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The point of view is taken that the irreversibility paradox of Loschmitt and Zermelo arises because there
are two valid transport equations, one causal, the other anticausal, each consistent with the fundamental
equations of mechanics. From this point of view the problem of irreversibility is to characterize a given
nonequilibrium distribution as to which transport equation it will obey. Using the transport theories of
Kohn and Luttinger and of Van Hove, we obtain a statistical criterion capable of so characterizing dis-
tribution functions of both stationary and time varying types. We discuss the question of how experimental
procedures consistently bring about a situation to which the causal transport equation applies; we answer
the question for a very simple kind of experimental situation.

I. INTRODUCTION

ECENTLV a number of authors' ' have studied
means of deriving rigorously from the equations

of mechanics the basic macroscopic equations governing
one or another simple irreversible process. In these
theories the emphasis has been on obtaining the macro-
scopic kinetic equations governing the irreversible
process from a sound theoretical treatment, free of
arbitrary and unsatisfactory features present in older
theories. The authors have had various particular ob-
jectives: they have wished to understand, e.g., how to
avoid the intuitive use of distribution functions, how to
go beyond the lowest order Born approximation in
treating collision terms in the transport equation, how
to view the conservation of energy condition in scatter-
ing, why the old condition of disappearance of phase
coherence between collisions gives too restrictive con-
ditions for validity of the transport equation, etc.

It is a feature of several of these theories that the
transport situation is discussed by means of an idealized
system which is thermally isolated and which obeys
Hamiltonian equations of motion. Our work to be re-
ported here arose from a consideration of the manner in
which these theories deal with the irreversibility prob-
lem, which arises when an irreversible process is de-
scribed in terms of the fundamental laws of mechanics.
We have arrived at some simple ideas of general
significance which are latent in some of these papers, '—4

but which we think have not been adequately discussed
there. We will explain these ideas by means of simple
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specific examples, and in the main refer to existing
theory for their mathematical substantiation. What we
are principally concerned to understand is the relation
of the theory of the very artificial and oversimplified
transport situation which can be treated by Hamiltonian
mechanics to the more complex situation which might
exist under experimental circumstances.

In the following paragraphs we will establish that,
from a certain point of view, the problem of irreversi-
bility arises from the existence of not one but two trans-
port equations, each valid under its own conditions.
From existing theory we will arrive at a statistical
characterization of a nonequilibrium distribution ade-
quate to determine which of the two transport equations
will govern its time variation. We will then discuss the
relation of the two transport equations to the results of
experiments. We will finally discuss the formulation of
mathematical initial conditions to describe experimental
situations in transport.

II. REVERSIBILITY-IRREVERSIBILITY PROBLEM

In elementary discussions of kinetic theory Boltz-
mann's equation for the distribution function in the
six-dimensional coordinate-velocity space is commonly
deduced from the fundamental equations of mechanics
by means of heuristic arguments involving merely the
conservation of particles and certain assumptions con-
cerning the statistical properties of the scattering inter-
action (Stosszahlansatz). Such familiar treatments make
it appear that Boltzmann's equation is an approxima-
tion to the Liouville equation, valid provided only that
there is no particular average correlation between the
position and the velocity of an electron. On such a basis
Boltzmann's equation should be valid at almost every
moment in a typical system. Against this view there is
the objection raised by Loschmitt' that because the
Boltzmann equation predicts irreversible effects it can-
not be an approximation to the reversible equations of
mechanics: For every motion of a system which has an
associated distribution function satisfying Boltzmann's
equation, there is another possible motion, obtained
from the first by reversing all velocities, in which the
system point in multidimensional coordinate space
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moves along the same trajectory as for the first motion
but in the opposite sense; the second motion has an
associated distribution function which satisfies an "anti-
Boltzmann equation" in which the irreversible terms,
the scattering terms, have the "wrong" sign. The one-
to-one correspondence between these two possible mo-
tions of the system shows that there are as many
distribution functions associated to possible motions of
a system that fail to satisfy Boltzmann's equation as
there are distribution functions that satisfy it. The
existence of these other motions is sometimes referred
to as the "paradox" of the Boltzmann equation or the
"reversibility-irreversibility problem. " For brevity we
will speak of these velocity-reversed motions as "duals"
of the original motion.

As an example we apply the Loschmitt argument to
the decay of electric current in a closed loop of wire in
which there is no emf. On simple assumptions about the
collision terms the Boltzmann equation will have the
form

(2 1)

in which 7. is the time of momentum relaxation: Equa-
tion (2.1) predicts that the current will decay like e '~'.

If we assume that the forces exerted by the scatterers
are purely electric, hence are even functions of the time,
then the equations of motion of the electrons in the wire
are invariant under the transformation t —+ —t and the
same equations of motion apply if the trajectories of the
electrons are all reversed. For this dual motion with the
trajectories reversed the distribution function satisfies

and the current builds up like e't'. We have called
Eq. (2.2) the "anti-Boltzmann" equation because of the
change in sign of the scattering term; it describes what
we will call "anticausal" behavior. Loschmitt's argu-
ment shows that macroscopic motions which satisfy
Eq. (2.2) are in some sense as common as those which
satisfy (2.1).

The existence of the dual motions implies that Boltz-
mann's equation does not follow from the equations of
motion alone: Boltzmann's equation is not an approxi-
mation to the equations of motion. The most that could
be true —and it is true —is that many distributions exist
which change with time according to Boltzmann's equa-
tion. In principle, then, to ensure that a nonequilibrium
distribution obeys Boltzmann's equation, one must
specify some property of the distribution, e.g., some
initial condition. (In a particular experimental problem
this might be inferred from the initial configuration of
the apparatus. )

The existence of the Loschmitt dual motions does not
depend, in an essential way, on the equations of motion
having time-reversal symmetry: "Irreversible" motions
of the anticausal type exist in systems having no particu-
lar time symmetry. We will show this by considering an
example from the theory of electrical conduction. We

consider a thought experiment in which electrical con-
duction is studied by means of observations made on
the current in a closed loop of wire in which there is no
emf. The current will be zero or very small most of the
time, and only at exceedingly great intervals will the
current become macroscopically large. However, when a
very large fluctuation does come along, its decay is
governed by the Boltzmann equation. We want to dis-
cuss the manner of growth of such a large fluctuation.
We assert that the growth, like the decay, is governed
by a macroscopic transport equation. This equation is,
in general, what we will call the anti-Boltzmann equa-
tion to emphasize its anticausal nature. In simple cases,
for which the equations of motion are reversible in time,
the anti-Boltzmann equation may be obtained from the
Boltzmann equation by reversing the signs of the scat-
tering terms as we obtained Eq. (2.2) from Eq. (2.1). If
the equations of motion do not have time reversal sym-
metry, there is, in general, no simple relation between
the forms of the two transport equations. However,
there will in any case be an anti Boltsman-n transport
equation which describes the most probable course of de

parture of a nonequitibrium distribution function from
equilibrium just as the Boltsmane equation describes the
most probable course of approach of a nonequihbrium
distribution function to equilibrium. Thus, (generalized)
Loschmitt dual motions exist, even when the equations
of motion do not have time symmetry.

The above considerations indicate that fundamentally
the problem of irreversibility does not involve time
symmetry as such. Instead it involves the existence of
two possible valid macroscopic transport equations: The
problem is to know of a given, mathematically specified,
nonequilibrium distribution function which of the two
transport equations would describe its time behavior.
From another point of view, the irreversibility problem
is to understand why only one of the two transport
equations is of use in predicting future behavior of
experimental systems.

III. RATE EQUATIONS FOR ELECTRICAL
CONDUCTION

In respect to the deduction of rate equations govern-
ing observable irreversible processes, there are two
questions which should be answered:

1. What feature of a nonequilibrium distribution
function determines which of the two transport equa-
tion it will obey?

2. Why is it that only the Boltzmann equation is
useful in predicting the future of an experimental irre-
versible process?

We will discuss the erst question in this section and
return to the second in a later section. In trying to
characterize a distribution function that obeys, e.g. , the
Boltzmann equation, we might specify either some
characteristics of its history or some characteristics of it
at a given time. In either case there is the technical
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diAiculty that the systems of interest are so very com-
plicated that even knowing exact initial conditions and
equations of motion one cannot practicably carry
through straightforwardly the calculations required to
ascertain even the qualitative behavior that the initial
conditions imply. Thus, the only practical possibility
for characterizing a distribution function as to which
transport equation it satisfies, would be to find some
statistical property of the distribution function of
the system which would serve to characterize it
satisfactorily.

We will obtain the required characterization of the
distribution function first for a steady state problem
studied by Kahn and Luttinger' (KLI) in their theory
of the dc electrical conduction of an isolated electron
gas. In the following paragraphs we will deduce the
desired characteristic directly from the equations of
Kohn and Luttinger. In the interest of brevity we will
not rederive these equations here, but will merely re-
capitulate the ones we require, since the interested
reader can find a full discussion of detailed questions
arising in the derivation in the paper of reference. We
will, however, discuss in detail how the equations of that
theory should be solved since the method of KLI must
be refined so that we can obtain both transport equa-
tions of interest to us.

In the problem of Kohn and Luttinger the electrons
are scattered by an interaction XV which results from
the action of identical, randomly situated scatterers of
uniform mean density. The total Hamiltonian Hz of the
system is the sum of three parts, Ho the part describing
the motion of the system in the absence of scattering,
) V described above, and FX~ which describes the action
of the electric field E(t). The electric field E(t) is of the
form Eot."in which s is the rate of switching on of the
electric field. The state of the system is described by a
total density matrix pz which is written as the sum of
an initial density matrix p and a density matrix p J which
is linear in the field. p is assu'med to be a function of
HO+XV, the initial Hamiltonian. p i is assumed to be of
the form fe" so that it will describe a situation for which
the induced current is at all times exactly proportional
to the applied field. The diagonal elements of f are
denoted f&, the off-diagonal elements f» .The equations
are formulated in the representation for which velocity
is diagonal, so the current will depend only on the f&.
The equations of motion of f& and f» tre, in adequate
approximation for our purposes )see (KLI) Eqs. (25)
combined with (33), Eq. (26) with C» ——0)

isjp ieE Bp/8k- ——
+X P„.' $y», y„,,—yii fi. ,„], (3.1)

(&u»p —is)f»' =X&»' (fk —fk')
+& Q~"'(f~i, &~"~ —&»"f~"~), (3 2)

in which pi, means p(Ei), n is, e.g. , a cartesian index for
the vector E, the notation superscript prime on the
summation means that no two subscripts appearing on f» =&&» (fa fa )/~ii"—(3.3)

any two-subscript symbol can be the same, +» denotes
(E&—Ei, )/h, and X is a dimensionless parameter used
to define the various orders of perturbation theory. In
the approximation (3.2) the equilibrium density matrix
p has been treated as though it were diagonal in the
momentum representation. This approximation, which
a6ects only higher corrections to the transport equation,
is only made for the sake of brevity; our procedure is
equally valid if we keep the terms C» which we have
dropped.

As formulated, these equations are intended to de-
scribe the situation in an ensemble of isolated electron
gases, each originally in an energy eigenstate with the
electrons moving about randomly, when an electric held
is slowly turned on; Eqs. (3.1) and (3.2) apply only if
the current is exactly proportional to the 6eld. We have
remarked in the last section that there are two macro-
scopic transport equations which govern the time be-
havior of fluctuations: We will now demonstrate that
either of these two transport equations could apply to a
situation as described above, and will also show in what
way the corresponding distributions differ. We will make
use of Kohn and Luttinger's perturbation analysis in
which the interaction parameter X is taken as small and
the density matrix f determined by a series of successive
approximations. (However, our method of solution of
the equations differs from theirs in an important way. )
As shown in KLI, the function fi, O(X '), the function
fi, i, O(X ') for vanishing X, so we can get a given
approximation to f» in (3.2) by using the next lowest
approximation to fz, f, i, where they appear in the
summation on the right-hand side, which is one order
higher in X. When an approximate solution for fbi, is
substituted into Eq. (3.1), a corresponding approxima-
tion to the transport equation is obtained.

The approximate solution of (3.2) in powers of the
interaction parameters is not entirely straightforward.
We desire for our case to discuss steady state transport,
so we want a solution of the equations that doesn' t
depend on s. This we can get if s is small compared to
all of the natural frequencies of the problem, including
the scattering rate (slow turn-on limit), for then we may
let s approach zero without changing the current. From
elementary considerations we know that for sufFiciently
small ) the scattering time 7 is of order X

—'. But the
slow-turn-on conditions above would require that sf»,
which is apparently of order X ' be always smaller than
f» /r which is of the order X+'. Thus, for fixed value of s
the limit X —+ 0 cannot be taken without giving up the
condition of slow-turn-on. Since the validity of the
perturbation treatment depends on passing to the limit
X —+ 0, we will modify the above equations so that that
limit can be taken. The simplest formal procedure is to
write s as QP with the consequence that the limits 8 —+ 0,
P —+ 0 can be taken in either order. We now find as the
lowest order (in X) approximation to f»
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Inserting (3.3) in (3.1) we find that the terms involving
V». cancel one another and that the solution of (3.1)
does not correspond to a transport process of the usual
sort at all, since it does not depend on the scattering
and it has no limit as the rate of turning on the field is
made indefinitely small.

In order to get the transport solution of Eq. (3.1) we
must retain terms in Eq. (3.2) that are of order X'f»,
since these terms are essential to describe the fi, i, for
which the energy difference ~k& is approximately zero.
In order to display all terms of order A,

+' we need to
substitute in the summation expressions for fi,„,fi, i,

that are correct to order A.'. We cannot get the required
expressions by direct iteration of Eq. (3.2), so we resort
to an indirect method which has much in common with
simple minded renormalization procedures in field
theory. We rewrite Eq. (3.2) as

(~xi. —i&&'—~Tii ~') fix
=&Vii (fi—fi )—~~'I'ii fii

+X Qi,"'(f»"Vi-i —Vii "fi i ) (3.4)

We wish to choose Fkk so as to cancel out the terms
proportional to f~i, arising when series developments
for f», f~ i, are put into the summation on the right-
hand side of (3.4). That choice of I'i, „will result in a
cancellation of the second term on the right-hand side
of Eq. (3.4) with certain terms in the summation there;
these cancellations have the sole consequence that when
the series is inserted for f», fi,"i, further restrictions
must be imposed on the range of the summation indices
in addition to those implied by the prime on the sum-
mation in (3.4), so that no two indices in the summand
can be the same. We will indicate that these additional
restrictions are to be observed by the symbol "on the
summation. Incorporating these simpli6cations into
Eq. (3.4) and defining

(3.5)

we obtain for f» the simpler form

&V» (fi —fi )

(f»"Vi "i Vi.i."fa-i, )—
+& Za-"— (3.6)

Equation (3.6) may now be readily solved by iterative
substitution into itself.

Explicit expressions for F» may be obtained by
iterating (3.6) and collecting the terms which are
omitted in virtue of the second prime on the summation
in (3.6). For the exposition of the irreversibility problem

it is entirely sufhcient to take the first nonvanishing

approximation to Fkk, which comes from the first sub-

stitution of the summation into itself. The erst approxi-

mation to F» is found to satisfy

&'I'» = —~&' Zi" + (3 7)

f» ='. &V» (fi, f~)/d»—, (3.8)

into Eq. (3.1). fi, i, with the positive value of I'i, i, leads
to the usual steady-state Boltzmann equation, f» with
the negative value of F» to the steady-state anti-
Boltzmann equation, each with the scattering terms
given in lowest order Born approximation.

We have given the above discussion in detail for
several reasons. For one reason, we have found that the
intuitive arguments of the previous section do not im-
mediately convince some reasonable people of the
existence of the anticausal type transport equation for
systems lacking time symmetry. For another, our treat-
ment shows the extreme sensitivity of the results of the
theory to the treatment'of the initial condition as im-
plied in the various limiting processes. Finally, the
mathematical form of the above discussion enables us

(by extension) to characterize mathematically for a
more general system the motions of the system that
satisfy the Boltzmann equation. We conclude that in
general it is the sign of F» appearing in its density
matrix elements that characterizes the transport equa-
tion the distribution will obey: Positive and negative
signs of I'» in the expression (3.5) correspond, respec-
tively, to causal and anticausal behavior. The sign of
F» is of importance only for pairs of states of about the
same energy; for these pairs of states it determines the
phase of the off-diagonal density matrix elements. With
respect to the classical six-space distribution function,
these matrix elements have the significance of position-
velocity correlations. Thus we conclude that the exist-
ence of systematic nonzero long-wavelength position-
velocity correlations is necessary for the validity of a
transport equation, and the phase of these correlations

Since the Fkk occur in the denominators on the right-
hand side of Eq. (3.7), Eq. (3.7 actually gives a set of
simultaneous equations to be solved for the Fkk . We can
easily find good solutions of these equations for the case
that A. is very small, because the values of the integrals
on the right-hand side of (3.7), are almost independent
of the magnitude of the small imaginary quantities in
the denominator. The real part of iVFkk is something
like the mean scattering rate in the states k,k' os A.'Fkk

is, by the hypothesis of slow turn on, large compared to
X's. It follows that the solutions of (3.7) are independent
of 8 for small B.

What is essential for our purpose is that the self-
consistent solutions of (3.7) may have either a positive
or a negative real part. The corresponding two solutions
for F» lead respectively to the causal and anticausal
transport equations inferred in the previous section. The
two equations may be found directly by substituting
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determines whether the transport equation is of the
causal or the anticausa1 type.

It is natural to suppose, from the above results for
the steady-state problem, that in the transient problem
also, it is the phase of the off-diagonal density matrix
elements that determines whether a nonequilibrium
distribution will decay or grow; one can verify this
directly by means of a theory of Van Hove. ' This theory
is expressed in very general terms so as to apply to a
very great number of dynamic systems; it may readily
be applied to conduction in an electron gas by specializa-
tion, provided the electric field is taken zero. We will

not give the detailed exposition of Van Hove's theory,
but will try to indicate a few of the main points. The
problem of Van Hove, as specialized to our case, is to
deduce the history of a distribution which is described
at time zero by a density matrix that is exactly diagonal
but has a nonzero current Row. By an ingenious method
of approximate integration Van Hove demonstrated
that the distribution approaches equilibrium both for
positive and negative times, obeying, respectively, the
Boltzmann and anti-Boltzmann equations for times
su%ciently remote from zero. He found that for times
very close to zero, i.e., times distinctly less than a mean
free time, there is no decay of the current. Van Hove
did not give formulas for the time dependence of the
nondiagonal density matrix elements, but one can
readily get such formulas from his theory. These
formulas are (in our previous notation) for the weak
scattering potential case

fax (t) =il'ii dr e '"'"'" ')mfa(r) —fi, (r)),

(t&&0), (3.9)
pt

fi,i (t)=iVi, i, dr e '"~~'*i' ' Lfq(r) fg;(r)], —
40

(t«0), (3.10)

where d~g, .* is the complex conjugate of dj,~, and the
quantity s is to be set zero. Equations (3.9) and (3.10)
show that for very small times the fz& grow in each
time direction away from time zero. If we neglect the
time dependence of the fi, in the integrand, we find the
same relation between fbi, and f& found by Kohn and
Luttinger with Kq. (3.9) corresponding to the causal,
Kq. (3.10) corresponding to the anticausal, transport
equation.

In view of these remarks we may consider that Van
Hove's theory has application to a fluctuation with
maximum deviation from equilibrium at time zero. We
want to emphasize two features of his results:

(a) When the fi„are very small there is no scattering.
(b) When the f&i, are significantly large there is

scattering governed by the appropriate macroscopic
transport equation —the Boltzmann equation when F»
in d». is positive, the anti-Boltzmann equation when
FI,I,. is negative.

Thus, Van Hove's theory provides support for the
notion that the phase of the off-diagonal density matrix
elements of nearly zero frequency is what determines
which transport equation governs the nonequilibrium
part of the distribution function.

The work of Van Hove toegther with that of Kohn
and Luttinger suggests a point of view to replace the
old condition" of "phase randomization between colli-
sions, " one which can be summarized in the phrase
"phase persistence between collisions. " Thus, in a sys-
tem of distributed scatterers one may consider that a
small amount of coherence remains from one collision to
the next, expressing itself in the phase of the low fre-
quency f&i, , and it is this phase coherence that permits
a steady course of the irreversible process.

IV. RELATION TO EXPERIMENT

The conditions under which most transport processes
are observed do not permit the idealization that the
observed system is isolated. However, it is possible in
certain cases to approach the following idealization of
isolation: (1) the system to be observed is isolated for a
long time, after which (2) the system of interest is
suddenly altered (we will consider that it is altered
instantaneously) so that the experiment is initiated,
(3) the altered system is again isolated and remains
isolated while the course of the experiment is observed.
We will take, as an example of this process, the diffusion
of some gas molecules from a container under the condi-
tions that the container was closed for a long period
during negative times and opened suddenly at time zero,

We want to discuss the diffusion process in this ex-
ample as though the observed system had always been
isolated, whereas, in the physical system a very drastic
change in the laws of motion has been made at the initial
moment when the container is opened. Thus, we must
consider that the observed system is created at time sero
(as the term "system" is used in mechanics), and the
behavior of the system for negative times is experi-
mentally unknowable. We can, however, say something
about the behavior of the system for negative times on
the basis of theory: Theory tells us that with over-
whelming probability the gas molecules moved into the
container by an inverse diffusion process which obeys
an "antidiffusion" equation. Under experimental cir-
cumstances such as "indiffusion" process is so over-
whelmingly improbable as to be unobservable; however,

gilbert that the corttairter had heel oper for alt time, it would
be overwhelmingly probable. Thus, viewed as a process
in an isolated system, the diffusion process is just the
regression of a fluctuation in concentration which
reached its maximum very nearly at the zero of time.

From the above admittedly somewhat artificial point
of view our idealized transport process is just the re-
gression of a Quctuation: An experimental procedure to
"For a discussion of these requirements see, for example, R. E.

Peierls, The QNaetlm Theory of Solids (Clarendon Press, Oxford,
1955), p. 140.
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observe our transport process just creates a nonequi-
librium situation corresponding to a Quctuation very
near its maximum, so that it begins its regression almost
as soon as the experiment is initiated. )The reason that
the Quctuation is created so near maximum is to be
found in the circumstance that a typical experimental
procedure fixes the state of only a few of the many
degrees of freedom of the gas (e.g., temperature,
volume). ) Our point of view, applicable to these special
experiments, fits in very well with Van Hove's theory of
irreversibility in all of its details if the time zero is
identified (as is natural) with the moment of initiation
of the experiment.

The problem discussed by Kohn and Luttinger cannot
be treated merely by the application of the Van Hove
theory because of the occurrence in the KL Hamiltonian
of the (unbounded) electric potential. We have con-
sidered carefully the relation of the theory to experi-
ment, and have found that the situation is surprisingly
complex. We cannot give a definitive discussion at this
time, but we will state our opinion since what is in
question is relevant to the subject of this paper. We are
presently of the opinion that: (a) There are two ohmic
solutions of the equations of motion, formulated and
solved by Kohn and Luttinger, the two solutions dis-
cussed in an earlier section. (b) The uniqueness of the
direction of current Qow in an experimental situation
apparently similar to that discussed by Kohn and
Luttinger is a consequence of a time-dhrected interaction
of the electron system with some external system always
present in experimental situations. In virtue of this
interaction, which cannot conveniently be introduced
into the Hamiltonian theory, the nature of the current
Qow and the density matrix describing it is largely inde-
pendent of the initial conditions supposed at t= —~.
(c) While the existence of such an external interaction
is essential for understanding the irreversibility of the
transport process, it is not essential for understanding
what the transport equation is; we believe Kohn and
Luttinger have deduced the correct higher order trans-
port equation subject only to the limitations that they
have stated. (d) We believe that similar remarks may
be made concerning other theories in which the artifice
of turning on an interaction is used to ensure the causal
nature of a solution of some set of mechanical equations.

We will conclude by commenting on the applicability
of the two transport equations for predicting the be-
havior of nonequilibrium distribution functions.

It seems feasible experimentally to observe motions
governed by the anticausal transport equation. How-
ever, one can never use that equation for predicting the
future experimental time variation of a nonequilibrium
distribution function. The difhculty is that experiments
do not provide the information necessary to infer the
correlations which determine the nature of time varia-
tion. One can, at best, then, predict the likelihood of
various future configurations on the basis of their rela-
tive a priori probabilities of occurrence. By definition,

"equilibrium" configurations are just those of highest
probability, and states near equilibrium are highly
probable relative to those farther away; consequently,
on an a priori basis and lacking information about the
correlations, one can only predict that the system will

approach equilibrium. Even though we may observe that
a Quctuation is carrying the system ever further from
an equilibrium state, we must expect at each moment
that the trend will immediately turn back toward equi-
librium. The proper application of the anti-Boltzmann
equation is for retrodiction during the progression of a
Quctuation, just as that of the Boltzmann equation is for
prediction during the regression of a Quctuation. Pre-
diction during the progression of a Quctuation is essen-
tially impossible since the system is moving from con-
figurations of more, to configurations of less, probability.
It follows that when the future course of a distribution
function can be predicted it is always the Boltzmann
equation that must be used to predict it.

The above discussion follows conventional thinking
as to the probabalistic elements of irreversibility. It is
presented only to show why the theoretical idea that the
correlations determine the manner of time variation of a
distribution is not in conQict with the experimental fact
that the upward course of a Quctuation is unpredictable.
This paper is intended primarily as an exposition of
ideas which are latent in the work of Kohn and Lut-
tinger, Van Hove, and Brout and Prigogine which we
believe did not get enough emphasis or discussion; thus,
it is not intended to be in conQict with their results.

V. SUMMARY

1. There are two macroscopic equations that govern
irreversible processes in an isolated system, the Boltz-
mann equation (causal), which describes the most
probable mode of approach to equilibrium of a non-
equilibrium distribution function, and an "anti-Boltz-
mann" equation (anticausal), which describes the most
probable mode of motion away from equilibrium of a
nonequilibrium distribution function: The problem of
irreversibility is to determine which of these will govern
a given nonequilibrium distribution function.

2. The decisive matter for determining whether a
given nonequilibrium distribution function obeys a
causal or anticausal transport equation is the phase of
certain oG-diagonal density matrix elements; in the
theory of a classical electron gas these matrix elements
describe position-velocity correlations.

3. In discussing irreversible processes in an isolated
system it is the initial conditions which must guarantee
the existence of the correct type of oG-diagonal matrix
elements. The solution density matrices are sometimes
very sensitive to the details of these matrix elements
are specified.

4. The analysis of how experimental procedures result
in a specification of causal initial conditions is complex:
Experimental conditions are not usually consistent with
the notion that the system is isolated. However, in the
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simple case that the observed process can be considered
as a fluctuation in an isolated system, the theory of
Van Hove can be related to the experimental situation
in a natural way.

5. Ordinary probabalistic reasoning shows that in

experimental situations the anti-Boltzmann is never
useful for prediction of the future behavior of a non-
equilibrium distribution function, even in cases for
which the distribution function is changing according
to that equation.
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The pseudopotential method is used to calculate the temperature dependence of the low-momentum
excitations in a Bose gas of hard spheres to an order beyond that previously known. The correction term
is shown to be small compared to the leading term for all temperatures less than the critical temperature T,.
The excitations become poorly defined for temperatures slightly below T„however, since it is shown that
in this region the excitation lifetimes are quite small.

INTRODUCTION

T any temperature T less than the critical temper-
ature T„ the low-lying excitation energies in a

system of bosons are associated with unique wave
numbers and, therefore, they exhibit particle-like
properties. The (temperature-dependent) energy-mo-
mentum relation for these quasi-particles has been
measured for liquid He II by neutron scattering experi-
ments. ' On the other hand, a theoretical calculation of
quasi-particle energies has been made only for a Bose
gas of hard spheres in the low-density limit. For this
idealized model the leading term in the quasi-particle
energy, as determined by Lee and Yang, ' is

too(k) = (2M) 'pt'k(k'+2ko')&

where kos=8srpttX (p=density, tt=diameter of a hard
sphere, and X(T)=fraction of bosons in zero-momen-

tum state). The expression is valid for all T(T,.
Several calculations have been made of the leading

correction to coo(k) at T=O (where X=1).' On the

*This work was supported in part by the U. S. Atomic Energy
Commission and in part by the Ofhce of Naval Research. This
research was started while the first author was at Columbia
University.

'H. Palevsky, K. Otnes, and E. Larsson, Phys. Rev. . 112, 11
(1958); Y. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C.
Kerr, Phys. Rev. 113, 1379 (1959); D. G. Henshaw, Phys. Rev.
Letters 1, 127 (1958).

2 T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958).' S. T. Beliaev, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 433
(1958) /translation: Soviet Phys. —JETP 7, 299 (1958)g; F.
Mohling and A. Sirlin, Phys. Rev. 118, 370 (1960), hereafter
referred to as MS.

other hand, the leading correction to coo(k) for TWO
has not previously been published.

The problem of calculating the quasi-particle energies
for the ground state (T=O) of a Bose gas of hard
spheres possesses the simplifying feature that only two
lengths characterize the system; namely, /=—p & and u.
The only dimensionless parameter which is encountered
in the low-density case is found to be the small param-
eter (pas) &.

When T/0 another length occurs in the problem;
namely, the thermal wavelength,

'hr = (2srA'/kTM) &.

The introduction of the thermal wavelength increases
the number of dimensionless parameters which can be
used to describe the Bose gas of hard spheres. Now,
whereas the low-density Bose gas is certainly not the
same system as real liquid He II, it is of value for
orientation purposes to write down the lengths a, l, and
X„. (=)ir at T,=2.18'K) of real He II,' together with
various dimensionless combinations which are encoun-
tered in this paper. These are:

a=2.30 A,

l=3.58 A,

X„=5.91 A,

tt/)t, =0.39,

(pas) &=0.515,

p),'=4.5,

pu), '= 1.75.
4 See, e.g. , F. London, Super@aids (John Wiley 8r Sons, Inc. ,

New York, 1954), Vol. II.


