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On an initial hypersurface, @0=0, in the presence of gravitation and source-free electromagnetism one can
specify the metric tensor, g„„, and its partial derivatives, g„„,o, as well as the electromagnetic tensor, f„„.
These quantities must be speci6ed so that on the initial hypersurface two of Maxwell's equations are satis6ed
and so that the components R ' of the Ricci tensor are proportional to the components T ' of the electromag-
netic energy-momentum tensor. It is sometimes possible to specify a different electromagnetic tensor on the
initial hypersurface which together with the old metric and Ricci tensors will describe a properly set initial
value problem such that the geometry in advance of the initial hypersurface is different for the different
electromagnetic fields. Thus, the Ricci tensor on the initial hypersurface does not always uniquely describe
the geometry off the hypersurface in the Einstein-Maxwell theory. The conditions when this nonuniqueness
exists are explicitly derived. An initial value problem could be set by specifying g„„and g„„,() on the initial
hypersurface and deriving an appropriate f„„;however, g„„and g„,, o cannot be arbitrarily specified but are
subject to one rather complicated constraint condition on the hypersurface.

this hypersurface, the following six equations be
satis6ed:

I. INTRODUCTION

'HE Einstein-Maxwell theory describes a space-
time which contains only gravitation and source-

free electromagnetism by means of a set of nonlinear
second-order partial differential equations in which the
dependent variables are the components, g„„of the
symmetric metric tensor and the components, f p, of the
antisymmetric electromagnetic tensor. It is appropriate
for a theory of this kind to ask what information can and
should be given on an initial space-like hypersurface in
order to determine the fields uniquely in a space-time
region in advance of the hypersurface.

This question has been discussed' and the present
situation can be brieQy outlined. In appropriate units
the combined Einstein-Maxwell field equations can be
written, in the absence of electromagnetic sources, '

R ' ,'5 'R=—f—,f'7+d rd", (4)

(5)

(6)

fl», si

d [12,3]

These equations involve only quantities that have
already been assumed given on the initial hypersurface.
If these equations are satisfied, one can solve Eqs. (1),
(2), (3) to get the time evolution of the system. To re-
peat, the Cauchy problem for the Einstein-Maxwell
problem requires that the 26 quantities g„„g„„,s, and f s
can be given only subject to the six constraints (4), (5),
and (6). One is led to expect that on xs =0 it should be
possible to find twenty quantities that can be given
independently of any conditions and to determine the
other six quantities by solving a set of diGerential
equations derived from the six constraint equations.

It is more usual to say that the given Cauchy data
involves giving 18 quantities, not 26. Eight of the
quantities are readily seen to be physically meaningless
and can be easily eliminated. Equations (4), (5), and (6)
do not involve the four quantities go„,o at all. Moreover,
by using the second fundamental form E,;—=—(g") '*I';;
to replace g;;,s and the quantities 6 '= (—g) &f",
50'= (—g) &d" to replace f„„,one finds that they also do
not contain go„. Only the 18 quantities g;;, E;;, h', and
3."need be specified at x'=0 to determine the solution
of Eqs. (1), (2), and (3) uniquely (to within coordinate
transformations at "times" different from us=0). The
go„and go„,o may be given arbitrary values by coordinate
transformations which reduce to the identity on the
initial surface x'=0. Hence, they can be given inde-
pendent of any condition, and must be found among the
twenty independent variables referred to above. (See,
for example, the review by Misner and Wheeler. ')

Of the given initial data, g„„, g„„,s, and f s, those

(2)fl-s, vi
=o

~[gxP.Vl (3)

The bracket in (nP,yj stands for alternation and since

faS is antisymmetric f[ap, p]
= s (faS,7+fpp, a+ fpa, p)

Choose a coordinate system in which the equation of the
initial space-like hypersurface is x'=0. Suppose one
gives as Cauchy data the values of g», the "time"
derivatives g„„,s, and f p everywhere on the initial
hypersurface. In order that these 26 quantities be an
appropriate set of variables to specify the Einstein-
Maxwell fields at the initial time x'=0, it is necessary
that Eqs. (1), (2), and (3) be satisfied everywhere on the
initial hypersurface. Evidently it is necessary that on

' C. W. Misner and J. A. Wheeler, Ann. Phys. 2, 525 (1957).
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A. Lichnerowitz, Theories Relatkistes de la Gravitation et de
L'Electromagnetisme (Maisson et Cie, Paris, 1955), Chap. 2.' Greek subscripts assume values 1, 2, 3, 0; Latin subscripts 1,
2, 3; a comma denotes a partial derivative; a semicolon a covariant
derivative; R & represents the Ricci tensor; da&= q( g) &a»if„i- —
is the dual of f p, e»~ is the antisymmetric tensor density, equal
to +1 or —1 depending on whether Olpyb is an even or odd permu-
tation of 1, 2, 3, 0. g stands for the determinant of g„„and I' p, is
the Christoffel symbol of the second kind.
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f' p= f p cos8+d psin8,

g p= —f psin8+d pcos8,

one sees that Eq. (4) remains satisfied,

R '—-'8 'R= f' f"'+d'

(7)

(8)

0 is an arbitrary function of the coordinates. We shall
refer to the transformation from f p, d p to f' p, d'

p

described by Eqs. (7) and (8) as a phase transformation;
it is sometimes referred to as a duality rotation. In a

involving the f p do not immediately pertain to geome-
try while the remaining twenty are of course inherently
geometrical. With the same geometric initial data, can
one replace f p by a different electromagnetic tensor
f'

p such that the constraint equations will still be
obeyed? If this can be done, it will be possible to have
situations where the metric tensor and its 6rst time
derivatives on the hypersurface will not be sufhcient
uniquely to predict the future space-time. It turns out
that this nonuniqueness sometimes does exist and in the
next section we explicitly derive the condition on f p

which must be obeyed in order to find a new suitable
electromagnetic tensor f' p. Suppose the given data
satisfy the energy constraint, (4), but not Maxwell's
equations, (5) and (6). In the next section is also shown

that, if two different relations are obeyed by f p, one can
find a new f' p which together with the given g„„and
g„,, o will satisfy all the appropriate initial constraint
equations.

In the third section we take up the question whether

g„, and g„., o can be arbitrarily specified and the f p

remain unspecified but determined by solving the ap-
propriate constraint equations. It turns out to be, in
general, an impossible task. The given twenty metric
quantities must still satisfy one or, at most, two
constraint equations which will then allow the appro-
priate electromagnetic tensor to be found. The resulting
problem may not be unique; there may be a family of
suitable electromagnetic tensors. All of the above results
are derived in the usual Einstein-Maxwell theory. The
situation is then discussed in Sec. 4 from the completely
geometric point of view of Rainich and a proof outlined
to show that the situation is the same from this point of
view also (as of course it must be).

II. UNIQUENESS OF ELECTROMAGNETIC FIELD
FOR GIVEN INITIAL GEOMETRY

Suppose the Cauchy data g„„g„„,o, and f p are given
so that (4), (5), and (6) are fulfilled and the Einstein-
Maxwell equations can be solved. Keeping the same g„„
and g&„o, can one find a new electromagnetic 6eld f' p

that will satisfy (4), (5), and (6) and that will properly
de6ne a diferent Einstein-Maxwell universe? The
answer is that this can sometimes be done and we will

now display under what circumstances this nonunique-
ness exists.

If one defines the f' p by

V.X+8 V8=0,

V 8—X V0=0.

If E, is not proportional to B,, V'8 can be written

(12)

(13)

V8=nE+pH+qEy H. (14)

The components n, P, y are as yet undetermined. If E;
is proportional to H;, one can write an expression analo-
gous to (14) expressing V8 in terms of its components in
the direction of E and any two other independent
directions. Using expression (14), one can rewrite (12)
and (13):

W X+n E+. pE X=O,

v 8—nE $c—PH.x=o. (16)

If the determinant of coefFicients of n, p does not vanish,
the equations can be solved to yield

(q x)H.x+(p a)E x
(E x)'—(E.a) (H.$c)

(v.x)E x+(y. s)E a

(E x)'-(E E)(H x)

(17)

(18)

Using the knowledge that V'.X=O and V 8=0 shows
that n=Oand p=0 so that V8=&EXH, p, an arbitrary
function, solves (12) and (13).We could have deduced
this more readily by a prior use of the divergence-free
nature of 8 and X; however, we shall want to use (17)
and (18) later to discuss the situation when E and X are
not divergence-free. In order that yE&&H represent a

notation to be introduced in the Appendix, 0 is a phase
angle in a phase transformation.

In order that f' p be usable as an electromagnetic
Geld in an initial value problem, it is necessary that it
satisfy (5) and (6). Under a condition now to be derived,
f' p can indeed be a suitable electromagnetic field. On
the hypersurface, use the notation 'g= detg, ;; (—g)-**f"—=h'=—('g)&E'( —g)ld"=—$C'=—('g)'H' H =g "H&' 8 H
= h'H;; (E)&H);= e;; i,8'H' (P');= 8—/Bx' ~ 8—= 8',",
etc. With this notation, we can use the language of
three-dimensional vector analysis.

On the initial hypersurface & 8=0; & X=0; and
X'=X cos8+8 sin8; 8'= —$C sin8+8 cos8. The ques-
tion is whether 0 can be chosen so that

V.X'=0 V 8'=0

V X'=V' X'cosa —sinHX' /8
+V 8 sin8+cos8$C &8=0, (10)

Q ' 8 = —Q X sln0 —cosOX ' +0
+V 8 cos8—sin88 V8. (11)

Multiply (10) by cos8, (11) by sin8, and subtract; then
multiply (10) by sin8, (11)by cos8, and add. The result
will be that the two equations (10) and (11)are equiva-
lent to
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V&X (EXH) = —V X (EXH). (21)

These determine two components, say p, & and p, 2, of Vp
in directions perpendicular to ExH. In order that these
equations can be integrated to give/, it is necessary and
sufhcient that (P,i),2= ($,2),i. This can be written

(VXV~). {ExH)=0.

We show that this is a consequence of (21) by forming
the divergence of that equation:

v I V~X(EXH)&
=(VXV/) (EXH)—(vg) vX(EXH)

= —V Lvx(EXH)(=0.
However, using (21) we have

Vf LVX(EXH))= Vf LVQX—(EXH)j=0.
Consequently, we have the result that if (20) is satisfied
everywhere on the hypersurface one can find y (usually

y can be a family of functions) that satisfies (19). For
example, if VX (EXH) =0, then Vy=X(EXH), where
X varies arbitrarily along lines of tangency to Ex8 but
does not vary along lines of tangency to E or H $i.e.,
VX. (EXH) WO, VX E=O, VX H=Oj, will satisfy (19).
Penrose4 has given an example of such a situation in-

volving a collision between two electromagnetic waves.
Thus, providing Eq. (20) holds, one can give a family

of p which will in turn give a family of f ii which together
with g„„g„,,o will satisfy the initial constraint equations.
Although the geometry (g„„and g„., o) on the initial
hypersurface is the same for the whole family of fields,
the geometry is not the same for regions of space-time
in advance of the hypersurface. This is true because p,
in general, is not a constant but may have different

' Roger Penrose (private communication).

gradient, it is necessary that

vx(vEXH) =vvx(EXH)+~VX(EXH) =0. (19)

Here V)&A=—e'&~A &,;., e'&" is completely antisymmetric
and equal to +1 or —1, depending on whether i, j, k is
an even or odd permutation of 1, 2, 3. Equation (19)
represents three equations whose components become
explicit after taking the dot product with E, H, and
EXH, respectively. The last-mentioned dot product
will show that Eq. (19) can only be satisfied if

(EXH) Lvx(EXH)(=0. (20)

The entire set of equations (9) through (20) has been
written in a form which is covariant under all trans-
formations which maintain the equation x'=0 for the
initial surface. The explicit use of covariant derivatives
has been avoided by taking gradients only of B-scalars,
divergences only of 3-vector densities, and curls only of
3-vectors. We now show that Eq. (20) is not only
necessary but also sufFicient to ensure the existence of a
y which will satisfy (19).Define P—=in'. Then Eq. (19)
becomes

(ExH) Lvx( E+pH)j

(EXH) VX(EXH)
(23)

Taking the dot product of (22) with E and H yields

nE VXE+E LVX(PH+yEXH)1=0, (24)

PH. VXH+H t Vx(nE+yEXH)]=0. (25)

n, P, and y are given by (17), (18), and (23), respec-
tively. Thus, if Sand$Cdonot satisfy V' 8=0, V BC=0
they can still serve to provide a suitable Einstein-
Maxwell problem provided they satisfy the very much
more complicated relations (24) and (25). In this case
the initial electric and magnetic fields are given not by
E and H but by E' and H', 8 being obtained by inte-
grating Eq. (14) with n, P, and p given by the appro-
priate expressions. Of course, our previous analysis has
shown that E' and H' will not define a unique geometric
problem if (E'XH'). LVX (E'XH'))=0.

III. ARBITRARINESS OF g„„AND g„„,p ON
INITIAL HYPERSURFACE

Suppose that only g„„and g„„,o are arbitrarily given
on the initial hypersurface. Can the six equations, (4),
(5), and (6), be solved for f p to yield a properly set
initial value problems In this section we find that the
answer is "no"; the equations cannot always be solved.

values as a function of points on the initial hypersurface.
Two electromagnetic tensors f„p and f' p can satisfy
Maxwell's equations and produce the same electromag-
netic energy-momentum tensor throughout a four-
dimensional space-time region if, and only if, they are
connected by relations (7) and (8) with 8 being a con-
stant independent of space-time. Any solution of the
Einstein-Maxwell equations without electromagnetic
sources can be used to generate a whole family of solu-
tions by means of relations (7) and (8) with 8 constant
without changing the geometry. However, it is not this
special case with which we are here dealing, and the
geometry does change off the hypersurface as f p

changes on the hypersurface with varying 0.
Suppose the initial f p were such that (1) was satisfied

but not (2) and (3). Is it possible to find a new field,
f' p, so that (1) will remain unchanged, the given g„„
and g„„,o will be unchanged, but (2) and (3) will be
satisfied for f' pP In other words, if V 8&0 and V.K
AO, can one express an R'=K cos8+Gsin8 and an
8'= —R sin8+8 cos8 so that V X'=0 and V 8'=OP
The above analysis shows that for this to be possible one
must choose V8 as given by Eq. (14) with n and P
obtained from (17) and (18), respectively. This choice,
however, can only be made if

VXV8=VX(nE+PH+yEXH)=0. (22)

Equation (22) represents three independent equations.
Taking the dot product of the above expression with
Ex H permits one to solve for y,
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It turns out that the metric quantities g„„and g„,,p

cannot be given arbitrarily but are subject to at least
one and possibly to two constraint equations.

Equation (1) is the energy-momentum relation of the
Einstein-Maxwell theory. It can be shown' that for this
relation to be true, in the case that p'=—R„„R&"/4 is not
equal to zero, the Ricci tensor must be expressible in the
form

RJ'=2p'8 ~ 4(l,—k~+k l~). (26)

k andi arethetwonulleigenvectorsofE p, l l~=k„k"
=0; R~ kp= —2p'k~; R~t'l p

———2p'l; and/ k =p'.
E ' can be calculated from the assumed initial data.

An easy calculation from (26) shows that RssRtt'=p'
which is consequently given by the initial data. Taking
the R ' components of Eq. (26) will yield four algebraic
equations from which four of the components of / and
k can be determined. Since p'=l k" is given by the
initial data and since l and k are null, there remains
only one undetermined component of the two null
vectors. The four equations in (27) involving R ' are
equivalent to Eq. (4) which is satisfied because of the
appropriate choice of components of / and k . The re-
maining equations in (26) can be solved for g;;,pp and
will determine all but one of these second derivatives.
This one will remain dependent on the remaining
undetermined component of the null vectors.

From the null eigenvectors one can construct an
antisymmetric tensor, P„„and its dual, D„„which
satisfies Eq. (1):

F„.=2(l„k,—k„l,)/p. (27)

fe„=Fey cos8+Der sli18,

d„„= F„„sin8+D„„cos8.—

8 is a function of position. 8 can be chosen so that fits, sl

=d~~2, 3~
——0 if, and only if, the expressions E" E; and

D" P; obey the two constraints (24) and (25). As
there is only one free parameter still available in k and
/ it can be used to satisfy at most one of the constraints,
leaving at least one still unsatisied. This still unsatisfied
constraint can be stated in terms of the geometric
quantities g„„and g„„,p (since k and f are so described).
Hence, we have the result that g„, and g„,, p cannot be
arbitrarily given on an initial hypersurface for the
Einstein-Maxwell equation to be properly set. These
initial data must satisfy a constraint equation on the
hypersurface which has a very complicated form and
which can be derived by the method outlined above.

From P„„and D„„one can obtain other antisymmetric
tensors, f„„with their duals, d„„by phase trans-
formations:

8=0,
R,tR, =8. R„„R"/4.

(30)

(31)

If (30) and (31) hold, one can determine an F„„
t Eq. (27)$ and a family of f„.$Eq. (28)j by a phase
transformation from F„„that satisfies (1). Out of the
family f„„,it is possible under some circumstances to
choose a particular 8 so that the corresponding f„,will
obey Maxwell's equations. This choice of 8 can be made
only if

where Ot„ is de6ned by

a„—= e„„e,R"'eR, '/( g) '*R„„R&".— (33)

In order to insure that the energy density is positive, one
must also impose the requirement

Rpp(0. (34)

Equations (30), (31), (32), and (34) are equivalent in
content to Eqs. (1), (2), and (3). If the former four
equations are satisfied, one can ind an electromagnetic
tensor which will enter properly into the latter three
equations. Of concern to us now is whether on an initial
space-like hypersurface, x =0, it is possible to give g„„
and g„,, e arbitrarily and to solve Eqs. (30), (31), and
(32) to give the future development of the g„„.

The initial data, as has been remarked, assume a
knowledge of E. everywhere on the initial hypersurface.
The inequality (34) can be immediately veriied. One
can then solve Eqs. (30) and (31) for the second
derivatives g;;,pp. How many of the six second deriva-
tives are determined by these equations? In considering
the equivalent equation (26) there were also six
parameters available in p, k, and l of which the initial
conditions determined 6ve. Hence, Eq. (26) or the
equivalent set (30) and (31) determine only five of the
derivatives g;;,pp. The undetermined derivatives can be
considered as usable in satisfying any constraints that
Eq. (29) (Maxwell's equation) may impose on the

IV. RECAPITULATION FROM GEOMETRIC
POINT OF VIE%'

It is known from the work of Rainich' that the
Einstein-Maxwell theory t Eqs. (1), (2), (3)g can be
restated using only geometric quantities. It is instruc-
tive to see how the discussion of the previous section
sounds using the geometric equations of Rainich. Since
the result of this section is merely a review of that of the
previous section, we shall only outline how the proof
goes without making any attempt at producing a
rigorous derivation. The erst of Rainich's equations say
that Eq. (1) or its equivalent, Eq. (26), can be true if,
and only if,

e J. L. Synge, Relatemty, The Speeeat Theory (Interscience
Publishers, Inc. , Neer York, 1956), Chap. 9;L. Wit ten, Phys. Rev.
115, 206 (1959),see p. 211.

G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925); C. W.
Misner end J. A. Wheeler, Ann. Phys. 2, 525 (1957); L. Witten,
Phys. Rev. 115, 206 (1959).
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initial conditions. The gp pp are determined by the
Bianchi identities and hence unavailable for this pur-
pose. It will turn out of course that Eq. (29) will impose
two constraint conditions on the g;j pp and there is only
one derivative left to satisfy them. Hence, as deter-
mined before, there will be one residual constraint
equation that the initial data must satisfy. If we now
show how Eq. (29) imposes two constraint conditions on
the g;;,pp we shall have completed our restatement.

Equation (29) can be rewritten in terms of six scalar
equations; contracting e„„—a„„with six independent
bivectors yields six scalars whose vanishing is equivalent
to the vanishing of the curl of n„. We shall rewrite Eq.
(29) in this form. One of the bivectors to be used will be
l~„k„~ which determines F„„byEq. (27). l~„k„~ describes
a time-like plane or 2-surface which contains time-like
lines as well as space-like. Absolutely perpendicular to
this 2-surface is a space-like plane or 2-surface, deter-
mined by D„„which we can describe by means of two
orthogonal unit vectors p„and q„, each perpendicular to
l„nad k„. Six scalar equations equivalent to (29) are
accordingly

0=~,„„,u ~~~

n[v, „lp 0 nb„, „fD

(35)

(36)

7 G. Repen, Phys. Rev. 114, 1179 (1959).

n k~~p"t=n k~~q"~ =n~„„jl~~p"~=n~„„&l~~q"~=0 (37).
Equations (35) and (36) are identities following from
the definitions and the Bianchi identity. This has been
proved by Rosen'; in the Appendix we outline an
independent proof.

The definition (33) of n„shows that np, , contains time
derivatives of g;j no higher than the second; n;., j con-
tains no higher than third time derivatives; and Q; p

contains no higher than fourth derivatives; each term
contains the highest derivative speci6ed. Hence, in the
set of equations e~„,„~

=0, three will involve third-order
time equations and three will involve fourth-order
equations. Barring the circumstance that k„or l„will lie
along the perpendicular to the initial hypersurface, the
identities (35) and (36) both involve fourth-order time
derivatives. Hence, the set of equations (37) can be
rewritten as a set of three third-order diGerential equa-
tions in time and a single fourth-order equation.

The three differential equations of the third order
involving only the single undetermined one of the six
functions g;j,ppp can only be satisfied if the functions

g 'j pp satisfy two conditions; these are the two con-
straints we have been looking for. Since only one g,; pp

is still free to satisfy these two conditions, at least one
of them will remain

unspecified

as a constraint on the
initial g„v and g„„,p which therefore cannot be given
arbitrarily.

If the appropriate choice of the initial data is made,

g &', ppp can be chosen so that three of the equations in (37)

are obeyed and gs j pp()p so that the fourth is satisfied. One
can then be assured that the full set of Einstein-
Maxwell equations are satisfied everywhere in the initial
hyp ersurf ace.

In this paper we have not discussed the time evolu-
tion of the fields, we have merely discussed the possi-
bility of choosing initial data that are consistent with
the Einstein-Maxwell theory. The time evolution prob-
lem needs, however, careful consideration. In the case
of Rat space the problem is very simple. If E and H
are given on a hypersurface so that V.K= 0 and V.H
=0, one can obtain the time evolution of the system
from the remaining electromagnetic field equations:
curlE= —BH/Bt, curlH=BE/Bt. These latter six equa-
tions determine the six quantities E and H and also
assure that V E= W H= 0 remains satisfied for all
time. In the combined Einstein-Maxwell case the situa-
tion is somewhat different. The energy-momentum
equation determines all but one of the free parameters
in k„and I„.Left still are this one parameter and a phase
function 0 of somewhat limited usefulness. The Bianchi
identity means that four of Maxwell's equations are
automatically satisfied, ' leaving only four independent
equations. Two relations must be satisfied as identities
on the hypersurface. Hence, two more equations are
available whose solution must depend on an appropriate
choice of the remaining parameter in k„and l„and on 0.
It is not entirely clear that this can be done, and I am
not aware of any existing proof that it can be.' The
problem manifests itself in the geometric version by the
realization that, after g;;,ppp is chosen to satisfy the
three third-order equations in (37), all g;;,ppp are com-
pletely determined by this and the energy-momentum
equations (26) and (27). Yet, the fourth order equation
in (37) must still be satisled. How to do this remains a
problem for future investigation.

~pv =p av (A-1)

If 0 is an arbitrary function of space-time, co'„„=co„„e"
will also satisfy (A-1) whenever cp„. itself does. This is
the phase transformation entirely equivalent to that of
Eqs. (7) and (8). Can 8 be chosen so that &o'„, obeys
Maxwell's equations, p&'„"., „=0? (ip'„" being complex, the
entire content of Maxwell's source-free equations are
expressed in the preceding relation. ) To satisfy this

' This remark is proved in each reference cited in footnote 6.
9 See, however, the remark in Lichnerowitz's book (reference 1,

p. 51).

APPENDIX. IDENTICAL VANISHING OF
TWO COMPONENTS OF e(„,„)=0

We now proceed to prove that Eqs. (35) and (36)
vanish identically. First we outline the derivation of
Eq. (32) that n~„,.~

——0.If R= 0and RJ'R~&=8 &R„„R&"/4,
there are two null eigenvectors of E p from which F„„
can be constructed by the procedure of Eq. (27). Define
pi„,=F„„+sD„„,so—that
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equation, 8 must be chosen so that

nip;v+Rop "g,v= 0

Multiplying by or&, and using the identity

CO C0" =—6 M pG) (A-2)

4ZCO I GO 4ZG7 CO I
Q[p, a]Mp =

4' (0p oi p (ce ),p

(A-5)

which is a consequence of the duality of P„„and D„„,one
obtains Using the identity (A-2) and the antisymmetry of oi»,

one obtains

0pp

2'„";~"p—=Pp.
GO~pCt)

(A-3)
2uo " (co')..

u[p, ploiPP = 4ioip",—„(oPp; pro P'+ . (A-6)

The reality of the. above expression follows from the
Bianchi identity. It can now be shown that

Differentiating (A-2) yields

oipp; cop'+oippoip', ,= ~ (aP), p. (A-7)

rr[p. pl P[p, pl (A-4) Using this in (A-6) gives

The reality of Pp and the validity of (A-4) are the
essential steps in the proof that is omitted here, the
details having been given in a previous paper. "From
(A-3) and (A-4), with the notation oi2=~ scp"~, one has

' L. Witten, reference 6, p. 210.

Q[p, p]Gap =4$cep;ptoppoip;p/GP.

This vanishes because co» is antisymmetric but Goy, 'M p',
is symmetric in p and p. So O. ~p, ,t~ =0 identically; the
real and imaginary parts correspond to Eqs. (35) and
(36) which are identities.
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Invariance Under Antiunitary Operators*

G. FErNnEnot
Department of Physics, Columbia University, %em York, %em York

(Received June l, 1960)

Jt is shown that for transitions between "weakly interacting" states, the transition matrix f' can be
expressed in terms of a Hermitean operator E+Et, and so invariance of the Hamiltonian under antiunitary
operators such as T or TCP implies invariance of transition rates under kinematic transformations, without
changing the direction of time.

An application is made to m decay into 2 photons, where it is shown that invariance under TCP alone
implies equality in the number of left and right circularly polarized photons, to 1 part in 10 .

HE invariance of a Hamiltonian under a unitary
transformation leads to the invariance of the tran-

sition rates under certain "kinematic" transformations
of the quantum numbers in the initial and final states.
For example, invariance of H under space reQection
implies invariance of the transition rates under the
change of sign of all momenta in the initial and 6nal
states. On the other hand, invariance of H under an
anitunitary operator such as T or TCP does not in
general lead to such an invariance of the transition
rate, but rather to a relation between the transition
rate from an initial state to 6nal state, and the transition
rate from the "kinematically reversed" final state to
the kinematically reversed initial state. This is a
physically distinguishable process, unless the initial
and final states contain the same particles. It is,
however, known that under some circumstances,

*Work supported by the U. S. Atomic Energy Commission.
t Alfred P. Sloan Foundation Fellow.

invariance under an antiunitary operator nevertheless
does imply a relation between transition rates for the
same process. This will be the case, for example, when
the following two conditions are satisfied':

1. The transition matrix V' can be taken equal to a
Hamiltonian, i.e., when first-order perturbation theory
is used.

2. The initial and final states ~a), ~b) are weakly
interacting states.

In this note we shall show that the second condition
alone is sufFicient. Speci6cally, we show that if the
initial and final states are such that all products of the
form (a~ 1'[n)(n[ 1'[[b)(~n) 0 ~a)) can be neglected
compared to (a~ E~b), then invariance under the anti-
unitary operator 0 implies equality between the transi-
tion rates for (a) ~ (b) and for )an) p ~bn), where

' Y. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340
(1957).


