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Two-Nucleon L S Potential in Pseudoscalar Meson Theory*
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Nonstatic corrections to the two-nucleon potential of Brueckner and Watson and of Gartenhaus are
computed within the framework of the p5 theory. These terms appear as spin-orbit corrections of order

u/M to the static potentials.
The S matrix is calculated in second and fourth order for a reduced form of the relativistic theory. The

potential is then chosen so as to duplicate this S matrix to the required order in the coupling constant and

n/M. We consider to what extent our reduction of the y& theory changes its character.
The resulting potentials are given in analytic form for no cutoff in momentum space and in numerical

form for the Gaussian cutoff employed by Gartenhaus. We give also some additional static corrections to
previous potentials. A qualitative comparison is made with the experimental observations in nucleon-
nucleon scattering, the fine structure in the splitting of the He nucleus, and the contribution of the nonstatic
potential to the magnetic moment of the deuteron.

I. INTRODUCTION

HE 6ne-structure splittings of the levels in the
nucleus have prompted many people to propose

that a velocity-dependent (spin-orbit term) be included
in the two-nucleon potentials. Recently Signell and
Marshak' have shown that a good fit to the unpolarized
and polarized two-nucleon elastic scattering data up to
150 Mev may be obtained by adding an empirical,
charge-independent, short-range, attractive, spin-orbit
potential to the Gartenhaus potential. ' Gartenhaus used
the nonrelativistic, I'-wave, extended-source, Hamil-
tonian. He calculated in perturbation theory keeping
terms to fourth order in the coupling constant. How-
ever, he omitted the so-called "ladder corrections, "
dropping them with the aid of "Brueckner and Watson's
argument. '" These terms lead, as is well known, to an
unbound deuteron.

The Gartenhaus meson-theoretic potential gives a
good fit to all of the low-energy two-nucleon data. This
is both encouraging and surprising since the use of
perturbation theory in meson theory calculations has
dubious validity. Presumably the inclusion of a re-
normalized coupling constant f'/4sr =0.089 and a cutoff
energy co, =6p, which are determined from real
meson-nucleon scattering and photoproduction at low
energies, includes certain higher order e8ects. The hope,
of course, is that the higher order e6ects which are not
included in this manner modify only the high-energy,
short-range, behavior of the potential.

It is interesting to investigate the (ftrst-order)
nucleon velocity-dependent terms in meson theory to
see if a plausible explanation for the spin-orbit term
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can be given. We will follow precisely the philosophy of
Brueckner and Watson (BW) and Gartenhaus (G) in
deriving these terms. Our Hamiltonian will be a non-
relativistic reduction of the (PS) (PS) theory. The
potential itself will then be computed using nonrelativ-
istic perturbation theory. As in the case of G we drop
all so-called "ladder terms. " The (PS) (PS) theory in
this manner leads to a spin-orbit potential of the type
postulated by Signell and Marshak (SM). Our results
will be an expansion in powers of the coupling constant
and the ratio of the velocity of the nucleons to that of
light. We shall assume that (e/c) „,I„=tt/3f. We shall

keep only the second- and fourth-order terms in the
coupling constant. Only the zeroth order term in tt/M
for the instantaneous potential and the 6rst-order term
in tt/M for the L S potential will be retained.

Other treatments of this problem have been given:
Sato, Itabashi, and Sato, ' Klein, ' Marshak and Okubo, '
and most recently Sugawara and Okubo. ~ All, except
Sugawara and Okubo, ' have used a modified type of
(PS) (PV) theory. These treatments' ' include addi-
tional terms in the coupling Hamiltonian but consider
only their L.S effects. (By additional we mean terms
other than the usual tr VP coupling used by Garten-
haus. ) Also, it may be pointed out that these earlier
treatments, concerned themselves only with cutoff-
independent Hamiltonians. As a result, the Anal po-
tentials in position space are highly singular at the
origin. In order to avoid this singularity, the potentials
are simply set equal to zero for all radii smaller than an
arbitrary cutoB distance.

In addition to computing the L S pieces of the
potential, we have computed the corrections to the
Gartenhaus static potential. We have done this for the
Hamiltonian with and without cutoG. For the case of
the Hamiltonian without cuto6' our analytic forms for
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the potential are consistent with the results of the
previous investigators.

In Sec. II we discuss our reduction of the theory to
an effective nonrelativistic Hamiltonian. In Sec. III
we discuss the definition of a potential and give the
potentials resulting from the specific form of the
interaction chosen. In Sec. IV we compare the potential
with the experimental results.

II. REDUCTION OF THE (PS) (PS) THEORY

The nonrelativistic limit of the symmetric (PS) (PS)
theory is defined, for our purposes, by the application
of a Foldy transformation to the relativistic Hamil-
tonian. "That is,

H'=e see 's ie s(r)/r)i)(e 's)

where
&=~ p+W+gPVse '4

and
S=-(4/2M)('u+gev '~). (3)

We And to order g'/M' that

a'= Myp'/2M+ g'y'/2M+ (g/2M) e Vgl

+g'(~~/~g)'/gM'+(g/4M )'~X~
+(g/8M')L~ F, ~0/~ll+

—(&/8M')L(~ p —sggl)(~ p+sggl) j', (4)

It has long been known, that the (PS) (PS) theory
leads to an extremely strong S-wave scattering in Born
approximation. ""This is in sharp disagreement. with
experiment. It has been suggested that a more exact
solution of the field equations results- in a self-damping
of the S-wave pions. It is argued that this damping is
so strong that the S-wave effects may be neglected
altogether. If the only term in the static theory inter-
action Hamiltonian is of the form P', then it is possible
to solve exactly the Heisenberg equations of motion for
the meson field variables. "The scattering is reduced in
this case from its value in Born approximation (BA)
by approximately a factor of one hundred. The BA
does not take into account properly the diminution of
the wave function near the origin due to the repulsive
potential simulated by the gl' term. Since we shall use
low-order perturbation theory to determine the scat-
tering of two nucleons, we must regard the coefficients
of all the terms in the reduced Hamiltonian as subject
to effective renormalization by higher-order interac-
tions. We cannot calculate the relative renormalization
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of the various terms of B, but we shall adjust their
coefficients so that they agree with the experimental
~—S scattering. Thus the coe%cients of the terms in
H are regarded as experimentally measured quantities.
Meson-meson scattering would also contribute to the
nucleon force and possibly to the L.S term (if it were
strong enough). We omit entirely any such term in the
Hamiltonian. The importance of the FW transformation
is that it allows us to start with the nonrelativistic
(PS) (PS) theory and modify it in what we consider a
reasonable way to fit experiment. Suppression of pair
terms in the p5 covariant theory is more difGcult. "

We have investigated the question of how much this
procedure changes by dropping of the y5 theory. We
suppress pair terms completely by dropping g'gi'/2M
from the reduced Hamiltonian4 and then compute the
second and fourth order, energy shell, scattering matrix
element for two nucleons. We then expand the answer
in powers of p/M and retain the terms of relative order
one (velocity independent) and p/M (velocity de-
pendent). We then compute, within the framework of
the relativistic y5 theory, that part of the same matrix
element which is proportional to ~~ ~ ~2. The relativistic
matrix element was integrated over the fourth compo-
nent of the virtual meson momentum, and expanded
to the appropriate order in p/M. The coefficient of
~r ~s in both cases was the same. Since the gl' inter-
action cannot lead to terms proportional to ~~ ~2, this
comparison indicates that, except for the explicit
suppression of pair terms, the nonrelativistic approach
is the same as the y5 theory. We therefore write in
place of (4)

EP=M+ y'/2M+2Mcr( f/ll, )'P'+ (f/p) o.VP

+v(f/I )" 4&&~+P(f/I )(I/4M)E~ p, ~~/~13+

+ (e/2M) (f/p)'gl'
—(8/8M')L( p —gal)( p+ g4)j' (5)

where o., P, y, 8, e are empirical damping factors to be
determined and we have used (f/p) =g/2M, the static
constant f'/4s ——0.10.

'3 M. Gell-Mann had suggested the following way of treating
the relativistic y& theory. The nucleon Geld operator satis6es the
equation (s8—3I'—gy&gi)/=0. If we multiply on the left by
(g8+M g7ef), w—e arrive at a second-order equation;

[CI' M' gv„yeas„p g'p—']&=—0. —
It would seem that a possible method of getting rid of S-wave
pions in the pseudoscalar theory would be to throw out the gl'
term in this "squared" theory. The resulting "truncated" theory
which is still relativistic may then be used to calculate an L S
potential. The truncated theory is quite similar to the (PS) (I'V)
theory. That is, the meson coupling at each vertex is p5A.'where
k is the four-momentum of the meson in question. On the other
hand, the nucleon propagators are 1/(CP —3P). Thus, the theory
is not as divergent in higher orders as the (PS) (PV) theory
We have calculated these potentials. The results are not the same
as the L S potential arrived at from the Foldy transformation,
although quite similar in character. However, this truncated
theory is not satisfactory since, for various processes, the resulting
S matrix seems to be nonunitary. Also, the identification of the
BW "ladder piece" (see Sec. III) is not clear in a relativistic
expression.
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Theoretical static model calculations taking into
account S-wave meson rescattering effects seem to
indicate that one should take a=0.02 and y=0.7," if
one is to Gt the S-wave pion-nucleon scattering data.
Owing to the uncertainty of these estimates we will, in
the final numerical compilation of the potential, take n
equal to zero and P equal to 1. The term proportional
to P has, as we show in footnote 17, a certain flexibility
to it. We may change the coefFicient of the term and at
the same time add new terms to the last term of (5).
Since there is apparently no reason for choosing P very
small or very large, we choose, for the equivalent
Hamiltonian (5), to take /=1. Since the terms with
coefficients e and 6 do not give any significant contri-
butions unless e and 8 are much larger than 1, we shall
neglect them. "

In computing all diagrams we use the value f'/4zr
=0.10, the value of the renormalized coupling constant
used by Gartenhaus. In addition, we should' include
rescattering effects for E-wave mesons, just as the Low
equation does. We shall neglect all rescatterings except
insofar as they are included in the renormalized coupling
constant. It is therefore to be expected that there will
be a rescattering correction to our results. BW have
investigated this E'-wave rescattering for the static
potential and find that its effects are small. A more
sophisticated treatment of the nuclear force problem,
perhaps from the point of view of dispersion theory,
would of course include it.

p+q
J(

p q p+q

V

FxG. 1. First and
second BA for two-
nucleon potential scat-
tering.

6, on the other hand, depends on the nucleon velocities,
as well as their position. It is the term which gives rise
to the controversial "ladder terms, " and requires
careful explanation.

In order to define a potential, we begin with the
formal relation

Sf;——
l&r4+2zrz8 (E,—Ef)Rr;,

R.,=Q. I vl~;),
(7)

V= V(z)+ V(4)+. . .

Rf; Rf;('&+Rg,—(—4)+

(1o)

(11)

f,+=/, +1/(E, Hp+ze)f,—+, (9)

where V in field theory is an integral over space, of
second-quantized operators, and for the case of non-
relativistic potential scattering, it is the potential we
wish to deGne. The potential is deGned so that it
duplicates the S matrix to any given order for real
free-particle scattering. The potential is expanded as a
power series in the coupling constant:

as

III. THE POTENTIALS

We now write the second- and fourth-order potentials
Then to fourth order,

R."'=(fl v"'I'),

V= (f'/4zr) $A('&+ (p/M) 8(')j+ (f'/4zr) 5
+Lf'/(4~)'jP'"+(p/~)&")+(p/~)EL s), (6)

where A, 8, and Ii are functions of the relative distance
between the two nucleons and where we have antici-
pated the result that the largest spin-orbit term is
fourth order in f and first order in p/3I. The term 8(4)

will be neglected since it is a correction to the static
potential of order (f'/4zr)p/M. We feel that there are
enough uncertainties in the static potential itself to
justify the neglect of this term. Since f'/4zr=p/M, we
would expect to include 8") in the Gnal result. However,
due to the symmetry properties of the diagrams, 8")
is equivalent to zero. In the same way, we keep only
the largest velocity-dependent piece, P. Marshak and
Okubo have shown that the only form such a potential,
linear in the nucleon velocities and not vanishing for
real free-particle scattering, can have is L S. The term

'4S. D. Drell, M. H. Friedman, and F. Zachariasen, Phys.
Rev. 104, 236 (1956).

~'A. Klein has included the term 8=35/p in an attempt to
include the effective rescattering from the ($,$) resonance. We
ignore this. We also do not complete our Hamiltonian so as to
make it a relativistic covariant because we feel that all the
empirical corrections made to the FW result reflect only the
failure of perturbation theory to treat correctly the p5 theory.

V(z) zz zz V('& i
Rf'("=(fl V'I')+2

(E.—E )

This means that the two diagrams, for potential
scattering (first and second BA), Fig. (1), must agree
with the fourth-order R matrix from Geld theory.
Equation (13) enables us to obtain the so-called
"fourth-order" potential.

As is indicated by (13), iterations of the second-order
potential must be subtracted out of the fourth order R
matrix in defining V&4&. In addition, if one calculates
and includes in V&') certain nonstatic pieces which
depend on the nucleon velocities and which vanish on
the energy shell

I these are designated by f'6 in (6)j,
then the iteration of these terms must be subtracted
from the fourth-order potential. The momentum de-
pendence of 6 is just such as to cancel the usual pole
present as E;—E„in Eq. (13) and yield a nonsingular
function. These terms are the so-called ladder terms
mentioned previously. 8% have already noticed that
if these terms are grouped with the fourth order, then
the resulting static potential gives an unbound deuteron
and, in general, disagrees with experiment. On the
other hand, they show that if the term 6 is kept in
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Fxo. 2. Nonrelativistic sec-
ond-order nucleon force dia-
grams. Arrows point in the
direction of increasing time.
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second order, then for wave functions of the potential
V—(fs/4rr)h with a phenomenological hard core, the
addition of the term 6 shifts things so slightly that it
may be neglected. Their conclusion is that the retention
of this term in the fourth-order static potential seriously
overestimates it, since its origin in the fourth-order
potential may be traced to the predominance of high-
momentum components in the wave function for the
two nucleons. These high-momentum components are
in turn a consequence of the singularity in V,~,~,,&"

which in coordinate space has a singularity like 1//rs.

The term 6 is omitted from the Gartenhaus potential.
The same situation prevails with the L S pieces. The
iteration of 5 leads to a fourth-order L.S term. To be
consistent with the results of BW we shall drop this
L S term from the fourth-order potential and neglect
the eGect of 6 on the scattering, since it vanishes on
the energy shell and is presumably a sxnall correction
for a wave function satisfying the Schrodinger equation"
for V—(f'/4rr)h

Within the context of the static model the BW
argument is quite explicit. However, when one considers
the possible forms the Hamiltonian (5) can take under
the unitary transformation discussed in footnote 17, we
must be a little more careful. Some of the new terms
of order 1/M' which are generated in such a transfor-
mation contribute to the L S potential, as they must.
However, the two "diGerent" methods of computing
the potential do not yield the same results unless all
the diagrams of required order generated by these
pieces are included. There are, in fact, a number of
diagrams which are formally ladder diagrams and where
the momentum dependence of the second-order pieces
are just such as to cancel the pole in an intermediate
state consisting of only two nucleons. These diagrams
must be included, otherwise a unitary transformation'
will cause changes in the actual potential.

"At energies of about 150 Mev, the neglect of 6 should be
reinvestigated. Previous results hold only for the deuteron."It is interesting to point out that the fourth and seventh
terms of Eq. (4) give an eifective vertex tr (vmeeon nvnueleon).
The reduced theory must be Galilean invariant. As a result one
might expect a term of the form e. (v „,—v „,l„) to appear
at the vertex. This is indeed the term appearing at the vertex of
the reduced (PS) (PU) theory. Although the argument that the
term e (v „,—v „,l„)must appear has been used previously,
the statement is incorrect. It is possible to show that the coefficient
of 0"v,&„may be any number at all relative to the coefficient
o"v „, and still lead to the same physical result.

Suppose one takes the reduced Hamiltonian (4) and performs a
second unitary transformation of the form e'~ where S=p(g/
8Me)t o' p, pj+, p is an arbitrary numerical factor. Such a trans-
formation changes the coefhcient of the seventh term in (4) so
that it now becomes (g/8M')(1+p). However, it is essential to

(A) (8) (c)

JI

+

(0)

FIG. 4. "Double-action"
fourth-order nonrelativistic
nuclear force diagrams. All
vertices may contain P' or
a v QX@ interaction.

(c) (D)

+ REFLECTED D IAGRAMS

We apply the BW argument then only to diagrams
zohere the pole cancelling piec-es come from recoil correc-
tion to propagators.

We now evaluate the potential V of Eq. (6). For the
sake of clarity we rename the second- and fourth-order
pieces of the potentials. The subscripts indicate where
the separate pieces come from. By BW we indicate the
pieces already written down by Brueckner and Watson,
and by Galilean we mean the piece generated by the
term proportional to P in the Hamiltonian (5). The
diagrams representing these potentials are given in
Figs. 2, 3, and 4. The analytic form of these potentials

note that such a transformation introduces new terms of order
1/3P into the reduced Hamiltonian. We have demonstrated by
explicit calculation that to the required order in g and (p/M)
the ambiguity arising from the unitary transformation S=p(ge/
8M')Lo" p, Pj+ is not reflected in the potential. That is to say,
the potential is independent of the adjustment of P by means of
this unitary transformation.

+ REFLECTED DIAGRAMS

FIG. 3. "Single-action" fourth-order nonrelativistic nuclear force
diagram. All vertices may contain a e ~ or a Le p, (BP/Bt) j+
interaction.
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are correspondingly

(f'/4n)A .&'& = V—"& (BW),

V&»(BrA') = (gr ~ g2)L(f/p)2/(2rr)3] d3$ v2($)(or. k)(o2 k)er&. '/(g2

(14)

(15)

(Prl (f'/4~)~lP')=(~r ~2)L(f/~)'/(2~)']) d'»'(&)(or k)(o2 k)

XL (yf' —p 2)/2MaP]$1/(&u+ (pf' —pP)/2M)]e' ' (16)

(f'/4 )A"'= V"'(B~)+V"'(0)+V"'(0')

V('&(B~)= —P(f/p) /(2v. )6] d%d3$~ v (P)v (P')er("+~ & r

XL{3(k'.k)'+2(~r ~2)(or k'Xk)(o2. k'Xk)}/(aPar")

+{2(~r ~2) (k' k)'+3(or k'Xk) ((r2 k'Xk))/(oA)'(co+(v'))], (18)

V"' (i)= (~r. ~2—)L (f/&r)'/(2v)'] d'&d'&' v'(&) v'(Ir') e""+""

V&'& (qP) =—((f/p)'/(2~)'] d'kd'k' v'(k) v'(k') e'& + "
X(12Mn(k' k)/cu'a)" +24M'n'/((o(o'(cu+co'))], (20)

(rr/M) (f'/47r)'FL S=—Vr..s*+Vr, .s'+ Vr..s(4)+ Vr. .sf'),

VL s~ (f/P) ((3+2&r &2)p/((2~)6M)] I ppdak'v2(p)v2(k')e'&~+"'&'

(21)

XL{i(or+n2) (pXk')(k k')/(~'co")+i(or+a2) (k'Xk)(y k')/(rd'(o")], (22)

VL.s' ———(3—2~r g,)P (f/p)'/((2v ) '2M)] d'kd'k' v'(k) v'(k') e'& "+"'&'
X(i(or+o2) (k'Xk) (y k) (k' k)/(aPcu")], (23)

VL.s(4) = (2~r. ~2)L(f/u)'v/((2~)'M)] t'd'&d'&' v'(&)v'(&')e'"+""

Xb(nr+o2) (k'Xk) (p k)/(~'~") —(0/2)i(or+o2) (k'X p)/~"], (24)

Vx, .s(y')=P(f/u)'/(2m)'] I'd'kd'k' v'(k)v'(k')e'&"+ "$6ni(or+op) (k'Xk)(p k)

X (rd'+co" +(o(o')/((o'a)" ((a+ad')) —6nPi(or+ o~) (k'X p)/(cue&'((u+(o'))]. (25)

The iteration of 6 Lsee Fig. 3, diagrams (E) and (F)] leads to

Vrg ——(f/&r)'P(3 —2sr. ~2)/(2v)'] d'kd'k' v'(k)v'(k')e'&~+ '&'C(or k) (o2.k) (or k') (or k')/cv'. cg"]. (26)

The iteration of 6 Lsee Fig. 3, diagrams (E) and (F)) leads to an L S piece of the form:

Vrr. s= (f/p) P(3 2~r ' s2)/((2~)'(2M))] I'd'kd'k' v (k)v'(0')e" ~"+~&''
XLi(or+o2) (k'Xk) (p k) (2&v'+~)/~'a&"]. (27)
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The coefBcients n, P, and y have been included to show
the origin of all terms. Their numerical values are
summarized as a=0.01, /=1, y=1. Superscript x or 0
indicates "crossed" or "uncrossed" diagrams respec-
tively (c.f. figure 3).

It is to be pointed out that some of the additional
terms in the Hamiltonian contribute to the static
potential as well as to the L S potential. With the
present choice of o. all terms involving it could just as
well be set equal to zero. We have included these terms
for completeness only. In all numerical computations
we will consider 0.=0. There remain, however, two
terms arising from the (~ AX&) term in the Hamil-
tonian which do contribute signihcantly to the fourth-
order static potential. These terms combine to give a
potential which is attractive in the isotopic singlet
states and repulsive in the isotopic triplet states. Both
the static piece and the L S piece coming from the
~ P&&@ interaction have a delta-function singularity in
the relative coordinate for the case v'(k) = 1. Owing to
their extremely singular behavior we shall omit (for the
case of unity cutoff, and also for the case of a smooth
momentum space cutoff) the 8-function parts. These
8-function pieces are peculiar for a number of reasons.
For the case of no cutoR in momentum space it is
certainly legitimate to neglect these terms since they

contribute to the potential only at one point and
would, presumably, be lumped in with a phenomeno-
logical hard core. When a smooth momentum space
cutoR is used, this is not the case. These terms are then
spread out and contribute to the potential. Two things
should be noted about these terms. First, the size of
the potentials generated by the 8-function pieces is
extremely sensitive to the maximum momentum
allowed. By increasing this cutoff slightly above the
value we shall set it at later on, we can make this term
have no effect in the region of interest. However, it is
also true that by decreasing the value of the cutoff
slightly these terms become very important. Thus,
there is a serious question here. Second, we believe that
they should be omitted because they do not appear in
the relativistic ps form of the theory. We suspect that
these terms reQect the inadequacies of the Foldy
transformation in treating precisely the very singular

parts of the interaction energy of two nucleons, although
we cannot prove this.

For the case e'(k) =1 the evaluation of the integrals

(14)—(24) is straightforward. We include in the follow-

ing tabulation only those integrals which are not ex-

plicitly evaluated in BW. The delta-function pieces
mentioned previously are dropped.

V&4'($) = (f'/47r)'p~g ~2(y/mx')L(10+y)Eg(2x)+Sx'Eg(2x) —x(20+2')Eg'(2x)],

V&+(qP)=12M~(f2/47@)2g —»(x+1)2/x4 48MQ2(M/p)(f2/47')2E~(2x)/(7px2)

VL.s*= pP(3+2~—g ~2) (p/M) (f'/4m)'e '*L(x+1)(x'+x+1)/x']L S,

VL.s($) = —p(~& ~&)y(p/M) (f2/4m)'e 2~L(x+1)2/x']L S,

Vr, .s =p(3—2sy s2) (p/M) (f~/43)2(4/w )L(xEO(x)+2Ey(x))/x']'L S,

VL s(qP) = —(24'/~) (f /47r)'(1 —P/2)(L3Eg(2x)+2xEo(2x)]/x4) L S,

V1L s UL s —(3—2sx z2)p(p/M) (f /4z) e 't (x+1)(x +3x+3)/x6]L ~ S.

(28)

(29)

(30)

(31)

(32)

(33)

(34)

with

v(k) = exp( —k'/kQ), (35)

~~= (k '+y')'=6y.
"G. F. Chew, Phys. Rev. 95, 285 (1954).

A prime on the E function indicates diRerentiation
with respect to the entire argument.

We regard a smooth momentum-space cutoR as a
necessary, if unexplained, part of the theory and
therefore a careful comparison with experiment requires
a recalculation of the potential in con6guration space.
For this reason we have numerically calculated the
form of the potential when such a cutoR is used. In
analogy with the Chew theory, " the results of using
such a cutoff in k space should not depend strongly on
the form of the cutoR used but may depend upon the
maximum momentum allowed. A square cutoff, owing
to its discontinuous nature, gives rise to oscillations in
the potential. Gartenhaus used a cutoR of the form

We use the same cutoR function. Figures 5 and 6 are
plots of the additional static pieces in the iso-singlet
and iso-triplet states, respectively. Figures 7 and 8 are
the corresponding plots for the L S pieces."

Before going to a comparison with the available
experimental data, we stress again the extreme sim-
plicity of this calculation. Our Hamiltonian was chosen
on the basis of a nonrelativistic reduction of the
(P5) (PS) theory. The S-wave interactions were then
suppressed in the nonrelativistic theory and the po-
tential calculated with this Hamiltonian as the starting
point. Correspondingly V was chosen to duplicate the
fourth-order S matrix (except for the "ladder terms"),
for real free nucleons. All higher order rescattering
eRects were neglected. A number of fourth-order
velocity-dependent L S pieces of order f'p/M were not
included since they vanished on the energy shell and

"We can supply upon request numerical values of the potential
either tabulated or punched on IBM cards.
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Fro. 5. Plot in the iso-singlet state (vq me= —3) of the static
potential coming from the s pX$ term in the Hamiltonian,
where x=—pr. The dotted curve marked G is the Gartenhaus
static potential in the spin-triplet, orbital even states (for example,
the 'SI state). If y= j. the resulting potential is the sum of these
two curves. The curve marked GT is the corresponding phenome-
nological potential of Gammel and Thaler.

The sum of the two curves looks similar to the GT curves.
However, with the present choice of y it would appear that the
potential would be attractive all the way, which is no doubt
undesirable. If y were changed to some smaller value (in the
neighborhood of 0.7) the curve might indeed give reasonable
answers for the deuteron ground state.

brought down from 57.3' to 15.5'. This is due to the
fact that the spin-orbit potential supplies a large
repulsive core in the 'Po state which wipes out the
effect of the otherwise deep attractive well in that state.
SM 6nd, on the other hand, that they could just as
well have chosen zero for the potential in the triplet
even state.

The theoretical isotopic triplet potential, in agree-
ment with SM, is attractive except at short distances
where the cutoff adds a repulsive core. The theoretical
L S is nevertheless considerably smaller than the
phenomenological potential of SM. However, it is
possible, by changing the coupling constant slightly
(from 0.09 to 0.12) and increasing the maximum cutoff
slightly, to improve the over-all agreement considerably.
The question of agreement is not a simple one. In the
first place, it is evident that the spin-orbit potential is
not unique. Definite predictions can be made only on
the basis of a numerical solution of the coupled
Schrodinger equations. Thus one potential may be as
acceptable as another one which looks quite different.
In support of this we point out that any L S potential
derived from meson theory will involve the exchange
of at least two mesons. As a result it will always have
the asymptotic form of an algebraic function times e '&".

The original SM potential did not have this behavior.
However, recently Signell et ul." have shown that a

thus would not appear in our deinition of the potential
until order fs.

Vp -e—(r]rp)-

V. .()= r&r,
(r/rs) d(r/re) (r/rs)

where
= Vr, .s(r) l.=.„ r&r, (36)

Vs=30 Mev, re=1.07&(10 "cm, r,=1/3f.
The experimental data at these moderate energies

indicate definitely that the potential for the triplet odd
states should be attractive. The situation with respect
to triplet even states is not conclusive. The addition of
a spin-orbit potential to the straight Gartenhaus
potential immensely improves the agreement with
experiment. The major reason for this improvement is
that the very large Gartenhaus Pp phase shift has been

IV. DISCUSSION AND COMPARISON
WITH EXPERIMENT

Nucleon scattering data up to 150 Mev give a
reasonable indication of the type of L S potential
needed to Gt the data. The data have been Qtted quite
well by SM. They have added to the Gartenhaus
potential the following isotopic spin-independent,
phenomenological, potential:

150-
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FIG. 6. Plot in the isotopic triplet state (c1 g2=1) of the static
potential coming from the s PXQ term in the Hamiltonian
where x—=pr. The dotted curve shown for comparison purposes
is a plot of the Gartenhaus static potential in the spin triplet
orbital odd states (for example, the 'Ep state). If 7= 1 the resulting
potential is the sum of these two curves. The fact that these two
terms tend to cancel one another is an important feature since
the 'Ep Gartenhaus phase shift is much too large to agree with
experiment (see discussion of results).

2'P. S. Signell, R. Zinn, and R. E. Marshad, Phys. Rev.
Letters 1, 416 (1958).
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the deuteron's magnetic moment of approximately

d p, L.g = —0.056 nuclear magneton.

This is an undesirable shift since it precludes the
possibility of matching the experimental results even if
the probability for finding the deuteron in a D state
were reduced to zero. On the other hand, our potential
gives a positive shift which depends on the third power
of the cutoG distance in coordinate space. Since the
shift is positive and of the order of 0.1 nuclear magneton,
it is possible to match the experimental value by
increasing the amount of D state present or changing
the cutoG radius slightly.

Another and more qualitative comparison with
experiment may be found in the shell-model theory of
spin-orbit splitting in the nucleus. Calculations to date
in this area are very approximate since the nucleon
wave functions are not well known. If we write the
potential as

VL s=LVr(r)+Vs(r)~r ~s]L S,
FIG. 7. Plot of the coe%cient of L S in the iso-triplet state,

where x=pr. The unlabeled dotted curve is a plot of "unity
cutoff" Lv'(k)=1) and the solid curve for a Gaussian cutoff.
The ordinate is in Mev and f'/47r was chosen as 0.1. The curve
labeled SM is a plot of the phenomenological Signell and Marshak
L S potential in the iso-triplet state.

change in the range of their original potential to agree
with the theoretical range of 1/2p results in an improved
agreement with the p-p scattering data. Secondly,
there remains the question of how sensitive are the
predictions at these energies to changes in the core of
the static potential. "" The L S potential in the
isotopic singlet state is strongly repulsive in contrast
with the results of SM. This is a definite prediction of
the particular way in which we have chosen the pieces
of the fourth-order potential. If the BW argument had
been ignored, then the potential would have been
attractive in both isotopic states. The fact that it is

repulsive, at present, does not seem to be in obvious
contradiction with the experimental results on two-

nucleon scattering.
It is well known that such a spin-orbit potential will

change the magnetic moment of the deuteron, " since
the velocity-dependent potential introduces an extra
coupling with an external electromagnetic field. If we

are considering the deuteron, the appropriate L.S
potential is the isotopic singlet. The intrinsically
negative potential proposed by SM causes a shift in

both the Vj and V2 parts give first-order splittings for
a single particle outside a closed shell, the Vr (r) through
a direct expectation value and an exchange term and
the Vs(r) term through an exchange integral only, since
it is evident that the closed shell has no net isotopic spin.

We have made a rough comparison with experiment
by calculating the I';—I'~ splitting to be expected in
He'. The energy difference is given by the formulas of
Blanchard and Avery. '4 We choose harmonic oscillator
wave functions for the nucleons, taking radial wave

V

I50-

lao—

2' The pieces of the static potential arising from the fifth term in
the Hamiltonian of Kq. (5), Figs. 5 and 6, present interesting possi-
bilities along these lines. In the iso-triplet state this repulsive poten-
tial automatically cuts down on the 'Eo phase shift. Thus the L- S
potential, for the purpose of cutting down on the 'I'0, does not,
a priori, have to be as big as the phenomenonological L.S po-
tential of SM.

~ S. Otsuki, Progr. Theoret. Phys. (Kyoto) 20, 171 (1958).
s' H. Feshbach, Phys. Rev. 107, 1626 (1957).

0.6 0.8 I.O

s' C. H. Blanchard and R. Avery, Phys. Rev. 81, 35 (1951).

Fro. 8. Iso-singlet (sq. es ———3) L.S potentials, wherex=yr.
Ordinate is in Mev. Dotted curve is analytic form, solid curve is
for the Gaussian cutoff (see text).
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FIQ. 9. Fine-structure splitting in He' (see Sec. IV of «xt).

For the purpose of this crude estimate we approximate
our two-nucleon spin-orbit potential by

VL.s= (Vt'+Vs'~t ~s)e "/x', r)r„)
=0, r &r,.

The resultant splitting is

I';= ftVt'+ Vs']X—0 75A,

where Vr'+Vs'=20 Mev and A is a dimensionless
function of the cutoG radius, r„and the size of the
nucleus, o. . A is plotted in Fig. 9. It is encouraging
that agreement with observed value of the splitting
(3.5 Mev) corresponds to the choice 1/a=1.2/p and
r,=0.3, a result not incompatible with other shell-
model calculations. The splitting is quite sensitive to
the cutoG in r space and therefore no quantitative

functions

f= (n/Q~) *(4s-)4 exp( —nsrs/2), 5-state nucleons;

g = (2a/K3) (n/2+rr) l2nr exp (—'rn'/2),

P-state nucleons.

results follow. The reason for this trouble is the rather
sharp singularity of the approximate Vz, .8 at the origin.
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Note added in proof. The recent work' of Sugawara
and Okubo implies that there are no L S pieces of the
required order in the p& theory, with "pairs suppressed. "
The only L S pieces which arise come from the inclusion
of additional pair terms in the relativistic coupling
terms. These results do not contradict the results of
this computation. Sugawara and Okubo "damp" pairs
by neglecting all negative-energy diagrams. That is to
say, they omit all intermediate states (in "old fash-
ioned" perturbation theory) which contain an anti-
nucleon. Although it is true that the large matrix
elements of order one between nucleon and antinucleon
states should be damped, it is by no means clear that
the e'/c' corrections to these vertices should be treated
in the same way. Our point is that writing the matrix
elements for these negative-energy diagrams as
g'$1+0(e'/c') j and then retaining the (v'/c') term will

give an L S potential. If these pieces had been included

by Sugawara and Okubo, their answer would be in
agreement with the analytic potential computed here,
including, of course, the piece VqL. S. The diGerences
between the two approaches then arise from two
sources. First, we do not suppress pair terms by
suppressing all negative-energy states, but instead we

suppress 5-wave terms in the nonrelativistic Hamil-
tonian (5). Second, we employ the BW argument (and
what we think is a consistent extension of it) while
Sugawara and Okubo do not use this argument. This
means that even the static potentials will disagree.


