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Pion-Pion Interaction in Electromagnetic Processes
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The correction to the photon propagator due to the emission of a virtual pion pair is evaluated taking
into account the effect of the strong pion-pion interaction in the J=1, T=1 state of the pions recently
discussed by several authors. Results are given for different sets of parameters describing the pion form
factor, and the possibility of investigating the structure of the form factor by means of electron-electron
and electron-positron collision experiments is studied.

I. INTRODUCTION information about the form factor in a context in which
we do not have to simultaneously interpret other strong-
interaction effects.

We may expect pions to play an important role in
electromagnetic processes only at center-of-mass ener-
gies of the order of the pion mass. Experiments at such
energies, using clashing electron beams, are now being
prepared at Stanford University.

For styding the pion form factor the most obvious
type of experiment is that which leads to the production
of real pion pairs. In the case of electron-positron
collisions, the annihilation into two pions is of the same
order of magnitude as the large-angle Bhabha scat-
tering. "In fact it occurs already in the same order of
perturbation theory as the scattering. In this lowest
order of approximation the only possible two-pion
final state is the J=1, T=1 state; therefore the cross
section is proportional to ~F ~', the absolute square of
the J'= 1, T= 1 form factor. (It must be borne in mind
that "lowest order" statements are approximate owing
to radiative corrections, which at these energies are
important. However, if

~

P
~

' is strongly peaked, as FF
suggest, the 7=1, T=1 state will be strongly favored
near the energy of the peak. ) In the case of electron-
electron collisions, pion pair creation is also possible,
but one may expect the cross section to be smaller by
a factor o.'.

Another class of experiments which can give in-
formation on the pion form factor involves the effects
of virtual pion pairs. These are studied in detail in this
work.

In Sec. II we derive the general expression for the
photon propagator in terms of a sum over all possible
real intermediate states, following the method of
Kallen. "The sum is then restricted to two-pion inter-

~)URING the past years some suggestions have
been made of a resonant interaction of pions with

pions. ' In particular, a strong interaction in the 1=1,
T=1 state of two pions was introduced by Holladay'
in studying the nucleon's anomalous magnetic moments
and the rt-p mass difference in Sachs' model of the
nucleon. More recently Frazer and Fulco, ' following
the approach of Chew and Mandelstam, and assuming
a resonant interaction in this state of two pions, have
derived an electromagnetic form factor for the pion.
They were able to show that by appropriate choice of
the position and width of the resonance they could
resolve previous discrepancies between the experi-
mental data and the dispersion-theoretical treatment
of the isotopic vector parts of the nucleon form fac-
tors.4' Subsequently this suggestion has been con-
sidered in connection with some other strong-interaction
processes. ' In the present work we are primarily
studying the effect of the FF pion form factor on certain
purely electromagnetic processes~ in order to derive
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mediate states, and the correction to the photon
propagator due to the virtual emission of a noninter-
acting pair of pions is obtained. In Sec. III the FF pion
form factor is inserted, obtaining the correction due to
a virtual pair of strongly interacting pions. In Sec. IV
this result is used to obtain corrections for electron-
electron and electron-positron collisions. The influence
of ordinary radiative corrections is also discussed.

The results turn out to be small (less than 1%%u~);

however, they should be considered in the analysis of
experiments designed to look for a failure of quantum
electrodynamics. Also, under certain experimental
conditions the corrections have a characteristic energy
dependence, similar to the derivative of the pion form
factor, and could be used to determine precisely the
position of the peak as well as to distinguish them from
the other radiative corrections of higher order in o,

which have not yet been calculated but which can
reasonably be expected to be monotonic at high energy

II. GENERAL EXPRESSION FOR THE
PHOTON PROPAGATOR

In this section we write as a sum over real inter-
mediate states the propagation function of the photon
D„„~'(x),whose definition is

D„,~'(x—x') = t'(0
I
FA „(z')A, (x) I0). (1)

The Fourier transform of this function can be
written"" as the sum of the free-6eld propagator and
an explicitly gauge-invariant correction:

p I& ppp&

p $e p

11(0)- II(P') -s~II(P')
X (2)

In this expression II(p') is a sum over all physical
states Is) having total energy-momentum p&*&=p:

which is convergent even if II(—a) remains finite for
large a.

Equation (2) for the propagator, with the definitions
vrhich follow it, is exact. While this important formula
appears in the literature, " we have not been able to
6nd a derivation. We have thought it worth while to
provide one in the Appendix.

Specializing to the contribution to (2) from two-
particle states Ikiks), we can write

11(p') = 'IF.(p')I'
1

1+K K,
dKtdKs

6p'(2~)' GO]C02

X5(K1+K2 y)~(oor+ros —po) (8)

nIF (p') I' t
~" KdK ( p')

, I
2+—

I

6sps arri IpI (K+1)l ( 2)
IF-(p') I' (

I
1+—

I
0(-p'-4),

12'. ( p')

V
11(P')=— P (OI j„(0)Iktk~)(kiksI j„(0)I0), (6)

Bp p =4+4

and, in particular, 4 for two-pion states treated in
lowest order in the electromagnetic coupling,

ieV '
(Pl j o(0) Ikijkss) = (ki—ks)„

(4ootoos) &

X(5; 5, 5; 5, )F—(p'). (7)

Here co&, ~2 are the energies of the pions and i, j are
isotopic spin indices. F (p) is the pion form factor
which we shall discuss in the next section. From the
form of Eq. (7) it is clear that only the 7=1, &=1
state of two pions is produced. "

Letting the normalization volume in (6) go to
ininity, we replace the restricted sum by an integral
over a 8 function, and substituting (7), we get

e(z) =1 for x)0
=0 for x(0,

where j„(z) is the current operator and V is the nor-
malization volume. II(p') is also a real quantity, given
by

and the momenta are measured in units of the pion
mass.

We must evaluate also the real part of the correction
II(0)—II(p') and this involves an integral which
depends on the detailed form of IF (p') I'. In this
section we neglect the pion-pion interaction, taking

I
F I'= 1, and obtain the well-known results":

"II(—a)
d8.11(p') =P,

~ o p'+~i

One may note that the result actually depends on the
renormalized quantity

II(p')=(/» )»(—p' —4),

11(0)—II(p') = —( /12 )f( ),

(11)

(12)
~" II(—a)

11(O)—11(p&)=Pp' Za,
"«(p'+~)

II(P )= —(P'/3P ) P (0 I j&(0) Is)(sI j&(P) I P) (3) where
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with s=1+4/p' and

f(s) =-', +2s+zf lnL(s' —1)/(s'+1)]. (13)

TABLE I. Parameters of Eq. (14) corresponding to the curves
of FF, and constants y and b of Eq. (18).

For real positive s, the absolute value of the argument
of the logarithm must be taken in f(s). For negative s,
one must replace silnL(sf —1)/(sf+1)] by —2yarc
coty, with y=( —s)'*. For complex values of s (rele-
vant in the next section), f(s) is defined in a plane
cut along the negative real axis.

It is interesting to compare Eqs. (11) and (12) with
the corresponding quantities calculated for a pair of
spin--,' particles having the same mass. This comparison
is displayed in Figs. 1(a) and 1(b). In particular, the
dispersive part LFig. 1(b)], which is the part entering
in the lowest order radiative corrections, is very
different for the two cases. While both show peaked
behavior near the pair threshold, in contrast to the
spin one-half result the spin zero peak is about one-
tenth as high and has a discontinuity only in the second
derivative. This is due to the difference in the two cases
of the threshold behavior of the absorptive part II(p'),
arising from the fact that while the boson pair must be
produced in a P state, the fermion pair may be produced
also in an S state.

Curve

115.2
66.24

170.5

2.65
1.5
3.77

10.4
8

12.5

0.0185
0.047
0.014

0.082
0.106
0.101

Ip~'(ps) I'=gl (p'+C)'+jls] —t (14)

adjusting the three real parameters A, 8, C to fit the
curves given by FF. This can be done quite satis-
factorily over the entire resonance region (which
occurs for p'(0), and in particular we satisfy exactly
the condition

I F.'(0) Is= 1.

III. CORRECTION TO THE PHOTON PROPAGATOR
INCLUDING PION-PION INTERACTION

The electromagnetic pion form factor proposed by
FF has a rather complicated analytic form. We have
found, however, that it can be well approximated by a
simple resonance curve, which is very convenient in
performing the integration necessary for obtaining the
real part of the correction to the photon propagator.

We introduce the function

OJ
CL

'5

CO

spin V2

spin 0

s ~

16 24 32 40 48 -p' 56

For p'(ps', where ps'=2C is the point beyond the
resonance for which

(16)

the agreement is less satisfactory, Eq. (14) falling
below the FF curve. However, pss has a value such that
for p'(pss the contribution to the form factor from
states containing four or more pions might be of
importance, so that even the FF curve becomes un-
reliable. In this region we have chosen to put the form
factor equal to unity, obtaining thus the contribution
of a noninteracting pion pair for this part of the integral.
That is, we choose

, Ip-(p') I'= IF-'(p') I', 0&p'&po'
po'& p'. (17)

~~ 4Cu
CL

lV' 2

lg
0

=2

-40
r

-20 0
(b)

20 40 -p

Fro. 1. (a) The imaginary part and (b) the real part of the
correction to the photon propagator due to the emission of a
noninteracting virtual pair. p is measured in units of the mass of
one of the virtual particles. The spin-0 graph is amplined by a
factor of 2.

While we believe this choice of asymptotic behavior to
be the most reasonable one in the absence of other
knowledge, the convergence of the integral Eq. (3) is
such that the contribution from the region a& —pss is
only of the order of a few percent for any reasonable p'.

FF have given, in fact, three curves corresponding
to three different sets of resonance parameters, all of
which lead to agreement with the experimental data
on the nucleon form factors. Our 6ts for these curves
are given in Table I. Inserting Eqs. (17) and (10) into
Eq. (5), the integration can be performed analytically
and yields the final result,

11(0)—11(p') = (~/12~)( (1—IF-'(p') I')«'f(&/»)
—g(s)+ p'IF. '(p') IsL—~+~(c+p)/a]). (Is)
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2 ReSM*Nx'=
SJM[

(23)

where M+N is the matrix element for the scattering,
N being the pion correction. As before, S represents a
sum over anal and an average over initial spins.

'~ Pote added ea proof In considering the int.—erference terms
one must bear in mind that when hard bremsstrahlung occurs, it
diminishes the energy of the intermediate photon leading to a
smearing of the pion correction and a weakening of the cancellation
between bremsstrahlung and radiative corrections. An inter-
mediate energy resolution, i.e., much larger than the electron

necessary to take this finite momentum resolution
explicitly into account, thereby eliminating the infra-
red divergences of the separate results. This is done by
adding to the elastic cross section the bremsstrahlung
cross section integrated over the photon momentum k
up to a value

~
k

~

=k, , which depends on the energy
resolution, as well as the angular resolution, of the
electron counters. The assumption of very good energy
resolution and isotropic k, leads to the inclusion of
only the soft-photon part of the associated brems-
strahlung processes and to large radiative corrections
at large energies. For example, assuming k, of the
order of the electron mass, the radiative corrections at
a total c.m. energy of 500 Mev are of the order of 70%%uo

at a c.m. angle of 90'.
However, Tsai has remarked" that in practice the

aforesaid conditions assumed for k, cannot be satis-
fied in most high-energy experiments. He has made a
calculation of the radiative corrections in the high-
energy limit assuming that the electron detectors have
eo energy resolution, an assumption which corresponds
to the conditions of the experiment now in progress at
Stanford. He was therefore required to include, besides
the soft photons, the part of the hard-bremsstrahlung
spectrum which is accompanied by both electrons
entering the counters' angular apertures. It turns out
that in this type of experiment the radiative corrections
are much reduced. For example, at 90', for a total
energy of 1000 Mev and with an angular resolution of
'7', all measured in the c.m. system, the correction
to the cross section is 9.5%%. If, as seems likely,
this cancellation between the radiative correction and
the relevant part of the hard-bremsstrahlung cross
section occurs also for the higher order corrections, we
can consider the theoretical cross section to be sufFi-

ciently well known for the detection of the effect of
pion-pion interaction, and we can neglect the inter-
ference of the latter with the ordinary radiative
corrections. '"

Finally, we discuss the interference of the lowest
order radiative corrections with the pion vacuum
polarization corrections. As we have stated above, these
considerations are relevant to good-resolution experi-
ments, in which case also ordinary higher corrections
should be considered. We now define as the fractional
correction

We write
M= Mr+Ms+M', (24)

S(ReM') (CPMr+CPMs)
C=-

S(ReM') (M,+M,)
(27)

while f is the fractional ordinary radiative correction

2S (ReM') (Mr+Ms)

S(Mr+Ms)'

At 90' we have Cr= Cs= C= —',E, and therefore

E'=E(1+-',f) (1+f)—'

which for f= —0.70, say, gives E'=2.17E.
We may expect similar results at other angles.
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mass but not completely absent, appears therefore as the most
convenient.

~~ While the leading term in the high-energy limit of the real
part of the radiative corrections of order 0, is generally of the form
(lne)' where e is one of the invariants on which the cross section
depends, the corresponding imaginary part is expected to behave
as 2~ln~e~ since it arises from (inc) =(in~z~&kr)' when e is
negative. Since 1n(E/ra) is about 2' for 28=500 Mev, we may
expect ImM' and ReM' to be about equal. Since C2 at its peak
is several times the maximum of CP, we may guess that the term
containing the ImM' would dominate the term containing ReM'.
This would produce an asymmetry of the backward angle curve
in Fig. 2 of BC, raising one peak while lowering the other.

where 3f' is the matrix element of the radiative cor-
rection including the appropriate bremsstrahlung
contribution.

We have

ReSM*N= S{(Mr+Ms) (Cr Mr+Cs Ms)

+ (ReM') (CPMr+CsnMs)
—(ImM') (Cr Mr+Cs Ms) }. (25)

For Bhabha scattering, where pr is spacelike while

Ps is timelike, Crr=0 but Csr is large. Furthermore,
C2 and C&" are generally very different. For these
reasons a careful evaluation of Eq. (24) using the
high-energy limits of the real and imaginary parts of
M' would be required. '

For Mfiller scattering, instead, where pr and ps are
both spacelike, C~~=C~I=O and C~~ and C2~ do not
differ greatly, being in fact equal for 90' scattering
where the effect is maximum Lsee Fig. 1(a) in BC). We
may write

E'= (E+Cf) (1+f)-',
where C is the average value of Cr and Cs,
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APPENDIX

In this Appendix an expression for the vacuum
expectation value of the time-ordered product of two
photon field operators A„(x), A„(x') is derived. We
start from the expression given by Kallen' for the
vacuum expectation value of the commutator of two
photon fields:

(ol LA„(x),A„(x')] l 0)

iD„„'—(x' x) = ——(2s.) ') ~dp e'&&*' *is(—p)

Dp(x; a) = (2s-) 4 dp e'&*[p'+a i—e] ' (A.7)
aJ

II(—a)
D„,"'(P)=, du)P'+a ie—] l-3„„3(a)+

dp 8

+plvpv

II(—a) —23'3(u) l. (A.S)

Introducing the explicit form of pi(a), p, (a) we get,
for the Fourier transform of D„„~'(x),

II(p') i
X 3„,

1
~(p')— Now noticing that

( 1 1

"o & a p'+a —ie&
1 t" II(—a)

N= — du
Jo

(A.2)

and using the well-known expression
which we write as

2

11(ps) - dut u(p +a—se)] II( u)—
+P„P,l

— —2Mb(P') l, (A.1)
~ (p')'

D„,'(x) = it dag„„pr(u) 8„8,ps(u)—]D(x; a), (A.3)
60

dining

=P +irrB(p'+a),
p+a —ie p+a

where P stands for principal value, we get

D(x; a) = i(2')—' dp e'&'b(p'+a)e(p), (A.4) pa(ps+a ie)] —'ll( a)da—
0

II(—a)
pi(u) =~(a)+

II(—u)
ps(a) = 2Mb(a). —

8

(A.5)

( 1 1
=Lp' —is]-' ' dul P—P

8 8

ixb(p'—+a) lrr( —a)

As is well known, a similar spectral representation
will hold for all the D' functions, " in particular, "

D„„~'(x)= duff„„pi(a) 8„8„ps(a)]Dp(o—o; a), (A.6)
0

=Lp' —ie] 'LII(0) —II(p') —i'll�(p')]

with
~00

II(p') =P daLp'+a] 'II(—u).

(A.10)

(A.11)

's G. Kallen, reference 10, p. 348, Zq. (43.26)."H. Lehmann, Nuovo cimento 11, 342 (1954).Lehmann treats
the scalar and spinor fields; the generalization to include a vector
Geld is straightforward.

) The validity of this spectral representation, which is evident
for the D' functions which are solutions of the homogeneous
Klein-Gordon equation and which are connected by linear re-
lations with constant coefficients, follows also for

D"~'(x)= s LsD""'(x)—s(x)D. '(x)7.

t where D„„u&'(x) and D„,'(x) are deffned so as to agree, for free
fields, with the definitions used by Kallen, reference 10,p. 190 ff.7,
from B„e(x)=e„ob(0)and D„„'(0)=0.

In the same way we also get

du/a'(p'+a ie)] —'ll( —a) p—p' =is] '—2M

—)Ps—ie] daLa(P'+a —ie)]-'11(—a). (A.12)

Introducing (A.12) and (A.10) into (A.S), the desired
expression for D„,~'(p) is obtained.


