relevant features of Edwards' technique
will be reviewed and generalized somewhat. In Secs.
VII and VIII we shall make a detailed analysis of cer-
tain terms which appear and finally exhibit an explicit
expression for the conductivity.

II. FORMAL EXPRESSION FOR THE
CONDUCTIVITY

In order to calculate the conductivity, we take the
system of electrons and impurities in its ground state
4's and slowly turn on a uniform electric field E(t). It
is convenient to describe this field mathematically by
the vector potential A= —(c/n)e 'E, which yields
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where H is the complete Hamiltonian for the electrons
interacting among themselves and with the impurities.
According to the above prescription, H' is given by

ing both the electron-electron and electron-impurity
interactions. Ho is the kinetic energy operator for the
electrons. Its lowest eigenstate is the Fermi vacuum,
'Co. U has the properties:

e e
H'(t)= ——A P= e"E P,

mc mo.
(2-2) U(t, t') = U'(t', t);

c tHt —c iHptU— (t 0) ~

(2-8)

(2-9)
where P is the total momentum operator for the elec- and
trons. The resulting current density at t=0 is: 4'p= U(0, —~)Cp. (2-10)

e e
j= t'(0) ( P—AÃ [ @(0))

mQ & c

ie'
e tdt(%'pt, (P(0),P(t) Ej~+p)

m'nQ

P=gt, kat, tat„ (2-11)

where ai,t and a~ are the creation and annihilation
operators for plane-wave states of momentum k. Thus,

We also introduce the second-quantized representation
of P in terms of free-particle eigenstates:

8S
+ E+terms of higher order in E. (2-3)

= P (k k')(Cp~U'(~, —~)U(~,0)

Here Q is the volume of the system, N, =XjQ is the
number-density of electrons, and P(t) = e'~tPe t~t.

The conductivity tensor O.„„is defined by:

3

j„=Po„„E„.

Xat,tat, U(0, t)at, zt(t)at, z(t)U(t, —pe) ~Cp). (2-12)

The operator Ut(tc, —pp) has the usual effect of fac-
toring out the vacuum Quctuations, leaving only linked
graphs in (2-12).

Since our system is effectively isotropic, we need calcu-
late only 0., the average diagonal element of r„,. Using
this definition and Eq. (2-3), it is convenient to write
the expression for o. in the form:

2e' e'tt,
~o= lim Im e tdt(Zp~P(0) P(t)~+p)+-~ I3msnQ mot

(2-5)

Equation (2-5) is the formal starting point of our
theory. Note that the matrix element which appears
has the form of an auto-correlation coefficient whose
time dependence we may expect to resemble a decaying
exponential. Unlike Kubo, however, we do not calculate
an ensemble average for this coeKcient. Rather, we
perform our calculation at zero temperature and, follow-
ing Kohn and Luttinger4 and Edwards, ' average over
random configurations of the impurities.

To begin the evaluation of the matrix element in
(2-5), we introduce the standard unitary operator,
U(t, t'), defined by the perturbation series:

III. GRAPHICAL ANALYSIS

The analysis of (2-12) in terms of graphs follows
according to the rules of Goldstone' or Hubbard. ' In
general, any graph has the form of a linked vacuum-to-
vacuum fluctuation which interacts twice with the ex-
ternal 6eld at times 5 and 0. We shall denote these 6eld
interactions by dotted, wavy lines running oG the dia-
gram. Since the external 6eld is uniform, these inter-
actions carry no momentum. A Coulomb interaction
between two electrons will be represented by a solid
wavy line, and an interaction with an impurity by a
straight dotted line ending at an "x" to mark the
position of a 6xed scattering center. Time runs in the
vertical direction.

Let us consider first those graphs in which no elec-
tron-electron interactions occur. Two such graphs are
drawn in Fig. 1. It is important to note that a graph
like 1(b) must be included even though it appears that
here we are measuring the momentum of a state which

0' i, r-0
%&4/

where
X[Vz(ti). Vz(t„)j, (2-6)

Vz (t) —ciHptVo iHptc a~t)——(2-7)

is the interaction representation of V=H —Ho includ-

' W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957l.

FIG. 1. Some graphs which contribute to cr. No
electron-electron interactions are included.

' J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).' J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957).



J. S. LANGER

In terms of S~ we have:

4e' ~0
~= lim — Img (k k') e 'dt

3m Qa

(a) (b)

e se2

Xl S,(1 ',k, —~)S,(k,k', r)j+, (3-4)

Fjo. 2. Some two-loop graphs which do not contribute to 0..
Formally, these diagrams are included in Eq. (2-12); but their
net contribution vanishes.

is unoccupied. The significance of this graph is that it
cancels out the violation of the Pauli principle which
occurs in Fig. 2(a) when k= k".

Strictly speaking, Fig. 2(a) is a "linked" graph ac-
cording to the above discussion —it contains no vacuum
Ructuations. It is apparent, however, that its contribu-
tion to o vanishes when summed over k and k' with the
weight factor (k k'), since the graph is invariant under
the replacement of k by —k. This is a special case of
the theorem which states that all graphs of the form of
Fig. 2(b) make zero contribution to o. Working back
from Eq. (2-12), we find that the matrix element for
the sum of all such two-loop graphs reduces to:

2 (k k')(+ol~"~. l+s&(+ol~"~'I+s)=o (3-1)

which vanishes because there is no net current in the
ground state for any configuration of impurities.

Graphs of the kind shown in I'ig. 1 may be expressed
in terms of the free-electron propagator Si (k, t' —t)
de6ned by:

where the quantity in square brackets is understood to
be averaged over random configurations of the impuri-
ties. The extra factor 2 accounts for electrons of both
spins, and the minus sign is required by the definition
of the propagator l see Eq. (4-2)j. In the absence of
electron-electron interactions, Eq. (3-4) is still an exact
expression for o-.

The many-body effects which we shall consider in
this paper are those which may be included by using
the true single-electron propagator S instead of S~ in
Eq. (3-4). Figure 4 shows a graph illustrating the three
principal kinds of resulting corrections to a term in 5~
whose basic structure is that of Fig. 3(b). At (a) we
have added an electron self-energy part which takes
into account the fact that the particle is moving in the
presence of all the other electrons. At (b) we have in-
cluded the polarization of the electron gas due to the
impurities. (There also will be similar terms in which
the impurity interaction appears to higher orders. )
Since the impurities are fixed, these terms just represent
the static screening calculated by Langer and Vosko7
and others. ' Finally, at (c), we have indicated a vertex
correction in which an exchange interaction takes place
between the incident electron and the screening cloud
surrounding the impurity.

Sp(k, t' t)—
= lim

expL —icy(t' —t) —n
l

t' —rl j, ~') &, ea) es
IV. THE TIME INTEGRATION

The formula which we wish to evaluate now is:
—expl —isa(t' —t) —a

l

t' —t
l ), i'&i, e&& es,

4e' ~0
(3-2) o.= lim — Img (k k') ~' e 'dt

" +' 3m'Qn

&& l
S(k', k, —&)S(k,k', t)gP

S, (1 ', k, i' —&)

where es=k'j2m, and eF is the Fermi energy ks'/2sts.
The limit n —&0 is understood to be taken after per-
forming the time integrations. Introducing the field of
the impurities V; a l see Eq. (6-1) for the precise form
of this quantityj, we may construct the function It turns out that a knowledge of the spectral properties
S,(k', k, t' —t),

=Ss (k, t' t)lip, g i—Ss (k—', i' —ir)

&&(V; ~)k, gSp(k, tt t)dti+, (3-3)—
(b) (c)

which describes the propagation of an electron starting
with momentum k at time t through any number of
interactions to a state with momentum k' at time t'.
That is, S& is the sum of graphs shown in Fig. 3.

Fro. 3. Some typical terms in S&, the one-electron
propagator without many-body corrections.

' J. Langer and S. Vosko, J. Phys, Chem. Solids 12, 196 {1960).' J.J. Quinn, R. A. Ferrell, and A. A. Maradudin (unpublished).
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of 5 enables us to perform the time integration in this
expression.

The spectral representation of S may be derived from
the formula':

S(k,k', t—t')

=T&@s~e'~'age '~" '&ar, te '"'~%'s&, (4-2)

0

t(0)

0
Is ~
IsI

c(tmlyl

where T is the time-ordering operator which includes a
change of sign upon permutation. Introducing com-
plete sets of %+1 particle states %'e and X—1 particle
states 0 8, and taking the Fourier transform, we get:

S(k,k', co)

1
=—lim S(k,k', t)e'"' '~'~dt

2rr '~
1 f"A(k, k', x) ~~ B(k,k', x)

lim ~ dx+ dJ,
27ri '~s & „x co —ie — & „x—co+is

(4-3)
where

other analytic in the lower half plane. There is a cut
along the real axis, the discontinuity across this cut
being given by the spectral functions 3 and B. Equa-
tion (4-3) then tells us that, along the real axis, we
must take:

5 k k M+se 6))
(4-8)

(, , ),
5(k,k', cv) = lim'~ 5(k,k', co—ie), rv(tr.

That is:
f

S(k,k', t) = ' 5(k,k',(u)e-'"de, (4-9)

FIG. 5. (a) The contour C. (b) Allowed distortions of C for positive
and negative t in Eq. (4-9).

A (k,k', x)
=&s&~'o I

a ~ I +s&&+s I
a~'t

I +o&~ (&s—&o—x),

B(k,k', x)
= &'&+ I "I+'&&+'I"I+o»(&'-&o+*)

The chemical potential, p, is defined by

tj, = lim L&o(&+1)—&s(&)j;

(4-4) where the contour C is deined in Fig. S(a). For values
of t)0, we may close C in the lower half plane; for t&0,
we close in the upper half plane. Since S is analytic
everywhere o6 the real axis, these contours may be dis-

(4 3) torted as shown in Fig. 5(b). In this way we recover our
original expression for S(k,k', t).

Inserting Eq. (4-9) into (4-1) and distorting the con-
tours as described, we find:

5(k,k', M)

1
I
"A (k,k', x)

dx+
X co

~~ B(k,k', x)
dx . (4-7)

This equation actually defines two analytic functions
S:one which is analytic in the upper half co plane, the

Fro. 4. Some many-body corrections to SI.

and Ee($), Ee($+1), etc., are exact eigenvalues of H
for E, %+1 particle systems.

The function 5 may be defined throughout the com-
plex co plane by writing:

4e~ fo
g= lim — Im e 'dt

3m'Qo.
e'""d

where:

8 (ro»ros)

p IJt e s~
X, e ' 'd&sg(&rgb)+

—00 SSQ
(4-10)

= lim P (k k')LS(k', k, Mr+is) —S(k',k, a r —ie))
e—++0 k, k'

XLS(k,k', res i e) 5—(k,k'—
, &os+is))

= —Q (k k')A (k', k,(or) (Bk,k', &o,) (4-11)
k, k'

Furthermore, from (4-4) and (4-5) we see that:

A*(k,k' ro) =A (k', k,co), B*(k,k', ce) =B(k',k,M); (4-12)

thus g(&or, Ms) is real. Now we may perform the time
integration and take the imaginary part in (4-10).
The result is:

4e2 P
0 fII

0 = lim —

~
d+~ dko2

a +0 3~2go,

For a more complete discussion, see V. M. Galitskii and
A. B. Migdal, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 189 (1958)
/translation: Soviet Phys. -JETP 34(7), 96 (1958)).

COy 602 e'n,
X g(~t,~s)+

(rot —tds)'+rr' mn
(4-13)



J. S. LANGER

The next step in the derivation is to take the limit
n —+0. The expression in brackets in (4-13) may be
considered expanded in powers of e, the leading term
being proportional to n '. If cr is to be finite, the co-
eKcient of this first term must vanish. (That is, it
must vanish in the exact expression for 0- including all
of the many-body corrections. ) Thus we shall identify
o with the finite term in (4-13)."This is:

Integrating by parts, we have:

4t,' Q
o-= lim —— —,d~~ i B(~i,~)+' 3tis'0 ~„i(e~i—p)'+n'

n Bg
CO2 (" ~ (~i—~s)'+n'~e~2

(4-14)

(4-15)

The final form of Eq. (4-15) contains the expected
result that, at zero temperature, only those electrons
whose energies lie exactly at the top of the Fermi sea
contribute to the current. Here the result has been ex-
tended to include an important class of many-electron
corrections.

In the special case of noninteracting electrons, (4-15)
reduces easily to the Greenwood-Peierls formula. Let
"h" be the Hamiltonian for a single electron interacting
with the impurities. We shall denote the eigenstates of
h by

~
e), and the eigenstates of the momentum operator,

p, by ~
k). Then S, is given by

and

Si(k,k', e~)= k k'
2mz h —co

(4-16)

27( 8
P P~(m~p, ~n}~'b(E„—E )8(E„—p), (4-18)

3~2Q tn, n u 1

'0 The coefFicient of 0. ' is the current produced by an electric
Geld uKe"' in the limit o. -+ 0. This is nonzero for a free electron
gas, but should vanish as soon as we insert some impurities. It
ought to be possible to demonstrate this fact directly.

g (k, k', g) =8(k,k', g) = (kj b(h —g) i
k'), (4-17)

Inserting these results into (4-15), we have

2X'8
0 = P (k k')(kjb(h —p) )k')(k'[5(h —p) ~

k)
3m'0 «'

which is the zero temperature form of Greenwood's
formula.

Ss (k,ei)=,ns -+
2x'z 6g—07—zo,'g

+0 for k) k~
(5-1)—0 for k&kp.

In the usual manner, we define the function P'(k, ~) to
be the sum of all proper self-energy parts of S'. (A
proper self-energy part is a diagram which is connected
to the rest of the graph by two electron lines and
cannot be broken into two such diagrams by cutting
only a single internal electron line. ) Then,

S'(k,GI) =
2iri es —ce—tns —P'(k, (o)

(5-2)

It is not by any means apparent that S' as constructed
according to (5-2) has the analytic properties predicted
by the spectral representation. In any finite order of this
perturbation expansion, Z' will have a branch point
at co=~p instead of at co=@. Furthermore, there seems
to be no reason for performing co integrations along the
contour C. In order to construct S' with the analytic
properties required for use in our conductivity formula
(4-15), we must perform a trick similar to mass re-
normalization in 6eld theory. Such a procedure has
been used recently by Luttinger and Ward" in examin-
ing the zero-temperature limit of their formulation of

"J.M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
See also reference 13.

V. SOME COMMENTS CONCERNING THE
TRANSITION FROM PERTURBATION

THEORY TO THE SPECTRAL
REPRESENTATION

The perturbation-theoretic interpretation of Eq.
(4-15) in the case of interacting electrons presents
certain difhculties which must be handled rather care-
fully before proceeding to use this equation in the
evaluation of 0. In particular, (4-15) depends critically
upon the treatment of S in the neighborhood of its
branch point at co=@. The value of p is not known
a priori; and furthermore, any perturbation approxima-
tion to S may not have quite the same analytic prop-
erties as those exhibited for the exact propagator in

Eq. (4-7). Thus we are required to find a self-consistent
procedure for the actual evaluation of these many-
body corrections to the conductivity.

For our purposes, it will be sufhcient to consider the
function S'(k,ei), the one-electron propagator in the
absence of impurities. Although the impurities may
shift the chemical potential, we shall see that this shift
enters into the conductivity only to high order in the
impurity-density, and may be ignored.

To construct S' in perturbation theory, we start with
the free-electron propagator Ss de6ned by Eq. (3-2).
The Fourier transform of Sg is:
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quantum statistics. We shall borrow heavily from their
results.

Let us imagine for a moment that we can calculate
Z' exactly. Formally we may do this by drawing all
proper skeleton self-energy parts and inserting the
exact S' for each internal electron line. (A skeleton
diagram is one in which all self-energy parts have been
removed from the electron lines, a definition which is
unambiguous for a self-energy graph. ) Evaluation of
any of these self-energy diagrams by means of the spec-
tral representation of S' leads to the conclusion that
Z'(k, cu) is cut along the real axis and that the physical
values of co are found along the contour C.

The same kind of graph-by-graph analysis indicates
that, as long as the perturbation expansion is well
behaved, Z' is real at co= p. Physically this means that
the single-particle-like state just at the surface of the
Fermi sea does not decay. In perturbation theory, the
phase space available for energy-conserving decay proc-
esses vanishes at co= p, . The generality of this result is a
crucial question in the theory of Fermi surfaces. On the
assumption that the result is valid, Luttinger and Ward
have shown that —Z'(kF, p) is exactly the shift in the
chemical potential due to electron-e1ectron interactions.
That is:

(5-3)

We now may reconstruct 5' in the following way. Re-
arrange the Hamiltonian which describes the interacting
electrons by adding bp to the kinetic energy term and
subtracting it from the interaction term. Then use for
the free-electron propagator:

1
S/

27Pi Eg+6p —(d —LCKg Q '(k, CO)

(5-5)

where Z" is the sum of all proper self-energy diagrams
defined in the obvious way. Since this S' must be the
same as that in Eq. (5-2), we must have

(5-6)

which is reasonable since bp by itself is the simplest
possible proper self-energy part in the new sense.

By performing this formal renormalization, we re-
cover the analytic properties of the spectral representa-
tion. If we use S„ instead of Sp for each free electron
line, then any graph will have a branch point at co=@,
rather than at co=~p. Furthermore, since in', is im-
portant in the denominator of S„only near the pole at
cv=ca+8p, , we may rewrite S„by dropping in& alto-
gether and performing ~ integrations along the contour

and include —8p in the perturbation expansion as if it
were a constant external field. Calculating 5' according
to these rules, we find:

FIG. 6. An anomalous vac-
uum-to-vacuum graph.

C. A similar contour method could not have been
applied to Sp because it would have given rise to an
anomalous delta function whenever C passed through a
pole as it crossed the real axis. For example, the simple
vacuum-to-vacuum diagram drawn in Fig. 6 is obviously
zero if we use Eq. (5-1) because k cannot be both &kp
and &kg at the same time. The contour method, on the
other hand, would give rise to an integral of the form,

1 r'~d( 1

i
dG)

2&1~ ~ dG) (tg td+Z(X Ey 4) ZQ I

1 1
(5-8)

and the contour Cp as long as we thoroughly renor-
malize every self-energy part which occurs. The shift
from cv to ~' merely produces a factor exp(imp/) in the
Fourier transform of S'. Since, ultimately, we shall

Any such delta function which appears in the renor-
malized theory, however, always will be multiplied by
Z"(kg,y), which vanishes according to Eqs. (5-3) and
(5-6). Thus the contour method is applicable after
renormalization; and the resulting S' is in exact accord
with the spectral representation to any order in the re-
arranged perturbation expansion.

Despite appearances, the calculation of S' as de-
scribed above does not really require a knowledge of
the exact value of 8p. We may eliminate this number
from actual computations by making the substitution
~=.&o'+8@ in Eqs. (5-4) and (5-5). The contour relevant
for integrations in the co plane now is simply Cp which
crosses the real axis at co=ay instead of at ~=p, . The
6p, which occurs in the form of an interaction may be
handled by noting that, every time a proper self-energy
part appears in a graph, there is a corresponding graph
in which this proper part is replaced by —bp. It is self-
consistent to evaluate this in the same approximation
that was used for evaluation of the corresponding
self-energy part. Using Eq. (5-3), we see that this is
equivalent to subtracting from the self-energy part its
value at k=kp, ~'=op. Thus we may construct the
function S'(k, a&'+by) by perturbation theory using
the propagator
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work only with closed-loop diagrams, this factor will
disappear.

Although the renormalization procedure is the one
which eventually must be used in actual computations,
it is not necessarily most convenient for formal manipu-
lations. A simpler set of rules for graphical analysis may
be found in the results of Luttinger and Ward. Suppose
we expand the propagator S„(k,a&) LEq. (5-4)j in
powers of 8p, i.e.,

,

' d'ri
) d'rzr;P(r„rzr, ).g¹J (6-4)

Performing this operation on the product of p's, we find:

(2n)'cV;
(p(qi)" p(q-))-= ~(qi+" +q-)

the S;impurity positions, r&, - r~;, may be taken to be:

S„(k,co) = — bp +
M 6P 67 II' —M

(5-9) (2m)'EP
+ Q&'i B(qi+ )b(q + )

Luttinger and Ward point out that these factors bp

just cancel those which were made to occur as inter-
actions and which had the eGect of removing anomalous
contributions. Thus we may use the usual free-electron
propagator and the contour method if we choose the
branch point at p and do include anomalous graphs.
The graphical analysis throughout the rest of the paper
may be interpreted in this manner.

where

~ -.=- & &(q)p(q)~.+~''.,
0 &,c

(6-1)

VI. THE CONFIGURATION AVERAGE

The procedure of averaging over impurity configura-
tions has been investigated in detail by Kohn and
Luttinger4 and used effectively by Edwards' in evaluat-
ing (4-18) for independent electrons. In this section we
shall review Edwards' technique brieQy, translating it
into the language of the many-body formalism, and
maintaining as much generality as we know how.

The interaction between electrons and impurities
appears in the Hamiltonian in the form:

(2')'XP
+ Q&'&, (6-5)

03

neglecting terms which vanish when 0 —+ ~ but the
density of impurities, n;=Ã, /0, remains finite. Z"&

indicates a sum over all partitions of the q's into two
groups; 2~3& sums three groups; and so on. Note that
the first term in (6-5) corresponds to the case where all
scattering events occur at the same impurity; the
second term involves two diferent impurities, etc.

It is apparent that the configuration average restores
a sort of momentum conservation to the propagator. A
slightly new kind of graph now may be drawn in which
all the dotted lines associated with a particular scatter-
ing center are connected to the same point on the
diagram. Equation (6-5) then tells us that the sum of
the momenta of all lines leading into this point must
vanish. Each such impurity point contributes a factor
tt; to the graph. A graph of order e'3 is drawn in Fig. 7.
Remember that, since the impurities are fixed, each
dotted line carries zero frequency.

The averaged propagator 8 is a function only of k
and or. It will be convenient to write it in the standard
forn1:

v(q)=)' d'x e—'& *v(x), (6-2)
8(k,or) =

2mi eg, —co—Z(k, (o)
(6-6)

p(q) =P, e-*'.". (6-3)

Here the sum is performed over all the impurity posi-
tions rq in the particulaT' configuration.

Following Edwards, let us first examine the con-
figuration average of the propagator S(k,k', co). This
function is defined by Eqs. (4-2) and (4-3), and may be
expanded in a sum of graphs in the usual manner. Any
particular graph contains the interaction V; p a certain
number of times, say m. Thus the contribution of such
a graph to S contains the product p(qi)p(q2) p(q ),
which may be brought out of the matrix element and
averaged before performing the momentum and energy
integrations.

If the impurities are distributed in a purely random
fashion, the configuration average of a function F of

m(x —re) being the potential due to a scattering center
at re. p(q) is defined by:

where Z(k, ru) is the proper self-energy part including the
averaged impurity interactions.

In order to calculate 0-, we must perform the con-
figuration average on the product of two propagators,
allowing for the possibility that the contractions indi-
cated in (6-5) may connect interactions in diGerent
propagators and thus give rise to an eGective exchange

FIG. 7. A term in S of order n
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of momentum between electron lines. In particular, let
us define:

E(k,(og,co2) =Qg (k k')(S(k, k', (oi)S(k', k)(o2)),~. (6-7)

The crucial trick in evaluating this quantity is to
use the fact that

Equation (6-9) is exactly the Bethe-Salpeter equation
in a new context.

An expansion of each term in (6-9) in spherical har-
monics makes it possible to perform the angular integra-
tion required in (6-7). After a few standard manipula-
tions, we may arrive at the following integral equation
for E:

S(k', k, (u) =S(—k, —k', co), (6-8)
E(k,a)g)(o,) =k'S(k, a),)8(k,(o2)

—8(k,(og)S(k)(a2)—P W(k —1, co„(o,)
0 i

&&(S(l,k',s)g)S(—I, —k', &o2)). . (6-9)

FxG. 8. A contribution to
E containing two irreduc-
ible interaction parts.

X

which follows in the usual way from time-reversal in-
variance. This step is actually rather signi6cant. Our
original formula (2-5) expresses 0 as a matrix element;
whereas we expect true probabilities, i.e., squared
absolute values of transition amplitudes, to enter into
a final expression for the conductivity. As we shall see,
the time-reversal transformation introduces complex
conjugates in just the right way to give us the sort of
answer we expect.

We now insert (6-8) into (6-7) and arrive at a sum
of all perturbation-theory terms with all possible con-
tractions between the impurity interactions. Any one of
these contributions to E may be represented by a dia-
gram in which two electron lines of momenta k' and
—k' enter at the bottom and leave at the top with
rnomenta k and —k, respectively. A typical graph of
this sort is drawn in Fig. 8. In order to sum these
graphs, we use the idea of an "irreducible" interaction
part. This is a diagram of the above kind which con-
tains one or more impurity centers connected to both
of the open electron lines, and which cannot be sepa-
rated into two such diagrams by drawing a line which
cuts each of the open electron lines only once and crosses
no other lines of any sort. Figure 8, for example, con-
tains two such irreducible interaction parts.

An important feature of these interaction parts is
that the total incoming and outgoing momenta are
always zero. Thus we may express any such part as a
function only of the momentum exchanged between the
external electron lines. Denoting the sum of all irre-
ducible graphs by the symbol S', we may 6nd the sum
of all graphs by solving the integral equation:

(S(k,k', (o&)S(—k, —k', ~2)), =8(k,(og)8(k,~,)b, g.

klS (k ~1)S(kp&2)~ (k,l,~1,~2)+(l,~1,~2)~l (6-10)

The interaction term m is defined by:

m(kl, (ug)(a 2)
= W(k —I, (ug, A)2) sm8 cos8d8) (6-11)

4n-'4 p

where 8 is the angle between k and l.

VII. SOME PROPERTIES OF S

In order to solve (6-10) and evaluate the conduc-
tivity, we must examine the propagator 8(k,&v) in some
detail.

From the spectral representation (4-3), it is apparent
that:

S*(k,k', (o) = —S(k', k,co*). (7-1)

Thus, if we evaluate the proper self-energy part Z(k, co)

as cv approaches the real axis and write it as the sum of
its real and imaginary parts, it follows that:

Z(k, co&ie) =6(k,co) Ail'(k, (o). (7-2)

That is, the imaginary part of the single-particle level
shift changes sign across the cut.

The function S(k,&o) is completely determined accord-
ing to (4-3) by its discontinuity at the cut, i.e., the
spectral function. From (7-2) we have:

8(k, or+is) —S(k, o)—ie)

I'(k, (u)

where

e(k,(u) =@,—o)—h(k, (g). (7-4)

If I' is small and constant in the region near e(k,o&) =0,
the expression in (7-3) has the familiar "Lorentz shape. "
In this case I' is a measure of the width, i.e., the proba-
bility of decay, of the single-particle state.

Following the procedure developed in Chapter VI,
Z(k, a&) may be expanded in powers of e;, the density of
impurities. The zeroth term in this expansion contains
no interactions with impurities, and is just the ordinary
electronic self-energy, Z'(k, cv). We have previously
assumed that the imaginary part of this self-energy
vanishes when cv is equal to the chemical potential of
the system of interacting electrons without impurities.
As mentioned in Chapter V, we shall neglect any change
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k', cu k, e k', , ccc k, ccrc

o (c3
)t

k~

I
g /

Fin. 9. Some contributions to t+(h', k,cd). Graphs (a) and (b)
are contained in s„(c)is contained in s. Graphs (d) and (e) con-
tribute imaginary parts to t+ even when co =p.

~ In any case, the same perturbation theoretic analysis which
indicates that Z' is real at co=ad also tells us that the imaginary
part of Z' goes as (ca —cc)c near ca=cc. Since any shift in cc due to
the impurities will be of order e;, the error made in neglecting
this shift is of order n; so it can have no eGect on the present
calculation.

in p, due to the presence of the impurities. Thus we shall
assume that the p which occurs here is the same number
which appears in Eq. (4-15)." Therefore the leading
term in F(k,p) is proportional to e;. This is as it must
be, since the decay probability which enters into the
conductivity should be proportional to the impurity
density.

The contribution to Z(k, cd) which is linear in cs, is the
diagonal element of the matrix t+(k', k,oi) which de-
scribes the scattering of an electron by a single screened
impurity center. This matrix is defined according to
Chapter VI by a series of graphs, some of which are
illustrated in Fig. 9. The superscript "+" indicates
that t+ is to be evaluated for ~ just above the real axis,
consistent with the choice of sign of F in (7-2). We then
have:

F(k,p) =is; Imt+(k, k,etc). (7-5)

The terms in Z proportional to higher powers of n;
are given by the coherent forward scattering amplitudes
for an electron in interaction with two or more impurity
centers. As long as the average spacing between im-
purities is large compared with the wavelength of an
electron at the Fermi surface, we may expect such cor-
rections to Z to be negligible.

The form of Eq. (7-5) strongly suggests that F(k,p)
may conveniently be rewritten by means of an optical
theorem. In fact, for noninteracting electrons, t+(k, k,etc)

is just the forward scattering part of the standard t
matrix, and we may write immediately:

F(k,,f ) =-,'e;(k,/m) ~,(kP), (7-6)

where crv(ks) is the total cross-section for scattering of

2xi
f+(k', k, ic) =v(k', k) — P v(k', I)

0

&&8'(I, Ic+ie)t+(I,k, Ic), (7-8)

where S', the true one-electron propagator without im-

purity interactions, may be written:

2miS'(k, fc+ie)

where

is real and

(7-9)
sic —p —Z (k,p) ze Ey Ic—ze

Z'(k, p) =6'(k,p)

EI,= es —6'(k,p). —

The problem of calculating t+(k', k,fc) is hereby reduced
to that of calculating the scattering of a free particle
of energy p by the real potential v as described by the
Hamiltonian:

(P) ccrc, cc=Es8cci, cc+ (1/D) v(k &k). (7-10)

H is Hermitian, and 8, like vq, will not shift the con-
tinuum part of the spectrum of H. Iteration of Eq.
(7-8) simply generates the Born expansion for the
scattering matrix t+. The usual theorems based on

a free electron moving with the Fermi momentum kp.
A similar theorem now will be proven for the general
case.

Starting from the assumption that Z'(k, fc) is real, we
may construct a series of contributions to the scattering
matrix f+(k', k,co) which are also real at cn= p. Consider
6rst the screened impurity potential which is the sum
of all graphs of the form shown in Figs. 9(a) and (b).
This function, which we shall denote by vs(k', k), is real
and independent of co. Its explicit form is given in
reference 7. Then suppose we take any proper electronic
self-energy part and insert an arbitrary number of inter-
actions with the screened impurity into its internal
lines. Summing all possible diagrams of this sort must
be the same as replacing every internal line in Z' by
the propagator for a single electron moving in the
potential v, . Call this modified self-energy part
Zs(k', k,&o). The desired contribution to the scattering
matrix is then:

v(k', k) = v8(k', k)+&8(k', k,u) —Z'(k, p)~s, s" (7-7)

Note that we have subtracted out the diagonal part of
Zz which contains no impurity interaction.

Being a localized and well-behaved potential, vq

cannot shift the bottom of the continuum of the free-
electron spectrum. Thus Z8 should be real whenever Z'
is, which implies that v as defined by (7-7) must be
real also.

In terms of v we have:
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completeness are now applicable; and in particular": For independent electrons (up ——kp/m, etc.):

This is the most general form of the desired theorem.
From (7-5), (7-11), and the definition of Ei, we have: This function has a maximum at k= kg and a width of

about k p/m=6/r, & ry. The magnitude of I' at its peak
is about u;/3$n, r, =0.51n;/n, r, ry.n;kp'

I'(k, ti) = " it+(k, kp, ti)i'
4p(kp/m 86'/—Bkp) "0 Vm. EVALVATrom OV THE ComDUCTIVnVXsin8d8, (7-12)

4n,Z2
Imt+(k, k, ti) =—Q ~

t+(k, l)y) ~'8(Ei tJ)—. (7-11) I'(k, ep)— ry.
0 r 3u, $(k/kp+1)'+)r, r(k/kp 1)'—+)r,5

(7-19)

where kp is the solution of:

kp'/2m —p —6'(k p, ti) =0, (7-13)

Returning now to the expression for o given in (4-15)
and using the definition of E in (6-7), we have:

(r = Q lim f 2 ReE(k, ti+ie, ti, +ic)
3m'0 & ' +'

—2E(k, ti+i e, p ie)—) (8.-1)

Here the expression (4-11) for b(co&,cu2) has been simpli-
fied a bit by use of Eq. (7-1), which describes the be-
havior of 5 under complex conjugation.

First, let us examine the second term in brackets in
(8-1). The integral equation (6-10) for this function,
which we shall denote by E+, is:

k'/2m —cu —6'(k, &o) =0.

Solving for the group velocity, we find:

(7-14)

dG) /k BD )
ug,.„p=—=Ng,f-

dk &m Bk)
(7-15)

E~ (k)=—
4w' e(k)'+I'(k)'

The number El„defined by:

X k' — klw+ (k,l)E+ (l)dl . (8-2)

Lsee Eq. (5-4)), and 8 is the angle between k and kp.
The term kp/m —86'/Bkp may be rewritten somewhat
more physically in terms of the group velocity of a
single-particle-like excitation at the Fermi surface.
When Z'(k, a&) is real, the frequency &u(k) is determined
by:

Ni '=1+ )

e~u(A:)

(7-16)

is a normalization constant which tells the probability
of finding the "bare" electron k in the true state of that
wave number. Note also that 31~ is the residue of
S'(k,cu) at its pole." In terms of the group velocity
Np at k=kp, we have:

n,kp'XA, p ~"
I'(k,v) =

~
t+(k, kp, p) ~' sin8d8. (7-17)

alp ~ p

It is easily seen that (7-17) reduces to (7-6) when
up=kp/m, and Ni p=1.

In order to estimate the magnitude and k dependence
of I', let us approximate t+ in (7-17) by:

where

4m.e'Z
t+(k+q, k) =t+(g)—i,(q)—

q'+~'

4me'kp 4 (2m=$r,kp', $=—
(
—

~

—0.65..&3)

(7-18)

"For exam le, see M. Gell-Mann and M. L. Goldberger, Phys.
Rev. 91, 398 1953).

"This point is discussed in detail by L. Van Hove, Physica 21,
901 (1955), and Physica 22, 343 (1956); and by ¹ M. Hugen-
holtz, Physica 23, 481 (1951'). Note, however, that their propaga-
tor is not quite the same as ours.

(From now on, functions like e and I' always will be
understood to be evaluated at &o=p.) The interaction
term W+ which determines w+ according to (6-11)
is given to first order in n; by:

W+ (k, l) =4~2n, ;t+(k, l)t-(—k, —1)

=4~'pt ~d-(k, l) ~' (8-3)

which follows from the graphical analysis of Sec. VI.
Thus

w+ (k,l) =u,
~

~
t+(k, l,8) ~' sin8 cos8d8 (8.4)

Apart from the factor cose, this expression is very
similar to that which appears in Eq. (7-17) for I'(k).
w+ (k,l) has a maximum at k = l, and has the same width
as I'(k).

It is apparent from the form of Eq. (8-2) that E+ (k)
is sharply peaked near values of k which satisfy e(k) =0.
The solution of this equation is not exactly kp according
to Eq. (7-13), since the A(k) which appears in e(k)
contains the impurity interactions. Qn the other hand,
the correction to kg due to these interactions is of order
n;, and it is consistent with our model of rare impurities
to neglect it. In other words, we assume that the single-
electron-like excitation is sufFiciently well localized
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between scattering events that it propagates as if there
were no impurities present at all.

In the neighborhood of k=kp, we may solve (8-2)
by evaluating:

M= /w~ (kp, l)E+ (l)dl

Equation (8-10) is not a solution of (8-2) for values
of k far away from kp, since w+ (k,l) becomes small for
k/l. (For Coulomb interactions, I'(k) k 4 and F'(k)
k ' for k))k p.) The dominant contribution to the integral
over / in (8-2), however, still comes from the region near
l= kp, where E+is w'ell approximated by (8-I). Evalu-
ating (8-2) in this manner, we find:

1 t."Pw+ (kp, /)dl 1 t" Pw+ (kp, /)dl

kr'& e(l)'+F(l)' kr'" e(l)'+F(l)'

E+ (k)

I
kk, r (k)

k'+
4n' e(k)'+I'(k)' I F(kp) —I"(kp)

(8-11)

l'w+ (/, /')Ei (l')dl'. (8-5)
0

The expression w~ (kp, l)Le(/)'+r(/)'] ' here plays the
role of a delta function for suKciently small e;. Its
normalization is

1 i "w~ (kp, /)d/ N»wp (kp, kp) (r )
+oI —I. (8-6)

4s' I, e(l)'+F(l)' 4ng F(kp) & ep)

In deriving this result we require that F(k) be constant
in the region of width F about k=kp. From the esti-
mates at the end of Sec. VII, we see that this condition
is F(kp)m/kp~=m, ~,*'/12r4&&1, which is easily satisfied
for rare impurities and dense electrons. %e also assume
that A(k) is a well-behaved function in this region. De-
fining in analogy to (7-17):

kp'E»w+ (k,kp)r (k)=-

For k near kp, (8-11) reduces to (8-10), thus checking
the consistency of the solution. As k becomes much
larger than kp, the second term in brackets vanishes
as k—4.

As it stands, (8-11) cannot be used to evaluate ~ in
(8-1) because the sum over k diverges at large k. To
achieve convergence, we must include the contribution
from E++(k) as indicated in (8-1). The inhomogeneous
term in the integral equation (6-10) for E++ is:

O' I'(k)' —e(k)'
k' Re(8(k, p+ie))'= (8-12)

4 '
t (k)'+r (k)'i'

As before, (8-12) is shorply peaked near k=kp. Unlike
(8-6), however, the analogous normalization integral
vanishes to order r/ep. Thus iteration of the integral
equation yields corrections of order r/ep, which we
neglect. In this approximation we have simply:

we have

Eupn kp' I.
~

t+(k,kp, 8)
~

' sin8 cosed8, (8-7)

k' F (k)'- e(k)'
ReE~+(k)—

kr' Le(k)'+r (k)')'

For large k, then:

(8-13)

1 w+ (kp, l) I"(kp)
/i(k kp), —

4r' e(l)'+I'(l)' kp'I'(kp)
(8-8) 2 ReE++(k) —2E~ (k)

kpr'(kp)M=-
F(kp) —I"(kp)

(8-9)

Thus, for k near kp ..

to order r/'ep. Note that this equation is valid only
when the expression appears in a convergent integral
along with other functions which are slowly varying
near k=kg.

Substituting (8-8) into (8-5), we see that 3l re-
appears as the integral over /', and we can solve the
equation to find:

k' r2(k)
k»kp, (8-14)

m' Le(k)'+r(k)'1'

which assures convergence in (7-1).
Having achieved convergence, we may evaluate (8-1)

using only the contribution near k=kp. According to
the last paragraph's discussion, E++ will not contribute
to lowest order in r/ep, . thus we need only E+ as given
by (8-10). We have:

e2kg4Xkp
tr(k )—r'(k, )$-i

6m2X2N p

E+ (k)=—
kp' F(kp)

4'' r (kp) —I"(kp) e(k)'+F (k)'
2g2k 2 - m - —1

( t(kp, kp, 8) ~'(1—cose) sinede . (8-15)
3irm 'si 0

k, X»s(k —k,) ~
r ~

+0~ —~. (8-10) This expression for 0 reduces to a more familiar form
4sup(r(kp) —r'(kp)) (ep) in the case of independent electrons. Taking X»=1
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and Np=kp/rn, we have:

o = (r4e'/rn) r
where,

kp
—=2gr(kp) —1"(kp) j= 2m.n,— o (8)

m~p

(8-16)

)& (1—cos8) sin8d8, (8-17)

and o.(8) is the differential scattering cross section for
an electron of momentum kp.

Equation (8-16) is the standard classical expression
for the conductivity. I', the decay rate for the single-
particle state, is the usual "scattering-out" probability;
and I" turns out to be the "scattering-in" term. Note
that there is no e8ect of the exclusion principle re-
maining even in the calculation of a(8) in (8-17). o(8)

is the exact cross section for a free electron scattered by
an isolated impurity center. This happened mathe-
matically- because we defined the poles in t+ by keeping
cu always just above the real axis.

In similar fashion, it should be possible to rewrite
(8-15) in terms of a scattering cross section for effective
electrons scattered by shielded impurities. This would
involve 6nding the correct normalization for these
scattering states (see Van Hove" ), and it seems

simplest, even if a bit less physical, to keep (8-15) in
its present form.
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Polarization reversal as a function of nucleation and growth of domains in ferroelectric deuterium-doped
Rochelle salt was investigated by means of the electro-optic Kerr effect. The results indicate that a phenom-
enological model based on statistical nucleation of domains in a plane including the ferroelectric axis
followed by a two-dimensional sidewise expansion of the domains, will adequately account for the experim-
ental observations for fields larger than 50 volts/cm. For lower fields, the process is controlled primarily
by the nucleation of new domains due to localized stresses which hinder the displacement of domain walls.

1. -INTRODUCTION

STUDY of the polarization process in Rochelle
salt (RS) was undertaken for a dual purpose.

First, some features of polarization reversal interpreted
as the nucleation and motion of antiparallel domains
have only been partially investigated. Second, the
validity of a phenomenological model for the reversal
mechanism was to be tested on a ferroelectric crystal
in which domain dynamics could be discerned optically,
under polarized light, as well as electrically, from a
study of the displacement current transients.

The displacement current parameters predicted from
this model were shown to be in excellent agreement
with experiment in the case of colemanite. ' No direct
visual observations could be made however, which
might provide additional justification for the choice of
a reversal mechanism based only on nucleation and
subsequent sidewise expansion of domains. Two-
dimensional wall displacement was observed in barium

' H. H. %ieder, J. Appl. Phys. 31, 180 (1960).

titanate' 4 under restricted experimental conditions and
some features of the above model were conhrmed.
Rochelle salt, however, offers because of its large
electro-optic effects, the advantage of unrestricted
observations of electrical and optical features of the
polarization reversal process.

Mitsui and Furuichi' studied the domain structure
and domain dynamics of Rochelle salt showing that
the spontaneous shear deformatioo between neighboring
domains causes the optical indicatrix to turn in opposite
directions about the a axis leading to a difference
in extinction positions between adjacent domains.
Indenbom and Chernysheva' discussed the mono-
clinicity of Rochelle salt using quantitative measure-
ments of the turning angle of the optical indicatrix to
define a thermodynamic potential theory analogous

' R. C. Miller, Phys. Rev. 111, 736 (1958).' R. C. Miller and A. Savage, Phys. Rev. 112, 755 {1958).
4 R. C. Miller and A. Savage, Phys. Rev. 115, 1176 (1959).' T. Mitsui and J. I'uruichi, Phys. Rev. 90, 193 (1953).
6 V. L. Indenbom and M. A. Chernysheva, Kristallogra6ya 2

(1957) )translation: Soviet Phys. -Cryst. 2, 522 (1957).


