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Statistical Mechanics for the Nonideal Bose Gas*
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The equilibrium and quasi-equilibrium properties of a system of interacting bosons are studied from a
microscopic point of view. For equilibrium, the model of Bogolyubov is generalized to finite temperature
by using the grand partition function. The thermodynamic properties and the pair-correlation function
are calculated. The statistical mechanics for moving systems is then developed and applied to the problem
«a rotating Quid. For quasi-equilibrium, general transport equations are derived from erst principles,
independent of statistics and model. For the Bogolyubov model, the familiar two-Quid hydrodynamics is
then derived, leading to the phenomena of erst and second sound.

I. INTRODUCTION

LTHOUGH useful phenomenological schemes have

~ ~ ~

been developed to describe the properties of
liquid helium at very low temperatures, no quantitative
microscopic theory exists at present. Nevertheless,
significant progress has been made towards solving,
from first principles, the model problem of a low-density
system of interacting bosons in equilibrium. The
first step was made by Bogolyubov in 1947.' More
recently, Lee and Yang and their collaborators have
extended this work to the case of hard-sphere interac-
tions. ' The attractive feature of the low-density theory
is that it unifies two ideas which are probably essential
for the understanding of liquid helium: the condensation
phenomenon associated with the ideal Bose-Einstein
gas, ' and the collective excitations which are the basis
of the two-Quid model. 4

The erst objective of this paper is the generalization
of Bogolyubov's theory to 6nite temperature. The
method of the grand canonical ensemble is used for
this purpose. In Sec. II, the ideas of Bogolyubov and
of Lee and Yang are applied to the basic operator in
this theory, H —pX, where H, p, and Ã are the Hamil-
tonian, the chemical potential, and the operator for
the total number of particles, respectively. Section III
is devoted to a full discussion of the equilibrium
statistical mechanics of such a system, with particular
emphasis on the evaluation of the chemical potential,
p, , and the mean occupation of the unperturbed ground
state, Eo. In Sec. IV, the pair correlation function is
calculated for finite temperature.

The equilibrium statistical mechanics for moving
systems is described in Sec. V, and natural definitions
of the normal and superQuid velocities are made.
The normal density may be defined either by the effec-
tive mass for drift or for rotation, as was originally

asserted by Landau. ' Our result differs from Landau's
work in that it is based on a microscopic calculation
using Bogolyubov's model.

A general transport theory is developed in Sec. VI,
starting only from the equations of motion for the
density matrix and the statistical average of any
operator. These quantum hydrodynamic equations,
derived from first principles, are of the same form as in
classical physics. The only essential assumption is
that of local equilibrium, i.e., equilibrium is established
in regions whose linear dimensions are small on a
macroscopic scale. Application to liquid helium is
then made by using the Bogolyubov theory for the
various equilibrium quantities that appear in the
transport theory. In Sec. VII it is shown how the usual
two-Quid hydrodynamic equations may be derived
from the general transport theory of Sec. VI and the
definitions of Sec. V. The paper is concluded with a
discussion of first and second sound.

II. MANY-BOSON HAMILTONIAN

We consider (1V) bosons interacting inside a volume
'U, in the limit that the particle density (rt)=(1V)/'U re-
mains 6nite as (X) and 'U become infinite. The pertinent
operator in the density matrix for the grand canonical
ensemble is

H—tslV=Q Ekaktak+-,'U ' Q v(k —n)
klmn

Xak aFamanbk+t, m+n. (2.1)

The second-quantized operators a& and a&~ destroy and
create, respectively, free-particle states of momentum
k, and satisfy the usual commutation rules for bosons.
The quantities H, p„, and X are, respectively, the
Hamiltonian, the chemical potential, and the operator
for the total number of particles:

Qk +k Zk ak ak (2.2)*This work was done under the auspices of the U. S. Atomic
Energy Commission.

t Address: Lawrence Radiation Laboratory, Livermore,
California.' N. N. Bogolyuhov, J. Phys. (U.S.S.R.) ll, 23 (194'l).

2T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1959),
and previous papers cited there.' F. London, Phys. Rev. 54, 947 (1938).

4 L. D. Landau, J. Phys. (U.S.S.R.) S, 71 (1941).

Because of the inclusion of tsfV in Eq. (2.1), Ek is an
"effective kinetic energy" for the state k':

(2.3)Ek ——k'/2srt —ts.

' In most of this paper the following conventions will be adopted.
First, A will be set equal to unity. Angular brackets will mean
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The bosons are assumed to interact through a central The diagonalized Bogolyubov operator then has the
two-body potential V(r), whose Fourier transform is form

Hn —pN =so(p, No)+2k' ek~kt~k —VNo, (2.12)

v(k) = d'r e'"'V(r) 2.4
where e& is the excitation energy of a quasiparticle of
momentum k. The "ground-state energy" is

fk =—Ek+rsot v(k)+tt(0) j,
kk =—eon(k), (2.7)

- An essential simplification, due to Bogolyubov, ' is
to regard the zero-momentum operators a(), aot as c
numbers equal to Eo&. The parameter Eo is the occupa-
tion number of the free-particle (unperturbed) ground
state. Its average value is supposed to be of the same
order of magnitude as (N). The Bogolyubov method
consists of keeping those interaction terms containing
at least two zero-momentum operators, and of making
the replacement ao, co~ —+ Eo&. Thus we have

H IJN= (Hg—pN)+ V',— (2 5)
where

Ha yN= —p—No+sNo'U —'rt(0)+2k' ffkaktak

+skk(akta —kt+aka —k) J (2.6)
In Eq. (2.6) we have

«(~,No) = sNo'v(0)/'U —
s &k' (fk ek) —(2 13)

YVe note that the ek's are functions of the parameters p
and No through fk and kk. The volume 'U is also a
parameter, but it will be held fixed for the present
considerations.

The above discussion, which follows Bogolyubov's
original paper, ' is restricted to weak interactions and
low densities. Lee and Yang have obtained a similar
result for the dilute hard-sphere gas at absolute zero. '
To obtain their result in our formulation would require
a study of the e8ects of U', the part of the Hamiltonian
that we neglect. In this paper we emphasize the
extension of Bogolyubov's method to finite temperature,
rather than the improvement of the model for strong
interactions.

III. STATISTICAL MECHANICS
aiid

no= No/'U.
The statistical mechanics of the system will be

studied with the grand partition function
The "Bogolyubov operator, " II&—p3/, is quadratic in
operators referring to excited free-particle states, while
V' contains products of three and four such operators;
V' will be ignored in this paper.

As is well known, " the truncated Hamiltonian
B&—IJE can be diagonalized by a linear transformation
with real coefEcients that depend only on k= ~k~,

8—TrLs—P(lr vN)j— (3 1)

where Tr indicates the usual trace for the grand
ensembler and 0=P-' is the absolute temperature times
Boltzmann's constant. The statistical average of any
operator F will be indicated by (F) and is given by the
expression

ak Nk&k+&krr —k (2.8) 8(F)=TrfFe f'i~ v"i3— — (3.2)

(for k&0). The new operators hark, nkt destroy and create
excitations or quasiparticles of momentum k.

In order that these operators conform to the boson
commutation rules, the transformation coe%cients
must satisfy the equation

Njf; —
PIr, = 1. (2 9)

This type of transformation is possible if fq) ~kk~.
It is not difEcult to show that the choice of coeKcients
that diagonalizes H~ —pE is

Nk'= s &1+(fk/ek) $,
sk'= s[—1+(fk/ek)],

2Nk&k = —kk/ek,
with

(2.11)

statistical average, as defined in Sec. 3. (On the symbol v, a bar will
be used instead, for simplicity. ) A prime after a summation sym-
boi, such as occurs in Eq. (2.6), indicates that the term for k=0
is to be omitted.

See also L. D. Landau and K. M. Lifshitz, Stutistica/ Physics
(Pergamon Press, New York, 1958), Chap. VII, p. 240.

In this work, the Bogolyubov approximation is used,
and the grand partition function is therefore

8—Tr/g P(K& PN)J—— (3.3)

8(I »)= 2 p&
—PL (u,No) —f Noh)

Kp

Xg' P exp( —Pekvk)
vg

= P exp'»No —&eo(&,No)3
Np

Xg' (1-exp(-P. ,(p, ,N, ))}-'.

See, for example, p. 105 of reference 6.

According to Sec. II, Lt~ —pX is diagonal in the quasi-.
particle representation, i.e., the representation char-
acterized by definite values for the quasiparticle occupa-
tion operators vg=nq~o, i,. Therefore, the grand partition
function may be written as the sum over quantum
states of the entire system which are characterized by
the parameter Ã0 and the occupation numbers v~.



662 GLASSGOLD, KAUF MAN, AND WATSON

Rewriting this result as a single sum over Ã0, we have On the other hand, if we use Eq. (3.2) with Ii =No
and Eq. (3.4), the mean value (Np& of the parameter

(34) N, is5(y„P)= Q e" PZ(fi, Np, P),
N0

(No) = & ' p Noeoj&~'Z(fz, No, p).
where N0

P—' »Z(P, Np, 39) In the present (saddle-point) approximation, char-
—=eo(p, Np)+P ' Pk' ln(1 —e S"'& 'l). (3.5) acterized by Eq. (3.8), this is

The average number of particles may be found by
taking the statistical average of Eq. (2.2). When this
equation is rewritten in the quasiparticle representation,
it becomes

(No) = d 'No'e»"o'Z(IJ, No', P).

If we refer to Eq. (3.8) for 5, it follows that the mean
value (Np& is the same as Np'.

(Np) =No'.
N=No+Zk'Lt k'+(Nk'+ek') ik

+Uk'4( oker —k +rrkn —k)$. Let us now evaluate p, the chemical potential, by
using Eqs. (3.9), (3.5), and (2.13):

Np =(Np)

&N&=&No)+& 'L "+( '+ ')"j,

Terms that are not diagonal in the quasiparticle repre-
sentation do not contribute to the statistical average,
and so (N) is simply ~= (Np p(0) —

z
'

(fk —ek
c)No

where

Pg=
exp(Pek) —1

(3 6)

+P I'a (3.10)
c)Np Np=(Np)

From Eqs. (2.7) and (2.11) we then obtain

Using Eq. (2.10), we finally find that' '

, )f ~,f
&N)= &No&+l &'

I
—1 I+&' —".

k Eok ) k
(3.7)

At absolute zero there are no excitations (vk=0) and
the last term vanishes. This is not true of the second
term. In other words, the interactions cause (N) and
(Np& to be diiferent even at absolute zero. '

Because the summand of Eq. (3.4) is a rapidly vary-
ing function of Eo with a sharp maximum at 2VO', say,
it will be a good approximation to retain only the largest
term in the sum:

1 ( Esp
~= &~p&e(0) — —Z' (fk —")I 1+—I

2(Np& k ek ~ ivo=4"o)

( fk&k)+
(Np) k 4 ek ) Np=(No)

(3.11)

where
fi—=fip+~fi,

pp
=—(rip)e(0).

(3.12)

Initially we assume that the first term of Eq. (3.11) is
a good approximation for p. Later we shall investigate
the conditions for this to be so."We therefore write

7 =et'o""Z(f,N p', P).

The condition that this term is the largest is

8
fj9IINo+lnZ(Iz, No, P)j =0,

BEO No =Nf)'

(3.8) Then Dp, is given approximately by the last two terms
of Eq. (3.11) with p replaced by lip.

When pp replaces fi, the expressions for fk and ek

I Eqs. (2.7) and (2.11)jbecome"

fk k'/2m+ Noe(k)——, (3.13a)

or, if we solve for p,
and

ek ——(k/2m))k'+4mripv(k) jf (3.1.3b)

p= — P ' lnZ(fi, Np, P)
Bgo NO=NO'

(3 9) As Bogolyubov showed, the excitations for small k are
phonons with energy

8 Equation (3.7) may also be obtained from the familiar formula
%=83' '(83'/Si4}, which may be obtained from Eq. (3.2) for
Ii =N.' In the limit of zero temperature, Eq. (3.7) agrees with the
result of T. D. Lee, K. Huang, and C. N. Yang /Phys. Rev. 106,
1135 (1957)g. However, the third term of Eq. (3.7), which is
important at finite temperatures, divers significantly from the
recent result of Lee and Yang (reference 2). These authors use
the equation

(iv) =(¹)+Zk' vk,

which implies that .the number of .excitations, Z'O.g ng, eguals

eg=ck, (3.14)

the number of particles in excited unpertN7bed states, Zg' ugtag.
In a consistent theory this is strictly true only if the interactions
are completely ignored.

"This is the lowest-order chemical potential obtained by
N. M. Hugenholtz and D. Pines /Phys. Rev. 116, 489 (1959)].
Although these authors did not study the thermal behavior of
the system, they used essentially the same statistical procedure
used here to determine p and (N)."In order to simplify the notation, the anguIar brackets will

.henceforth he omitted from (ap) and (¹),as In Eq (3..13)..
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and sound velocity
c—= (yp/m) &. (3.15)

Since we are using pp as an approximation to p, we
must require that

For large k, the excitations have a single-particle char-
acter. The transition between these limits depends on
the form of v(k).

For purposes of calculation, it is useful to represent
v(k) by a simple step function:

v(0) k (a-'
v(k) =

k&u—',
(3.16)

v(0) =ga'. (3.17)

In these terms, the condition for low density, which we
assume in this paper, is

na'&&1, (3.18)

since a is the same order of magnitude as the size of the
atom. The condition for weak coupling, which we also
assume, is

gma'&&1. (3.19)

The first-order chemical potential of Eq. (3.12) may
now be written as

where c is the range of the interaction. It is also con-
venient to introduce a coupling constant by the equation

l~ul&&ao. (3.25)

Using conditions (3.18) and (3.19) and Eq. (3.20), we
conclude that 8p is restricted by the inequalities p, p&(8p

(&(ma') '. Note that, as the density m or the inter-
action strength g vanishes, the allowed temperature
range vanishes too.

The thermodynamic properties of the system can now
be studied with the model just described. For example,
the fractional occupation of the unperturbed ground
state, g= (1Vp)/(E), is readily calculated from Eq. (3.7)
to be

$= 1—2or '(gma') '(epao) 'Lo+ Ui(y) j. (3.28)

The first term of Eq. (3.23) evidently satisfies this from
condition (3.19); the second term determines the tem-
perature range for which (3.25) is valid. Using the
"high-temperature" asymptotic form of U„(y) given in

Eq. (A.3) of Appendix A, we obtain the requirement for
g——1.

(3.26)
where

&o =po (eoap)
—'i'(gma') —"'

= (ma') '(gma')"'(ispa')"' (3..27)

go= (ripa') g. (3.20) From conditions (3.18) and (3.19), it follows that

Since we assume weak coupling and low density, we
have

1—$(&1, (3.29)

and
fo=k /2m+go

op= (k/2m) (k'+kp')l

(3.21a)

(3.21b)

for k &a—', and fs = e& =k'/2m for k) a '. The parameter
kp' is

ko' —=4mroov(0) =4mpo. (3.22)

For weak coupling and low density, kpa«1.
With this model Ap, can be calculated from Eq.

(3.11) with the result:

gp

gma'
(1——s'kpag5+6Ui(y)

27r2 —8yUr'(y) —20Up(y) j), (3.23)

where the functions U„(y) are defined in Appendix A,
and

7—=2' p =Pko'/2m. (3.24)

p((g&((ma') '.

If we wish to compare our results with calculations
using hard spheres, we must set g=4or(ma') ' and in-
terpret a as the diameter of the hard sphere. However,
this transcription works only to lowest order. '

For the interaction (3.16), the expressions (3.13)
become

so that we are able to discuss states where only a small
(but macroscopic) fraction of the particles are out of
the zero-momentum state. Using Eq. (A.3) for the
asymptotic form of Ui(p) at low temperatures (y))1),
it can now be shown that the depletion of the unper-
turbed ground state increases as the second power of
the temperature. (The value at absolute zero agrees
with the older work of Lee, Huang, and Yang "but the
temperature dependence is at variance with the recent
paper by Lee and Yang. ') Because of the restriction
(3.29), the possibility of a phase change corresponding
to $ —&0 cannot be discussed with this theory, which
is restricted to temperatures much less than the transi-
tion temperature. In Appendix 8 we give a discussion
which approaches the transition from above, using
linked-diagram expansions for the grand partition func-
tion. "We show there that a slightly imperfect gas at
low density does have a phase transition.

Next, we may evaluate ep(p, (Ep)) from Eq. (2.13),
obtaining

( 16
ep = -Usopp 1—oor (gma ) )

1——kpa
)

. (3.30)
15 )

"T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106,
»3S {1957).

» C. Bloch and C. de Dominicis, Nuclear Phys. 7, 459 (1958);
A. E. Glassgold, W. Heckrotte, and K. M. Watson, Phys. Rev.
115, 1374 {1959).
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After further algebra, expression (3.5) then becomes

—p
—'lnZ(p, p,z)=-,'Ueopo 1——,'vr '(gma')

We define the pair correlation operator as

D(ri, ro) =e Q (ri)f (rog (rog (ri), (4.1)
with

P(r) =u —
& P g ai,e'"'.

16 ~ ~

X 1 k $1 5U ( )) (3 31)
Substitution leads to

j.5 D(ri, ro)=(1V) ' g exp{i((p y—') ri

(4.2)

The thermodynamic potential 0(p,P, 'U) and the pres-
sure p(p, p) follow immediately, from Eq. (3.8):

Q(p,p, '0)—=—p 'In&

=—~«o(~,p) —p ' 1~(~,p, 'U),

P(u,P) =—U 'fl

=@No(p p) —2mopo 1—o'il (gma )

16
X 1——koat 1—5Uo(y)) . (3.32b)

15

+(q—q') ro))a, 'a, ta,a, . (4.3)

As in Sec. II, we replace the operators co~ and ao for
the zero-momentum states by the c number
obtaining

D(r r ) —P7)—2{+2++ P& elk ~ (rl—roi

X(2am ai+ai a q +ata —i)

+ 2' exp{iL(p—p') ri+(» —~') r2))
rp ca

Xao tao taoao Q ao aotaoao}. (4.4)
ue

Here we have dropped terms of relative order (X) ', and
also terms containing an odd number of operators,
since their expectation values vanish in the quasi-
particle representation.

In expression (4.4), we make the Bogolyubov trans-
formation (2.8) to the quasiparticle representation, and
then take the statistical average. The algebra is straight-
forward; we present only the result:

p(p, p) = ',y'/e(0)+-,'o-r 'p, ' am—
32

X 1——p-'m~aL1 —5Uo(y)).
15

(3.33)

From the pressure we may obtain the particle density
n (p,p), &D(r)) =1+2$LF(r)+G(r))+F'(r)+G'(r) (4.5)80 BP

U
—1~

Bp, Bp, g

(3.34a) wl ere
(4.6)r= r&—r&,

In the first two terms of p, let us express eo in terms of

p and Ap, by Eq. (3.12). We find that the first-order
terms in hp, cancel, and we obtain to first order in Ap

and the entropy density $(p,p)

80 BPs=v-~s= —v-~—=—.
80 88 „

(3.34b)

When we calculate the particle density from Eqs.
(3.34) and (3.33), and express the result in terms of no

by means of Eqs. (3.12) and (3.23), we are led to
Eq. (3.28) for /=co/e. (This provides a check on the
algebra and the consistency of our approximations. ) The
calculation of entropy density yields

()=-(( )) '&' '"'—(l+ ), (4.8a)

~(r) =(P)) ' 2' e"'—(o+~~) (4.8b)

F(r) —=(X) ' Qg' e'~'Nisi, (1+2ri),
G(r) —=(&)-' Z~' e"'&~a'+ (N~'+~") ~~),

and $=$o/E, as before.
For the evaluation of F and 6, we use Eqs. (2.10)

and (2.11) for Ni and vk, and obtain, for r/0,

8(~,~) = L
—Uo'(v))

3x'8
(3.35)

By Eq. (3.21), these expressions become

IV. PAIR CORRELATION FUNCTION (a
F(r) = —vr

—'(gma')
~

—
~
J(n,y), (49a)

We shall now calculate the pair correlation function,
for finite temperature, in the Bogolyubov approxima-
tion. I.ee, Huang, and Yang have determined this
function at absolute zero for the dilute hard-sphere gas."

and

F(r)+G(r) =—2~ '(gma')
I

—
I ~(n»» (4 9b)

Er& an'
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A= kof. (4.11)

We shall evaluate J(n,y) in some limiting cases:
(1a) y))n&)1. The condition y)&1 means 8(&p2, or

a temperature so low that only phonons are excited.
The condition y))n allows us to consider the limiting
case of y ~ ~ for 6nite 0., or absolute zero at hnite r.

(fb) n)&y))1. This differs from (1a) in that we may
consider r ~ ~ for finite temperature.

(Z) n))l)&y. The condition y((1 means 8))p2, or
a temperature high enough to excite free-particle states.
Of course, we still require 8((82, so that 1—)&&1.

In these limiting cases we find for J(n,y) the follow-

ing forms, by integrating by parts for (1a) and (1b),
and deforming a contour for (2):

1
(1a) J(n,v) =—+o(n ')+o(nv ')

26K

1
(») J(,v)=—+ +o( ')+0( v '~ "')

2p 20!

7r 1
J(n,y) =—+—exp) —n(2r/p) l)

27 2

»in' ( /7)'jL1+oh')3 (4 12)

In these cases, we obtain the following expressions
for 2(F+G), from Eq. (4.9), which are to be inserted
in Eq. (4.5) for D(r):

(1a) 2(F+G)= —-', 2r '(a/r)'(g222u') ~(22a2) '

~ ~ ~

(1b) 2(F+G) =—-'2r '(u/r)'(g222a') l(22a2) ' (4 13)

2'
(2) 2(F+G) =+ exp( —r/X)+

where
X= (2xm) —'*

+' ' '
7

(4.14)

is the thermal wavelength. The leading terms in F'+G'
are

(1a) F'+G'= (81r') '(a/r)'(g222a')(na2) '+
(1b) F2+G2 (g2r2) 1 (2228/22r)2+ (4.15)

(2) F'+G'= (82r2) '(2228/nr)2+

where
sinnx

J(n,y) = dx
p (1+x') l

&& (-', +(expLyx(1+x2)-'*] —1}—') (4.10a)

~00

dx (1+x')—l (sinnx)
Jo

&&coth(22yx(1+x')'1, (4.10b)
and

The limiting cases are such that each of the ex-
pressions in (4.13) and (4.15) is much less than unity
in magnitude, so that ~D—1~(&1. I.et us now discuss
each case separately.

Case (1a) leads to a correlation function independent
of temperature, and includes absolute zero as a special
case. In this case, 2(F+G)))F'+G', so that only
2(F+G) need be kept in D 1. T—he result, with an r '
dependence, is in agreement with the calculation of Lee,
Huang, and Yang" for absolute zero.

In case (1b), the term 2(F+G) predominates over
F'+G' at finite r as g -+ 0 or 22 ~ 0, while F'+G' pre-
dominates as r ~ ~. In the latter limit, the correlation
is independent of the strength of the interaction for a
given temperature, but the allowed temperature range
depends on g )see Eq. (3.26)g. In any case the de-
pendence on r is as an inverse power of r.

In case (2), the term 2(F+G) predominates as g
approaches 0 (because the allowed temperature range
depends on g), while F'+G' predominates as 22 ap-
proaches 0 or r approaches ~. In the former case, the
dependence on r is exponential.

There is some question as to the propriety of keeping
the quadratic terms (F'+G') in D, inasmuch as they
arise from terms in Eq. (4.4) which are quadrilinear in
the a operators. Such terms have been omitted in
making the Bogolyubov approximation in the Hamil-
tonian. A final resolution of this point probably de-
pends on a more accurate treatment of the Hamiltonian.

V. STATISTICAL MECHANICS FOR
MOVING SYSTEMS

In the previous sections, we have considered the sys-
tem under discussion to be at rest. We shall now study
the Quid motion of this system. First, we shall generalize
our treatment to include Qow at a uniform, constant
velocity. This will provide a means for defining "normal"
and "superQuid" components and introducing their
respective Qow velocities. Next, a discussion of rotation
with a uniform angular velocity will provide an evalua-
tion of the moment of inertia. Finally, in the last two
sections of this paper we shall derive the hydrodynamic
equations for nonuniform Qow.

In the statistical treatment given earlier, we have
made a plausible assumption that it is the zero-mo-
mentum state that is macroscopically occupied. Galilean
invariance, of course, implies that any momentum state
can be so chosen. For the evaluation of the partition
function 5, we should, strictly speaking, have chosen a
general state, say k„as macroscopically occupied. Then
we should have summed 5 over all k„subject to the
constraint that the mean momentum of the entire
system be specified. A saddle-point evaluation of the
sum over k, would then lead us back to a specific
choice for k„k,=0 being appropriate for a fluid at rest.

A state of uniform motion of the entire system can
then be obtained in a trivial manner from the state of
the system when at rest. A Galilean transformation,
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changing the macroscopically occupied state from k=0
to k= k„will accomplish this. The total momentum of
the system is just

must be even in w by symiiletry, it is sufFicient in Eq.
(5.9) to differentiate only the terms in which w appears
explicitly, so that

(6)=Nl, . (5.1) Vk W ~ (5.10)

$(P,p, w) =Tr{expf—P(Hs —pN —w 6)]}, (5.2)

where again we drop the term V' of Eq. (2.5) and re-
quire that (Ns) is macroscopic. The total-moinentum
operator G is

G= pk kak'ak. (5.3)

Under the Bogolyubov transformation (2.8), this
becomes

Zk k&k &k (5 4)

so the elementary excitation corresponding to ekt does
indeed carry momentum k.

Because G is diagonal in nktnk, the evaluation of
Eq. (5.2) proceeds just as before, the only change being
that now eI, is replaced by

We can obtain a state of uniform motion with total
momentum (6) in an alternative way, however. We
can still maintain the constraint that k=0 labels the
state of macroscopic occupation even though (G) is
not zero. This constraint. which means that the system
is not in true thermodynamic equilibrium but only in
quasi-equilibrium, is possible because of the lack of
coupling in the Sogolyubov model between the zero-
momentum state and the excitations. This lack of
coupling leads to the two-fluid model, as we shall see. '4

To allow for a value of (G) differing from zero, we
utilize the generalized partition function

Here we have

vk(w) —={exp'(e&—w k)]—1}—'. (5.11)

Upon expanding Eq. (5.10) to first order in w, we obtain

d4
(6)=—w P' —s,

k' (5.12)

where the derivative is evaluated for W=O.
Let us define the quantity p by

(6)—=p„wV.

We evaluate p„ from Eq. (5.12) and obtain

4
P =—'U 'Q-'sk'

k 86k
or"

p„=-s'pu —' Qk k'vk(1+ vk).

On evaluation of Eq. (5.15), we find

p„s
(nas)'*(gma') lyL —Ws'(y)],

p 3Ã

(5.13)

(5.14)

(5.15)

(5.16)

where W (y) is defined in Appendix A. Here p is the
mass density me; the quantity p„ is called the "density
of the normal Quid. " It is customary also to define the
"density of the superfluid" p, by

ek —w'k. (5.5) pa= p pn. (5.17)

Thus for 5 we now have

'b( P, w) =e p(P~(No))Z(p, P, (No) w)

where

P-' lnZ(p, P,Ns, w)
Bgo &o = (&o)

(5.8)

The mean momentum is found from

8 lnb
(6)=p-'

t9W p, p

(5 9)

We shall assume that
~
w~ is suKciently small that we

can neglect terms in
~

w
~

' or higher order. Then, since
the thermodynamic functions such as p and Ns(p, P,w)

' This is essentially the point of view of Landau (reference 4)
and more recently, T. D. Lee and C. N. Yang LPhys. Rev. 113,
1406 (1959)3.

(5.6)

—P
—' 1nZ(IJ, ,P,Ne, w) = es(p, Ns)

+p ' pk'in{1 —expL —p(ek —w k)]}, (5.7)

and (Ns) is determined by

so that
v~—=vl+w, (5.19)

(G)= (p,v, +p v )'U. (5.20)

This form suggests calling v, and v the "velocities of
the superQuid and normal Quid, " respectively. We note
that the parameter w, introduced in (5.2), is just the
"relative velocity of the two fluids. "
"The latter form, Eq. (15.5), is due to R. B.Dingle, in Advances

in I'hysics, edited by N. F. Mott (Taylor and Francis, Ltd. ,
London, 1952), Vol. 1, p. 112.

Of course, p, is rot to be interpreted as the density of
the particles in the zero-momentum state.

Let us now change to a new frame of reference moving
with a velocity —v, relative to the old frame. In the
new frame, the macroscopically occupied state has
momentum k, =mv„and the system has the total
momentum

(6)=Mv, +p„wv
= (pv, +p„w)'U
= fp.v,+p„(v,+w)]V,

by (5.13) and (5.15). We may now introduce the
notation
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(8)=p.v.+p~v~.

Using Eq. (5.20) we may write the mean momentum Some of the essential properties of Lkk are that Lkp ——0;
density as L»» =Ounless k~ = k'~;L»»=0;andL k, k. ———Lk „.

(5.21) From Eq. (5.29), we can write

The definitions of the normal and superRuid com-
ponents, introduced above, will be supplemented in
Secs. VI and VII with the derivation of appropriate
equations of motion.

We next consider the Quid to be confined in a cylindri-
cal bucket which rotates at angular velocity ~ about its
symmetry axis n. The partition function for thermal
equilibrium is now"

5= Tr(expL —p(H —plV —p1L)$}, (5.22)

The moment of inertia is defined in the usual way
from

(L(pi) )=I(pi) p1. (5.24)

where I is the projection of the total angular mo-
mentum operator L along n. The mean value of L is

(L)= g
—' Tr(L expL —p(H —pX—p)L)j}. (5.23)

Lkk'L11'&k &k'o1 e1'. (5.31)

(L )=P k (L )k

krak

(1+Pk) ~ (5.32)

Introducing a rectangular coordinate system for
which s is parallel to the symmetry axis, we may show
from Eq. (5.30) that L'kk, averaged over the directions
of k 1s

(4m) ') dQ»(I. ')kk ———',(x'+y'). ~k', (5.33)

We now introduce the quasiparticle transformation of
Eq. (2.8) for each operator in this expression. Only the
terms diagonal in the quasiparticle representation need
be kept, since the off-diagonal elements vanish when the
statistical average is performed. Using the above
properties of the matrix elements I.~I, and the defini-
tions of N~ and e~, we find that

Following the method of Blatt, Butler, and Schafroth, "
we consider the limit (x'+y'), ~='U ' d'r(x +y'). (5.34)

(L( )) ~(L( ))
I(0)= lim

Q)~0 (g Bco

In differentiating (L) in Eq. (5.23), the dependence of
5 on ~ may be neglected in the limit co ~ 0, since 5 is
an even function of co. For a cylindrical bucket, H and
I. commute, so we have

I(0)=p 8 ' Tr(L' exp/ —p(H —piL —pX)]}~
„p

=P 8 ' Tr(L' exp) —P(H —pX)$}. (5.26)

Thus, I(0) is proportional to the fluctuations of the
angular momentum operator for a stationary system'~:

(5.27)

The calculation of the moment of inertia in the
Bogolyubov approximation is now straightforward. We
first write the projection of the total angular momentum
along the symmetry axis in second quantized form as

Ip
——p'U (x'+y'), .

Using Eq. (5.15), we find the ratio

I(0)/Ip= p-/p.

(5.36)

(5.37)

Landau stated this result in his original paper on
superQuidity. 4 It is reassuring to derive this formula
from a microscopic point of view.

~ Equation (5.37) is convenient for calculation, and
from it one easily obtains the well-known result for the
ideal Bose gas'~:

I(0)/Ip=(Ã) ' 2»'1»=1—(Ãp)/6V) (538)

The final expression for the moment of inertia I(0) is
therefore"

I(0)=-p'p(x'+y'). Qk k'pk(1+re). (5.35)

The corresponding moment of inertia for a rigid body is

fL= i d'rP—t(r) (n r&& V')P(r), (5.28)

In this case the ratio approaches zero as the ~ power of
the temperature. At very low temperatures, one finds
for the Bogolyubov Hamiltonian that4

where

Thus we have
p(r) ='U -** p» ake'k'.

L= P Lkg~G»tG»~,
Lh'

(5.29)

I/Ip= L(2x)'/90/8'/pc'.

VI. GENERAL TRANSPORT THEORY

(5.39)

and

I.kk. —— i'U 'd'—r e —' '(n r)& V)e'"" (5 30)
~l

In this section we shall derive hydrodynamic and
thermodynamic equations for the Quid motion of a
single-component, quantum-mechanical system, appli-

See, for example, paragraph 34, p. 103, of reference 6.' J. B. Blatt, S. T. Butler, and M. S. Schafroth, Phys. Rev.
100, 481 (1955).

~8 A similar result holds for Fermi-Dirac particles interacting
through pairing forces, as in the theory of superconductivity.
The only difference is the replacement of (1+vI,) in Eq. (5.35) by
(1—s I,).
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p= peq+~p) (6.2)

where y~ is the density matrix appropriate to local
thermodynamic equilibrium, and by is a small correction.

The present discussion will be restricted to a con-
sideration of reversible Qow, for which only p,~ is to be
used. The corrections due to bp give rise to irreversible
phenomena; they will be discussed in a future publica-
tion."Thus, in the remainder of this section, the density
matrix g is to be understood to mean g,~. We shall make
explicit use of the property of p,~ that, in the neighbor-
hood of any point r and in a coordinate system moving
with the local Quid velocity v(r, t), the momentum dis-
tribution of the particles is isotropic. That this is so
follows from the definition of g~ as representing local
equilibrium.

For any operator A, the mean value (A) is

cable for either Fermi-Dirac or Bose-Einstein statistics. "
Conventional treatments in kinetic theory employ the
Boltzmann equation (for the single-particle distribution
function), which is based on the assumption of molecular
chaos. Their applicability is thus limited to ideal gases.
Because our discussion is to be applied to liquids and
nonideal gases, we shall use the many-particle density
matrix p(t), whose time development is given by the
quantum Liouville equation

8p/at= i/k—[H,p], (6 1)

where H is the many-particle Hamiltonian.
As in the Chapman-Enskog method of solution of the

Boltzmann equation, we shall assume that the Quid is
in local thermodynamic equilibrium, an assumption
that requires that macroscopic physical quantities (such
as pressure and density) vary appreciably only over
macroscopic distances. (In the next section, we shall
modify this assumption to that of local quasi-equi-
librium to treat the Bogolyubov Hamiltonian. ) In
accordance with this assumption, we write

where

and
E=Q s (k'/2m)

aortas,

(6.5)

V=-", U ' P n(k —n)as at a a 8q+t, +, . (6.6)
klmn

We shall assume that the interaction v depends upon
(k—n)' only.

Consider Qrst the operators for particle density e(r)
and momentum density $(r):

n(r) =U ' P as.tape"'~~-"'&'
kk'

(6 7)

$(r) ='U ' P -', (k+k')ag. tape'&s —"'& '. (6.8)

[E„e(r)]=(2m'U) ' Q (k' —k). (k'+k)
kk'

Xuk take'&k-') '
=ibm '7 IQ(r),

while, from Eq. (C.4), we have

[V,ri(r)] =0.

(6 9)

(6.10)

Equation (6.4) then yields

B(l)(r,t)/R= —m 'V ($)(r,t). (6.11)

We may dehne the Quid mass density and velocity by

p (r, t)
—=m(ii) (r, t),

pv(r, t) =(lQ)(r, t).

(6.12)

(6.13)

We thus obtain the conventional continuity equation

The equation of change for the mean density,

(e)(r,~) =Tr[p(~)e(r)],

is obtained from Eq. (6.4). The evaluation of [E,ri(r)]
is accomplished by Eq. (C.2) of Appendix C:

(A (t))=Tr[p(t)A]. (6.3) Bp/R= —|7 (pv). (6.14)

The time rate of change of (A) is, if A is time-
independent,

B(A)/Bt=Tr( —(i/ji) [H, p]A)
= (i/k) Trfp[H, A])
= (i/k) ([H,A]). (6.4)

This equation, applied to various operators, yields the
hydrodynamic equations of change. The Hamiltonian
H is that of Eq. (2.1):

H=E+V,
' Similar developments of transport theory based on the

Liouville equation have been presented by M. Born and H. S.
Green, A Gerierul kinetic Theory of Liquids (Cambridge University
Press, New York, 1949), and by J. H. Irving and R. W'. Zwanzig,
J. Chem. Phys. 19, 1173 (1951).

so A, E. Glassgold, A. N. Kauftnan, and K. M. Watson (to be
published).

We next apply the same procedure to lQ(r), to obtain
the equation of motion. The relevant commutators are,
from Eqs. (C.2) and (C.4),

[E,Q (r)]= i'�(4m'U) 'V'

.[P (k+k') (k+k')a~. tase*&" "'& '] (6.15)

and

[V,S(r)]= 'V 'P -a '—a,'a, a,e'«+s' —&-&'& '
uu ae'

X(s(P—tl)[P—tl]+s(P —tl )LP —tl ]) (6.16)

To simplify Eq. (6.16), we recall our assumption that
macroscopic quantities vary appreciably only over
macroscopic distances. That is, when Tr{y[V,N(r)])
is taken, the dependence on r is slow. Therefore we may



STAT ISTI CAL MECHAN I CS FOR THE NON I DEAL BOSE GAS

replace this quantity by its average over a small macro-
scopic volume. But the integration over volume will,
because of the exponential in Eq. (6.16), have contribu-
tions only for

p+ p'= «+ «'. (6.17)

The expression in braces in Eq. (6.16) is then

(p+ p' —«—«'). b(p —«)+2(p —«)(p —«)

dv(p- q)
X —+, (6.19)

d(p —«)'

where I is the unit dyadic. We insert expression (6.19)
in Eq. (6.16) and remove the factor (p+p' —q —q') as
a spatial gradient, because of the exponential. Also,
because of the assumed isotropy of the momentum dis-
tribution (in the local rest frame) implied by p, we
may average (p—q) (p—q) over solid angle and replace
it by ~~(p —q)'I. We then obtain

It is thus convenient to expand e(p' —q') in the small
quantity (p+ p' —q —q'):

~(p' —«') =e(p —«)+2(p+ p' —«—«') (p' —«')

de(p- «)
X —+ . (6.18)

d(p —«)'

where

(X)(r,t) —= (8m'U) —' Q (x+x')'(aj, tag) exp[i(x —x') r].

Because we are allowed to average over a small micro-
scopic volume, (X) may be written as

(X)(r, t) = V—' Q j, (~'/2m) (agtag&, (6.24)

p= 3(X)+(V.«& (6.26)

Our proof will be restricted to our present approxima-
tion p=p, ~, for which the expressions (X) and (V,«&
were defined. The generalization to include bp will be
given in another paper. "

For a system at rest and in thermodynamic equi-
librium, the pressure is defined as

where
p= eB ln 5/B'U,

Tr~—P (H—pN)

(6.27)

(6.28)

showing that (X) is the local kinetic-energy density.
Equations (6.23) and (6.20) may now be combined to
yield the equation of change (6.4) for N:

B($)(r,t)/Bt= —V'. ( vv) —V(-', (X&+(V, )). (6.25)

We shall now show that the combination (-', (X)
+(V,ff)) is just the thermodynamic pressure p:

where
([V,lQ(r) 1&= ik«V, «) (r,t)+ and the volume (of quantization) is to be varied in-

finitesimally. Thus we have

V.«(r)—= -'U ' P a ~a~ ta~ a~e'~+~
nu n

c&
X v(p —q)+l(p —«)'

&(p—«)'.

or
p= 5 'Tr[—(BH/B'U)e e&'~ &"&j

p = (BFI/W3&, —

(6.21) since for thermodynamic equilibrium

p= g
—l~—P (H—pN)

(6.29)

Higher-order terms in the expansion, represented by
~ ~, lead to higher-order gradients and are dropped in
accordance with our assumption that the gradients are
small.

Let us now return to (6.15). Here it is convenient to
introduce the momentum

x—=k —mv(r, t), (6.22)

where 8'(r) is the momentum density operator in
the local rest frame, i.e., with k replaced by x. When we
take the statistical average, (N') vanishes, since (8')
=pv'=0, and (++x') (a+x') can be replaced by

-', (x+x')'I. We then have

i.e., the momentum measured in the local rest frame.
Upon using Eq. (6.22) in Eq. (6.15), we obtain

[E,S(r)j=iAV' (mw(r) vv —2@'(r)v+ (4m"U) '

X P (x+x')(x+L')ag. tag exp[i(L —x'). r)),

In calculating

BE 1 Bk'

O'U 2m & O'U

we must realize that the values of k are determined by
the quantization volume U, so that, for a given set of
quantum numbers, we have

It follows immediately that

N3 3 U
(6.30)

Let us consider 'U as a small macroscopic volume of the
Quid. In accord with the assumption of thermodynamic
equilibrium in that volume, the Quid is at rest in the
local rest frame. Hence, from Eqs. (6.30) and (6.24),
we have

([E,@()3&=~D. (~-)+-:«X)(,t)3, (623) (BE/BV)= ——;(X). (6.31)
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To calculate BU/Ã3 from Eq. (6.6), we note not only
the explicit dependence on 'U, but also the implicit de-
pendence from e(k —n), since, as just noted, the values
of k depend upon 'U. A short calculation yields

(~i'/~'U) = —%'.«). (6.32)

Upon summing Eqs. (6.32) and (6.31), we see that Eq.
(6.29) leads to Eq. (6.26).

Thus the equation of motion (6.25) can be written

a((ti)/gt= —V (pvv) —VP,

or, with the use of Eqs. (6.13) and (6.14),

p(dv/dt) = —VP,

(6.33)

(6.34)

where d/dt= 8/R+—v V'. Equ.ation (6.34) is the Eulerian
equation of motion, derived from the I.iouville equation.

To complete the set of hydrodynamic equations, we
need an equation for the entropy Qow. For this purpose
we introduce the energy-density operators:

where

&(r) = tt (r)+ ~,(r), (6.35)

1(k"
%,x(r) —= 'U ' P —

t + tag tape'~~ —~'& ', (6.36)
2m/

and

In these expressions we make the rest-frame trans-
formation (6.22), and take the statistical average. Our
assumptions of slow spatial variation and local isotropy
in the rest frame then yield, after some algebra,

~(tt) =—V L(«)+P) ],
Bt

(6.40)

the equation of change for energy density, i.e., the
equation of state. To convert Eq. (6.40) into more con-
ventional form, we subtract from %L the hydrodynamic
energy density:

~pv —%l,g„ (6.41)

p(du/dt) = —pV v,

with the help of the continuity equation (6.14) and the
equation of motion (6.34). This equation is equivalent to

Ol

du/dt+p(dp '/dt) =0

ds/dt =0, (6.43)

where s is the specific entropy. Finally, the last equa-
tion, which expresses conservation of entropy, can be
written in terms of the entropy density S=ps as

so that %t,th is the thermal energy density. Introducing
the specific thermal energy u by %,&h=—pu, we may write
Eq. (6.41) as

(6.42)

Z, (r)= 2V
—g-v(u —tl)a, ap a, a,

ye'«+~'-~-'~ ' aS/at+ V (vS) =0,

a continuity equation.

(6.44)

are the Iota/ kinetic-energy-density and potential-
energy-density operators, respectively.

To And B(tt)/Bt from Eq. (6.4), we need the com-
Inutators of %,~ and %t,~ with E and V. Evaluating
these by the relations of Appendix C and methods used
above, we find

LE,&vg+ PV,&x]

=ih(2m'U') 'V. P a ~a ta, a e"+' ~ ~''
yp aa

dv
X ~(y—e)&+,(p—a)(p —ti)

d(p —q)'

(k'+k) (k" k')
L~,~xj='&~-'V Z I II +( 4m ) (2m 2m&

VII. APPLICATION OF TRANSPORT THEORY TO
THE DEGENERATE BOSE-EINSTEIN SYSTEM

(7.1)Bp/Bt= —V (8)

The discussion of the previous section is quite general.
It applies to the reversible Qow of any single-component
quantum Quid in local thermodynamic equilibrium. In
studying the Hogolyubov model of liquid helium, how-
ever, we have to consider instead quasi-equilibrium
situations, as discussed in Sec. V. We recall that in the
Bogolyubov model the existence of an unperturbed
state with macroscopic occupation leads naturally to a
two-Quid model. The velocity of the superQuid com-
ponent is just v, =k,/m, where k, is the momentum of
the macroscopically occupied state. The normal ve-
locity v„represents the drift velocity of the excitations
with respect to this state. To derive the equations of
change for these velocities, we shall have to modify
some of the discussion in the previous section.

First of all, the equation of continuity (6.11) is
still valid,

(7.2)p= pn+pe)

but for p and (@) we shall now use expressions (5.17)
)('a, ta~e'(k —&') & (6 39) and (5.21):

LV,%tvj=0. (I)=p v +p.v' (7 3)
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Next we note that the equation of motion (6.33), which
was based on the assumption of local isotropy, is no
longer valid in quasi-equilibrium. The term Vp should
be generalized to the divergence V p of a stress tensor
y, which will have a nonscalar part proportional to ww,
where w=v„—v, . We shall, however, limit our dis-
cussion to small amp-litude disturbances, with velocities
so small that terms quadratic in them can be neglected.
The equation of motion then reduces to

approximation, replacing H t&—Ã by He t»—Ã:

P-8)

(The transformation of 8/N involves a correction of
order v, V, which we neglect. ) Because He pE i—s just

plus terms independent of og, the commutator of Eq.
(7.8) is easy to evaluate, by Eq. (C.2):

8{@)/Bt= —Vp, (7.4) LHB A&V, 8 j= U-' Q ,' (e—& ey) (k'+k)n& tn& e'&"

where the pressure is to be evaluated for w=0, i.e.,
true local equilibrium.

Finally, we will modify Eq. (6.44) for the conserva-
tion of entropy and use in its place,

=iV '0 ' Q kkn&, tn&, e'&"—"'& ',~
~ ~

~

~

»' Bk'

BS—+V lv„Sj=0.
8$

(7 5)

under the assumption of slow spatial variation. We
then use the assumption of isotropy (in the small-
amplitude limit), and obtain for Eq. (7.8)

y„(r)=p„(v„—v,). p.6)

Interpreting the momentum label k in Eq. (6.8) as
referring to the moving frame, we may apply the
Bogolyubov transformation (2.8), and obtain an ex-
pression for 8„ in terms of n&, n&t, the quasi-particle
operators. Terms independent of 0,&, 0,&t vanish by
symmetry, while those in 0,& n& and 0,& to, &t do not con-
tribute to the equation of change, as may be verified
directly. Keeping only the terms which do contribute,
we have

lS„(r)='U ' Q -', (k'+k)n&, tn&,e'(~ "'&'. (7.7)

/Alternatively, this expression could have been deduced
from Eq. (5.4).$

Now in the laboratory frame the equation of change
for {@)is Drom Eq. (6.4)j

The appearance of v„ in this equation may be quali-
tatively described with the statement, "the entropy is
associated only with the normal Quid. " In Appendix D,
a proof will be given of Eq. (7.5) in the Bogolyubov
approximation, subject only to the condition that the
normal and super velocities, v„and v„are small.

One more equation is needed, to determine the change
with time of the relative velocity w—=v„—v, . This may
be obtained by considering the momentum-density
operator $(r) (6.8) in a frame moving locally with the
superQuid velocity. In that frame the momentum of
the macroscopically occupied state k, is zero; we denote
$(r) for that frame as $„(r),and have, from Eq. (5.21),

where
Bgf./Bt = —Vp„, (7.9)

(7.10)

Eq. (3.35) for entropy density,

S=16(3s'|7) 'p, "'m"'f —U3'(y) j
Eq. (5.16) for t&„,

(7.13)

p„=8(3x')—'p(ea')&(gma')ling —W8'(y)7, P.14)

Eq. (7.11) for p„, and the algebraic relations (7.2),
P.3), and (7.6).

Let us simplify these equations, making further use
of the small-amplitude assumption. Equations (7.1) and
(7.4) combine to yield

8'p/Bt'= V2p.

Equation (7.5) becomes

(7.15)

Upon evaluation, this is

p =8(3m') 'tj, "'ms&'U (y) (7.11)

in the notation of Appendix A. We note that p„ is the
last term in expression (3.33) for p.

We now have a complete set of equations of change-
Eqs. (7.1), (7.4), (7.5), and (7.9)—to describe the
small-amplitude motions of the Quid. They are supple-
mented by the thermodynamic expressions, Eq. (3.33)
for pressure,

p=-', p'/v(0)+-', s. 'p'ma '

32
X 1 t&,

~m—~a—gi 5U3(y—)j, (7.12)
15

Since E commutes with 8 (before the Bogolyubov
transformation), we may replace H by H —IIN in the
commutator above. Then we go to the superQuid rest
frame, replacing @ by @„,and make the Bogolyubov

BS/Bt = —SV.v„,
and Eqs. (7.9) and (7.6) yield

p (8/Bt)(v„—v,)=—Vp„.

(7.16)

(7.17)
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BS 88

88 p 8$
8pn 8pn

Vp„= V8+ V'p.

lN p t9P g

(7.18)
to obtain

It is convenient to consider temperature and density and in Eq. (7.16), we replace BS/Bl by
as the dependent variables. We thus write

From Eqs. (7.11) and (7.13) we note that

(7.19)

where

=Crx"PO,
f93

Cr~'=
p (»/88) I.

(7.26)

(7.27)

while the second term of Eq. (7.18), when evaluated,
can be shown to give a negligible contribution to the
results to be obtained below in the temperature range
of Eq. (3.26) where our theory is valid. Dropping that
term, then, we may write Kq. (7.17) as

p„(a/Bl) (v„—v,) = —SV8. (7.20)

The three equations (7.15), (7.16), and (7.20) are now

identical with those of the phenomenological two-Ruid

theory. "
In analogy to Eq. (7.18), we may express V2p in

Kq. (7.15) as
Bp Bp

V'P =—Vo8+—V'p
80 p BP g

(1) &ii'= a&i',

a familiar result, and

(7.28)

(7.29)

Pt should be pointed out that the various approxima-
tions made after Kq. (7.17) are not necessary. One
could solve Eqs. (7.15) to (7.17) directly for the normal
modes, and then note from the Anal results for the two
propagation velocities that these approximations are
indeed valid. j

We may evaluate Cz&, from Eqs. (7.13) and (7.14), as
a function of temperature. For the two limiting cases,
(1) 8«&o and (2) po«8«8o, we find

A. Integrals

in the small-amplitude limit, and can now show that
where is the Riemann zeta function.r ~

the first term makes a negligible contribution (to
lowest order) because the temperature dependence of p APPENDICES
in Kq. (7.12) is weak at low temperatures. Equation
(7.15) then becomes

where

82p/8l2 —Q 2V2p

gio=ap/Bpi e=m —
'iso ——c'.

(7.21)

(7.22)

A discussion of the statistical mechanical properties
of the Bogolyubov Hamiltonian involves the functions

fj'.(v) =
e»-1' (A.1)Thus density fluctuations propagate with a wave ve-

locity equal to the phonon velocity of the small-

momentum excitations. For these waves ("first sound")
the temperature fluctuations are negligible, and, by
Eq. (7.20), the two "fluids" are in phase:

where x=k/ko and y=x(x'+1)», ko and y having been
defined by Eqs. (3.22) and (3.24), respectively. In the
"low-temperature" limit (p))1), we have x=y, and the
Debye functions are obtained. In the "high-tempera-
ture" limit (y«1), we have x=y&, and these functions
go over to the Bose-Einstein integrals. The functions
U„(y) can therefore be obtained in these limits in terms
of the Riemann i' functions:

(7.23)Un Vs

Temperature waves, or "second sound, " involve

negligible density Quctuations, but appreciable tem-

perature fluctuations. For these modes, by Eq. (7.1)
(@)is negligible, so that by Eq. (7.3) we have

v-= (p./p-) v'
I'(e/2+1)i-(e/2+1)

+n/2+I
~-h) = (A.2)

But in our theory, we have p„«p, /see Eq. (7.14)j, so
that for second sound we have

for p(&i and
I'(~+1)i-(e+1)

U-(v) = (A.3)v„&)v„ (7.24)

in contrast to (7.23) for first sound. Thus Eq. (7.20)
becomes A similar function that is needed is

p„(8v„/Bt) = —SV'8, (7.25)

"L.D. Landau and E.M. Lifahitz, Fluid Mechanics (Pergamon
Press, ¹wYork, I959), Chap. I6.

X
TV (v)= ' dy e-—12m+1'

(A.4)
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For large y, the extra factor (2x'+1) ' may be ignored, transition temperature 0„.
and the asymptotic form is the same as U (y): (8.10)

~-h) ~ U-(v). (A.S)

For small y, the extra factor is (2x') ', so we have

For weak repulsive interactions, the maximum occurs
at nonzero o.. From the expansion" of n,

~ h) -'U.—h') (A 6) F»(n) = —3.545n'+2. 612

+1 460.n 0—104.n'+ ~ ~ (8.11)

8. Statistical Properties above the
Transition Temperature

Using the recently developed linked-diagram ex-

pansions, "we shall briefly discuss the properties of the
system above the transition temperature. In this
method, the grand partition function is written

z»= z»o exp(Q&+Qs+ . ),

where bo is the function for an ideal gas,

is = psrz(0—) (8.13)

and, from (8.9) and (8.11), that the shift in 8, is

8 —8.
=4.45Lp.;N. (0))». (8.14)

we 6nd that the maximum is at

n=-', F»(0)A. (8.12)

From Eqs. (8.7), (8.8), and (8.10), this implies that,
just above 8„

&e=gk(1+ pk), (8.2)

and Qr, Qs, give the effect of interactions in a
linked-diagram perturbation series.

In our case of a dilute gas with weak interactions, we
need keep only the leading term Q&, which is"

Q, = ——,'pg-' Q Lp(k —k')+p(0)fvkrk . (8.3)

Upon evaluating the mean number of particles (X)
= —c»Q/c»p„we obtain

(X)=gk r{1—p'U '
xgk. Lrz(k —k')+p(0)/vk (1+9k )}. (8.4)

We have thus shown that a Bose gas with weak re-
pulsive interactions has a phase transition at a tem-
perature slightly higher than that for an ideal gas.

C. Commutation Relations

We list here several commutation relations which
are needed in Sec. VI. Let s~ and e}, be two functions
of momentum k. We de6ne

I'r(r) —= 'U —' p s (sk+sk )ak take" k'1 ', (C.1)

and

At low temperatures we may approximate Using the relation
Dr Ek ekak ak.

8(k—k') =Q(0),

and then can express (8.4) in terms of the Bose-
Kinstein integraP'

F»(n) =
F(s) g ez+n

p'1 al ak' ak] (~1k' ~1k)ak'tak

which is valid for either Bose-Einstein or Fermi-Dirac
statistics, we find that

LDr, l'r(r)j=s'U 'Z (ek —ek)(ek+ek)

Xak. take'&k —"". (C.2)
and the thermal wavelength X= 2zr% [Eq. (4.14)j:

nks=F;(n)L1+AF (n) j.
The quantities n and 3 are

n= p~, —

Next we define

(8.6)
'I) p p' q' q p+p'. q+q'& ( )

ul» aa

and obtain
(8.7)

Ãs, pr(r)3

(
/

8 g) =&~-s v a ta, ta, a ez(q+q'-p-p') z
u n' a' q

and
A=2mpp(0)X '

Equation (8.6) has a solution for all temperatures 0

greater than some "transition" temperature H„deter-
mined by

XLp(p —q)( q+ p+p, —
p

—
q~q p)

+'(p' —q')( q+ .+'-q —"—.+q-')j ( )ssX,'=max {F»(n)$1+AF»'(n))}. (8.9)

For the ideal gas, g vanishes, and one finds" for the One more operator which has to be considered is

zz F. Lonc1on, SzzperglzzIs (John Wiley & Sons, Inc. , New York,
1955}.

I's(r) —=-'U-' P p(p —%)ap"ap. taq. aqe'«+q' —p—p'& r.
uI» Ca
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For small
t wt, we expand S(w) to linear terms, per-

form some integrations by parts, and write
Its commutators with D~ and D2 are

t Di,I'z(r)j=-,'U ' g v(y —q)u, tu, ta;a,
uu ae S(w) =Pzz'I(x, w) v(x, w), (D.7)

X (e,+e, —e,—e,.)e'«+z'-~ —'~ ' (C.6)
where

(1 de,
I(x,w)=P'e„t —a- +w zz t(1—e ~")—' (D 8)

&3 d~

and

LD.,1.(r)j=0

D. The Equation for Entropy Change

(C.7)

Using Eq. (D.7) as a guide, we define the operator

S=—'U ' P -', LI(zz', w)+I(zz, w) jet(zz')a(zz)

Xexplz(zz —zz') r), (D.9)

with the property that its average,

(S)=—Tr(yS),

is the entropy density for equilibrium y.
The equation of change for (S) is Lsee Eq. (7.8)7

lt =x+zlv„

We give here a direct proof of Eq. (7.5), using the
Bogolyubov model. In obtaining this, we shall assume
that the velocities v, and v„are small, so second-order
terms in them may be dropped.

We need first a general form for B~—pi7.
momentum state lt be written as

k'/2zzz =~'/2zzz+ v, x (D.2)

where x=0 refers to the macroscopically occupied
state. The kinetic energy of a particle is therefore ~(»

=z([Hs I—z—N, Sj), —
Dt

(D.10)

to first order. This expression leads to the Sogolyubov
where Eqs. (D.3) and (D.9) are to be used in the com-
mutator. The valuation proceeds as in Secs. VI and"Hamiltonian"

Hs —pN =P„'(e„+v. x)at(zz)a(L), (D.3)

where the ground-state "energy" has been omitted.
The density matrix p for the case v„Qv, /0 can be

obtained from Eq. (5.2), which pertains to the case
v, =0, v„&0. The former case can be obtained from
the latter by means of a Galilean transformation, which
leads to the replacement"

Hs pN w. G ~—Hs ——AN —w G—va. G
=He —pN —v G.

8(S) (zz de„
'U 'Q

t

— +v, tI(x,w)p(x, w)
83 'K ~ K lk

(D.11)

(The parameter v, that appears here is now a function
of position. and time, because of the statistical averag-
ing with g.) The second term in the curly bracket of
(D.11) is just v, (S) by Eq. (D.9). From Eq. (D.8), the
first term is, to lowest nonvanishing order,

The density matrix is thus 1C d6zt
'U 'P —-- P'ew z:(1 e ~") —'p(—~)—

KI(: dz

and 5 is determined by

p= 5 'expl —P(H —IzN —v„G)j
= ~ ' expt —P Z~'("—w ~)~t(~)~(~)$, (D.4)

Upon averaging over the directions of x in the sum, we
obtain

Try= i.
The entropy of the system is

S(w) = —Tr(y lny)
=P g~'(e„—w zc)P(L, w)

—g„' in{1—expl —P(e.—w x)j}, (D.5)
where

Ag
'-,'P'w P ~ -e„(1—e-e")-'u(~) =w(S),

X

so that Eq. (D.11) is

a(S)= —~ L(w+v. )(S)j
8$ =-& ( -(»), (D 12)

v(L, w) = {exp+(e„—w x)j—1}—'. (D.6) as stated in Eq. (7.5).


