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The effect of vacuum polarization upon p-p scattering is considered by erst solving the problem in the
Coulomb plus vacuum polarization potentials (called "electric" potential) without the nuclear potential.
The nuclear phase shifts are then dered with respect to the electric wave functions, and the scattering cross
section is written in terms of these phase shifts. The connection with other nuclear phase shifts (in the
presence of vacuum polarization) which appear in the literature is established.

The eGective-range expansion for the nuclear s-wave phase shift is derived. An analysis of three low-energy

p-p scattering experiments indicates that the omission of vacuum polarization from the analysis results in a
value for the shape-dependent parameter which is 0.02 smaller than the value obtained when vacuum
polarization is included in the analysis. A discussion of the accuracy required to usefully delimit this param-
eter is included.

I. INTRODUCTION Eq. (1) is of the order of 10 ' of the leading term (—1/a)
at 1 Mev, one must be sure to include all effects in the
function E which could modify it by a part in a
thousand, if the correct value of P is to be deduced from
the experiments. This is really true only for energy-
dependent corrections to E. Short-range interactions,
e.g., finite size of the protons and the contact part of the
magnetic moment interaction, ' produce corrections to
E which at low energies are energy independent and
consequently they primarily affect the values of the
scattering length, a, and the effective range, ro. Long-
range interactions such as v.p. produce energy-depend-
ent corrections to E which do affect the value of P (as
well as rp and a).

One difhculty with the Foldy-Eriksen' procedure for
calculating hE due to v.p. is the fact that approximate
p-p wave functions have to be known, since they
treated the v.p. potential as a perturbation upon the
combined Coulomb plus nuclear potentials. Because of
the sensitivity of P to changes in E, one must ascertain
whether or not the assumed shape of the nuclear
potential used in calculating dE, aGects the value of
P thereby deduced from the experiments.

We take a diGerent point of view and 6rst solve the
problem of the Coulomb plus v.p. potentials (called the
"electric" potential) with no nuclear potential (Sec.
II). Wave functions and the scattering amplitude
(Durand's') are obtained for this electric potential
(treating v.p. as a perturbation). Then the nuclear
potential is turned on (Sec. III): the nuclear phase
shifts are defined with respect to the electric wave
functions; and the nuclear scattering amplitude is
written in terms of these phase shifts. The connection
with the phase shifts used in references 1 and 2 is
established. The effective range expansion for the s-wave
nuclear phase shift is derived in Sec. IV. Section V con-

tains a discussion of the accuracy needed in the phase
shifts to obtain a given accuracy in P, as well as the
Sect which v.p. has upon the value of P which is

educed from the experiments.

OLDY and Eriksen' originally demonstrated the
presence of the vacuum polarization (v.p.) poten-

tial in the interaction between two protons by showing
that one obtains a better fit to the energy dependence
of the s-wave proton-proton scattering phase shift (and
slightly different values for the p-p scattering length and
effective range) if the v.p. potential is included in the
analysis than if it is omitted. They' did this by deriving
a correction hE due to v.p. to the effective-range theory
function

E k(rt) 1—=C'k cot bp+ = +,'r pk' —P—rp'k-'+ —. (1)
R R a

Durand' showed that the long range of the v.p.
potential, of the order of the electron Compton wave-
length, produces scattering in many orbital angular
momentum states even at low proton energies. To
deduce the correct value of the nuclear s-wave phase
shift from experiment, one must include the complete
v.p. scattering amplitude along with the Coulomb and
nuclear amplitudes. Precision p-p angular distributions
at Wisconsin' are better fitted with the inclusion of the
v.p. scattering amplitude as calculated by Durand' than
if v.p. is omitted. '

It should be possible before too long to assign a good
value to the coeKcient, P, of the third term in the
expansion of E in powers of k' [Eq. (1)j, the shape-
dependent parameter. We shall return to this question
later. This number is important in deciding whether or
not there is a hard core in the p-p potential, since if I'
is positive, it appears to rule out4 a hard core greater
than 0.3X10 " cm. Since the term involving P in

e J. Schwinger, Phys. Rev. 78, 135 (1950).

*This work was performed under the auspices of the U. S.
Atomic Energy Commission. A preliminary account of this work
was reported at the Pasadena meeting of the American Physical
Society )Bull. Am. Phys. Soc. 4, 460 (1959)g.' L. L. Foldy and E. Eriksen, Phys. Rev. 98, 775 (1955). e

~ L. Durand, III, Phys. Rev. 108, 1597 (1957).
3 D. J.Knecht, S. Messelt, E.D. Berners, and L. C. NorthclifI'e,

Phys. Rev. 114, 550 (1959).' R. L. Preston and M. A. Preston, Can. J. Phys. 36, 579 (1958).
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It should be pointed out that the procedure which is
employed here for the v.p. potential can be used
equally well, and additively, for other electromagnetic
corrections to the Coulomb potential which can be
treated in perturbation theory.

II. THE ELECTRIC POTENTIAL

We define the electric potential, Vzr(r), to be the sum
of the Coulomb and v.p. potentials,

g2 g2

Ve (r)= +—XI—(r)
r r

(2)

where X=2n/3m=1. 549&(10 s and the function I(r),
shown in Fig. 1, can be written

(1 1)
I(r)= ' dx e

—'""~ —+ ~(x' —1)'*,
2~)

(3)
s I I r

IO 20 50 IOO I 2 5 IO IOO
Kev Mev

E(lab)

with (2') '=A/2mc= 193.1)&10 ' cm. The limiting
forms for I(r) are as follows (z—=2~r):

Fn. 2.The quantities which occur in the effective-range expansion
«r &P vs the laboratory energy of the incident proton. Note that
all three quantities are negative.

I(r) = —y ——,
' —ln (lrr) +0(S), («&1)

3(2e-)-'*e-'"" ~1~
1+O~ —(, (.»1)

4 (2~r)1 & s)

(4)
the asymptotic form

Sz(r) = Fz, (r)+tanrzGz(r),
(2~r&&1)

(6)

y is Euler's constant y=0.5772 where FI.and Gl. are the regular and irregular Coulomb
The radial wave equation in the electric potential can functions, respectively. The integral equation satis6ed

be written by Sl. is

r2

d're�(r) —
1 L(L+1)

+ k' ———
dr' Er

Nz(r) =
G (r')I(r')S (r'))

s, (r) =Fz(r) l
1—2' dr'.(), (5)

where A=A'/Me'=28. 82X10 " cm. There are two

linearly independent solutions of this equation. One of
these Sl.vanishes at the origin, and we choose it to have

r F (')I(')s (')
+Gz(r)

~

tanrz+2gX, dr'
~, (I)

r' i

where t) = e'/Ae is the Coulomb parameter' and

l0'

r(lO cm)
2 5 lo

) I e
'

i I

l00 l000
r . I I

FI,ISI„
tanv I,=—2g) dr (8)

is the tangent of the v.p. phase shift.
The other solution Tl, is taken to have the asymptotic

form
Tz, (r) = Gz (r) tan rzF z (r). —

(2~r&&1)
(9)

The integral equation for Tl, is

t' e" Fz(r')I(r') Tz(r') )1
Tz(r)=Gz(r)l 1j2r)X ' dr'

lO-I

Z=2KI'

I I

5 lO

FIG. 1. The function I(r) which appears in the
vacuum polarization potential vs distance.

6 See reference 2 for a bibliography on the history and derivation
of the v.p. potential.

Fz, (r)
~

tanrz+2riX dr'— ~. (10)
l r' )

For later reference, the behavior near the origin

7 The relativistic g has been used in all numerical calculations.
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of these functions and their derivatives for L=O is
presented.

Sp(r) =Ckr(1+Xp)+O(r' Inr),

p,o i g g i ~ « I

Tp(r) =—(1—Pp)+O(r In'r),
C

l.5

Sp (r) =Ck (1+Xp) +0(r 1nr)

Tp'(r) = (1/CE)Lln(r/E)+2y+k(g)](1 —pp)

( I
" Gp(r')I(r') Tp(r') ~ (11)—Ck! tanrp+2gX dr'

rl ]
l.O

O
LRO

where
+O(r ln'r),

( 2~g

E exp (2+g) —1)

k(g) is the function de6ned in Jackson and Blatt, P and

—5
4

—5
6

GoISo
X,=——2~), !

~ dr
Jo

PpITp
Pp= —2gX dr

~o

(12)

2, 4 6
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FIG. 4. The vacuum polarization phase shifts versus laboratory
energy of the incident proton for the Grst few orbital angular
momentum states.
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FIG. 3. The vacuum polarization phase shifts versus orbital
angular momentum for three laboratory energies of the incident
proton. The phase shifts are all negative, and only integral values
of L are meaningful.

J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 96—97
{1950).

The Wronskian relation is

(cos'rp) (1+Xp) (1—yp) = 1.

Due to the fact that X is a very small number, a
perturbation expansion can be made, and we shall only

need the erst-order correction terms which are obtained
by replacing SL, and Tl, wherever they occur in inte-
grands by FJ. and G&, respectively. Note that the loga-
rithmic singularity in I(r), because of its integrability, is
of no consequence. Actually the finite size of the
protons eliminates this singularity, but it is simpler to
work. with the expressions for point protons bearing in
mind the discussion of short-range corrections given in
the Introduction. In perturbation theory, the expres-
sions given above become

foo P 2I
7.J.= —2' ~ dr

(13)
PpGpI

Xp=gp= —2' ~ dr
r

These quantities were calculated' with the aid of an
electronic computer and are plotted in Fig. 2 vs the
laboratory energy of the incident proton (I.=O only).
Durand' has given an analytic expression for rp (called
hp by him) which is good above 1 Mev and which we
agree with in that domain. The same remarks apply to
the formula for r& derived by Eriksen" (called h& & ).
Figures 3 and 4 show the v.p. phase shifts versus L at

'I am indebted to Dr. M. L. Gursky for his procedure for
calculating the Coulomb functions and for considerable help in
obtaining the numerical answers.

10 E. Eriksen, L. L. Foldy, and W. Rarita, Phys. Rev. 103, 781
(1956).
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the v.p. scattering amplitude versus angle at two
energies and as a function of energy at three angles,
respectively. The portion of Fig. 6 above 1.4 Mev was
computed from Durand's expansion, ' which is satis-
factory at these energies.

III. ELECTRIC PLUS NUCLEAR POTENTIALS

With the nuclear potential on (we consider only the
singlet state at present) the radial wave function be-
comes, at distances large compared to the range of the
nuclear force b,

60 120 F80
e (DEGREES)

FIG. 5. The real and imaginary parts of the vacuum polanzation
scattering amplitude multiplied by the wave number versus center-
of-mass angle for two laboratory energies of the inciden pro on.

Rz(r) = cosbzESz(r)+sinlz. Tz(r),
(r»b)

with 5ze the nuclear phase shift in the electric Potential
Using Eqs. (6) and (9), this in turn becomes

Rz(r) = cosKzFz(r)+sinKzGz(r),
(2~r&&1)

(19)Kz, =bz, +rz.

(14) Kz, is the sum of the nuclear and v.p. phase shifts with
the nuclear phase shift defined as above.

One can ask for the relation between 81.~ and the
nuclear phase shift, bzo, which the same nuctear Potential
would produce if there were no v.p. The superscript "C"
indicates that this is a nuclear phase shift in the

(16) Coulomb potential; i.e., if Wz, (r) is the radial wave
function in the same nuclear plus Coulomb potentia s,
but with no v.p. , then 8L,~ is defined by

where

~
—2ig 1n sin(8/2)

2k sin'(8/2)
and

1
f ., (8) =—Q(2L+1)rze" &'z—"&Pz(cos8).

Use has been made of the fact that v.L,&&1, and 0.~ is the
Coulomb phase shift. This formula was given by
Durand, ' who derived the first three terms in an ex-
pansion of f ~ (8) in powers of g. Figures 5 and 6 show

8'z, (r) = cos4opz(r)+sinbz, Gz(r).
(r»b)

(20)

Vsing perturbation theory, one can show that

three energies and as functions of energy for several
L-values, respectively.

The complete scattering amplitude in the electric with
potential fe(8) is the sum of the Coulomb and v.p.
amplitudes

1aO ~ ~ ~ s g s ~ g ~ ~ ~ ~ ~

4~~904

r IW

404/
0 /

with

Kz 5ze+ rz = bz,
o——+Az,

8'I,2I

J

�6
1.—=—2g) dr

(21)

(22)

"t.o

P

O—-2.0
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FIG. 6. The real and imaginary parts of the vacuum polarua-
tion scattering amplitude multiplied by the wave number versus
the laboratory energy of the incident proton for three center-of-
mass angles.

(23)f(8)= fe(8)+f~(8),

where fzr(8) is calculated by the customary procedure
to be

1
f~(8) = Q(2L+1)e"& z- »e"'z

2ik 1.

&(Lexp(2Hz, e)—1jPz(cos8). (24)

Note that this expression divers from the customary
(no v.p.) formula by the presence of the v.p. phase shift,
along with the Coulomb phase shift. f(8) can be e-

The complete (unsymmetrized singlet) scattering
amplitude f(8) is the sum of the electric amplitude and
the nuclear amplitude
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composed in another way:

X (e"~s—1)Pr, (cos8). (2S)

The v.p. phase shift does not appear explicitly in this
formula, but it must be remembered that it is contained
in Er, according to Eq. (19). Indeed at low energies
while only one or two bl, E are appreciably different from
zero, very many El. are nonzero. Hence, the advantage
of Eqs. (23) and (24) over (25). It is nevertheless
possible to use a hybrid notation which involves E
phase shifts in the important angular momentum states
and 6~ phase shifts in the unimportant ones. %e shall
illustrate this with the symmetrized singlet cross section
in the case that only 80~ is large. First of all, entirely in
terms of the 8x phase shifts, from Eqs. (23) and (24)

A similar analysis can be performed for the triplet
state, writing the cross section either in terms of 8~,;~
phase shifts or in terms of E~,; phase shifts. If the latter
choice is made, then there will be two differences just
as in the singlet state: The nuclear-Coulomb inter-
ference term will not involve 7.~, and the v.p. term will

occur with the combination

[f v r(8) —(6/k)e"i t '&rt cos8j.

Comparison of these formulas with those given by
Durand' shows that any analysis of data based upon his
Ao.„.v. [Eq. (24.3) in that paper), e.g., the Wisconsin'
analysis, necessarily yields for the s state a Eo phase
shift and for the p state, 8P phase shifts and not Ei
phase shifts. We believe that it is simpler and more
meaningful to express the cross section solely in terms
of 8E phase shifts as in Eq. (26), since these are the ones
which tell about the nuclear potential.

I f'(8) I
'=

I f~'(8) I
'+—»n'~p

k2

+—Re{fc'(8)[e"'p exp(she) sinbP)*}
k

+2 R {f,.'(8)Lf '(8)+(2/k) p('8 ') ' ~o'1*}

+-Re{[ Q (21+1)e"&s "81~PI)
k L=2,4, - ~-

X[fo'(8)+ (2/k) exp (i'd@) sin8P$*}. (26)

In Eq. (26), products of small terms have been
dropped, namely, v.p. with v.p. , v.p. with d and higher
phase shifts, and d and higher phase shifts with them-
selves. Now the same quantity in the mixed notation,

If'(8) I'= If/'(8) I'+(4/k') sin Ep

+ (4/k) Re[fo'(8) (e'xP sinE'p)*j

+2 Re{[f '(8) 2rp/kj[—fo'(8)+(2/k)e'xp sintCpj*}

+- Re [ Q (2J.+1)e"& s—pibz~Pi, j
I 1=24, ~ ~ ~

*I
X fc'(8)+ e'x' sinZp '

~ (2—7)I'

The same types of small terms have been dropped from
Eq. (27) as from (26). The only differences in the struc-
ture of these two expressions, to the approximation con-
sidered, occur in the third and fourth terms. Using the
Ep form, Eq. (27), there is no factor of e"'p in the third
term, and the s-wave part of the v.p. amplitude is sub-
tracted off in the fourth term. The reason for both of
these differences is just that Eo includes both the
nuclear and v.p. s-wave phase shifts.

v(r) = 8(r), v(0) =0.
(r))b)

(28)

Normalize 8(r) so that 8(0)= 1, i.e., from Eq. (11)

8(r) = [Tp(r)+cotbp~Sp(r) j.
Q

If the differential equations are written for two different
energies, and one multiplies, subtracts, and integrates in
the customary way, " the result for sufBciently small r
(in the limit going to zero) is

8p'(r) 8,'(r) =—(kp' k, ')
~

~ (8—,8p
—v,vg)dr. (30)

0)
««M. deWit and L. Durand, III, have also looked into v.p.

eKects in the effective-range expansion (Phys. Rev. 111, 1597
(1958)g.

~ See reference 8, Appendix IV.

IV. s-WAVE EFFECTIVE-RANGE EXPANSION

The 6rst question in seeking an effective-range
expansion" is which phase shift shall be used. From the
discussion in Sec. III, it is clear that either 8P (the
nuclear phase shift in the electric potential) or Spy (the
nuclear phase shift that would be obtained from the
same nuclear potential if there were no v.p.) is a satis-
factory candidate, but that Eo is not because it contains
the v.p. phase shift in it explicitly. The experimental
cross section yields either 80~ or Eo. If 60~ is to be used
(this was the Foldy-Eriksen' choice), it must first be
computed using Eqs. (21) and (22), and then the
ordinary effective-range expansion in the Coulomb
potential applies'. We shall derive the expansion for 50~.

One proceeds exactly as in the case of the Coulomb
potentiaV2 except that the electric weave functions are
used instead of Coulomb functions. One writes down the
s-wave differential equation first with the electric
potential [solution 8(r), the asymptotic function], then
with the electric plus nuclear potentials [solution v(r)].



LEON HELLER

The derivative is calculated from Eq. (11) to be

1 / r C'k O' X I'" Gp(r')I(r') Tp(r')
&'(r) = —

l
»—+2y+h(q) l+ l (1+Xp) cot8p —tanrp] — — dr' . (31)

(r 0)pj E i 1—yo 1—Po R~„r'
Cg'kg h(tto) C 'k

&o'(r) —&.'(r) = L(1+Xpo) coÃoo —tanrpo]+ l (1+Xp ) cot8p taiirp ]
( o)1—eo 1—Pp,

h(t1 ) X t
" I(r') (O'GpTo) (O'GpTp)

(32)
E P&„r' (1—yp)o &1—yp),

Again using Eq. (11), this integral converges at the
origin and r can be put equal to zero. Doing this and
also choosing k, =o Lh(i1,)=0, tanro =0] gives

expanded in powers of k':

pa(O, E)=rP 2Par p'k'+—. . . (40)

where a~ is the scattering amplitude in the electric
potential defined by

1 1+Xp——:—lim C~k cotboE;
+E s—&0 1

(34)

lp(ti) is defined to be

C'k h(v) f (m)
(1+Xo) cot8pa —tanro]+ +

1 o E. R

1=——+-'k'p~ (0 E) (33)

Bethe's argument" that for a gimel rtucLear potential r p

and I' must have substantially the same values whether
or not the Coulomb potential is present, because of the
fact that the Coulomb potential is weak compared to
the nuclear potential inside the range of the nuclear
force where ro and I' receive their contributions, holds
even more strongly whether or not v.p. is present, so
that it is not necessary to put electric superscripts on ro
and I'. This does rot mean, however, that analyzing the
experiments with or without v.p. will give rise to the
same value of P (or rp). (The effect upon ro, for example,
of analyzing p-p experiments without the Coulomb
effect would be very serious. ) The actual effect of v.p.
will be considered quantitatively in the next section.

V. SHAPE-DEPENDENT PARAMETER
FROM EXPERIMENTI' pC'GpTpy )O'Gerome

E.(,)= —~ ~

p r &1—yo) (1—@o~z=o
(35)

and
An estimate of the accuracy needed in order that the

shape-dependent parameter be known to a given
uncertainty can be obtained from Eqs. (37) and (40) by
considering three "equally accurate", equally spaced
(in energy) experiments. Then it can be shown that

@perturbation theory is used, Fqs. (33)—(35) become I &PI ~ the uncertainty in P, is given by

h(v) io(v)
C'kL (1+2Xp) cotBoa—rp]+ +

R R

4g(1+«) (2ld~ol ~

( sin28p )
(41)

and

1=——+-'-k'p~(0 E)
a~

——= lim C'k(1+2Xp) cotbp,
gE i':-+0

00

lo(t1) = —lt ~' dr—L(CGo)' —(CGp) E=o ].

(37)

(39)

where d, is the laboratory energy separation (in Mev)
between adjacent experiments;

l dipl is the uncertainty
in the s-wave phase shift; and e is an energy-dependent
quantity which arises from all the terms in Kq. (37)
except those involving 80~ and the scattering length.
Below 6 Mev,

l «l (4. By "equally accurate", we mean
that the three experiments have the same value for the
quantity in the brackets in Eq. (41). For the three
Wisconsin' experiments, we assign the approximate
value

lp(tt) is plotted in Fig. 2.
The customary a,rgument" can be made that p~(0,E)

receives its contribution from inside the range of the
(strong) nuclear force so that at low energies, it can be

"H. A. Bethe, Phys. Rev. 76, 38 (1949).

2ld&ol/sin2~o —2ld~ol —6X10 '.
With experiments of this accuracy,

l
~P

l
=0.03p/A'.

T¹Wisconsin' experiments have 3, 0.5 Mev, and



p —p EFFECTIVE RANGE THEORY

consequently they do not, by themselves, give any
information about I'. With experiments of the same
accuracy, 3, has to be at least 1.5 Mev to sensibly
delimit I'.

As an example, if one considers in addition to the
2.425-Mev Wisconsin' experiment the one at the p-p
minimum'4 (383.9+1.5 kev) and the older Wisconsin"
angular distribution at 4.203 Mev, then 6 2 Mev, but
these experiments are less accurate than the one at
2.425 Mev.

a. 2.425 Mev

For this experiment, the Wisconsin analysise gave

Ep= 48.273',

with the uncertainty as given above. From Eq. (21) and
Fig. 2,

bp~ =48.348'.

b. 4.203 Mev

According to the Hall-Powell" analysis

6p =53.808'~0.081',
and therefore

2(d5o~/sin25s 3X10 '.

This analysis" did not include v.p. , so we write the
phase shift with no superscript. (They" used the symbol
Ep, but it is not the same as the Ep phase shift defined
in the present work. )

A more recent analysis of the same data" including
split p-wave phase shifts as well as v.p. and relativistic
kinematics indicates that the s-wave phase shift is much
more uncertain than the value given above. If the
p-wave phase shifts are put equal to zero, then the fit to
the data is only slightly poorer, and the value

Xp——53.912',
is obtained. "

From Eq. (21) and Fig. 2,

bp~ =53.978'.

c. 0.3839 Mev

The purpose of this experiment" is to locate the
minimum with respect to energy of the 90' p-p scatter-
ing cross section. We have reconsidered the relation
between the energy of the minimum and the value of the
s-wave phase shift at the minimum, including v.p. in the
analysis. In agreement with the statement made in
reference 14, we 6nd a one-to-one relation between
E; and the value of bp~ at E;„,which is, however,
different from the relation if v.p. is omitted. (In

'4 D. I. Cooper, D. H. Frisch, and R. L. Zimmerman, Phys. Rev.
94, 1209 (1954).

'5 H. R. Worthington, J.N. McGruer, and D. E. Findley, Phys.
Rev. 90, 899 (&953).

H. H. Hall and J. L. Powell, Phys. Rev. 90, 912 (1953).
r' M. H. MacGregor, Phys. Rev. 113, 1559 (1959).
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FIG. 7. The value of the s-wave phase shift at the minimum of
the 90' p-p scattering cross section. The upper curve includes
vacuum polarization and represents bP. The lower. curve omits
vacuum polarization.

reference 14, the relation without v.p. was stated not for
the minimum in the cross section but rather for the
energy at which the ratio o/o Mogg has its minimum. We
shall work with the minimum in o itself. ) Figure 7 shows
the relations in question. The upper curve (straight line)
includes v.p. and represents 8p~. The lower curve has no
v.p. These lines do have a finite width of approximately
0.1 kev due to the spread in possible values of a and rp

which are capable of producing a given 8;„and also
due to the possible presence of split p-wave phase shifts
which can displace E; . With energy resolution poorer
than 0.1 kev, this spread is of no consequence. A given
pair (a,ro) gives rise to an E;„which is 0.7 kev lower if
the v.p. scattering amplitude is omitted than if it is
included.

With the minimum given as" E;„=383.9~1.5 kev,
the phase shift obtained from Fig. 7 is'

6p~ =0 25452~0.00050.

The uncertainty in the phase shift agrees with the
estimate made in the text of reference 14, but the un-
certainty which is quoted by those authors is double
this value. Using our uncertainty, we have

2~d&o~/sin2&o=2X10 '.

Treating the Hall-Powell" uncertainty at 4.203 Mev
as a lower bound, these three experiments (0.3839,
2.425, and 4.203) of unequal accuracy imply

iu i&0.02,.

To see by how much the omission of v.p. aGects the
value of I', it is not useful to make a best fit to the data
both with and without v.p. , because this procedure will
not distinguish between the experimental uncertainty
and the eGect in question. Instead, the following method
shall be employed. At the low energy point, we regard

"H. P. Noyes (private communication) reanalyzed the
minimum of o/rMott, , using the v.p. scattering amplitudes of this
paper, and obtained a phase shift which is consistent with the
value stated above. I would like to thank Dr. Noyes for keeping
me informed of this work.



TAM E I. The e8ective-range parameters obtained from the
three experiments discussed in the text, analyzed in three differ-
ent ways.

Type of phase shift
used in analysis

g E

sp (no v.p.)
g C

Scattering
length

(10 "cm)
—7.77—7.71—7.79

Effective
range

(10 "cm)

2.77
2.68
2.78

Shape-
dependent
parameter

0.047
0.026
0.048

sin Sp
&p= — (&&),

O'M

has been used. It is seen that the omission of v.p. leads
to a value for I' which is considerably smaller than the
value obtained when v.p. is included in the analysis.
(The uncertainty in P has been estimated above; the
central value appears in the table. ) On the other hand,
there is essentially no diGerence between the, results
obtained from the bp~ and bp~ phase shifts. This was to
be expected with E 0.05 because the Yukawa-like
wave functions which were used' to calculate AX are
consistent with this value of I'. If I' is only slightly
different from 0.05, there will be very little diGerence
between these two methods; a discrepancy might appear
if P should be negative (e.g. , hard core or square well

potentials). In any event, the s-wave phase shift must
be obtained correctly from experiment, i.e., the com-
plete v.p. scattering amplitude should be included. In
the example considered above, if v.p. is taken into

0.3839 Mev as the exact location of the minimum. Then
corresponding to the value 8p~ ——0.25452, there is a
unique value for bp (the no-v. p. phase shift) of

8p =0.25359,

obtained from Fig. 7. At 2.425 and 4.203 Mev, we regard
the phase shifts Spy given above (using the MacGregor'7
analysis at 4.203 Mev) as exact numbers; calculate the
90' cross section which these phase shifts imply,
assuming no p or higher waves contribute at this angle
(which is consistent with the analysis that gave rise to
the values of Spy); and then ask what value must be
assigned to bp if this same 90' cross section is to be
explained without v.p. In this way, we find

8p ——48.320' (2.425 Mev),

5p ——53.953' (4.203 Mev).

Using the ordinary effective-range expansion, Eq. (1),
for the three 8p phase shifts, and the new expansion,
Eq. (37), for the 8P phase shifts, the effective-range
parameters given in Table I are obtained. In the third
row of this table, the parameters for the bp phase shifts
calculated from Eqs. (21), (22) and the quantity AE
tabulated in reference 1, are presented. The relation

account only in the s state, the error in I' is about half
of the error produced by completely neglecting v.p. We
feel that it is simpler and safer to employ the eBective-
range expansion for bp~.

VI. CONCLUSION

Using the effective-range expansion derived for the
s-wave nuclear phase shift in the electric potential, a
procedure which has the advantage that it makes no
assumption about the nuclear potential, it has been
shown that the omission of v.p. from the analysis of p-p
scattering results in a value for the shape-dependent
parameter which is considerably smaller than the value
obtained when v.p. is included in the analysis. To obtain
(from the effective range expansion) a value for P which
is sufficiently accurate to decide whether or not there is
an appreciable hard core in the singlet state will require
more accurate values for the s-wave phase shifts at very
low energy'P and also near 4 Mev where the P-wave
difhculty is present.

Note added ie Proof. It has —been brought to my
attention by Dr. M. H. MacGregor and Dr. D. J.
Knecht that there were some systematic errors present
in the 4.203 Mev data, and that improved analyses of
the low energy experiments will soon be forthcoming.
Consequently, the numbers in Table I should be re-
garded as illustrative of the relative effect of analyzing
data with and without vacuum polarization, and not
as the best values of the eGective range parameters. If
the 1.397 Mev data' are used instead of those at 4.203
Mev (along with 0.3839 Mev and 2.425 Mev), then
one obtains

I' = —0.03~0.06,

a result which is consistent with a hard core but does
not confirm it.
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"J.E. Brolley and J. D. Seagrave. at this Laboratory are con-
sidering relocating the minimum in the 90 cross section with
considerably more accuracy than the Cooper, Frisch, and Zimmer-
man experiment. '4


