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Measurement of Quantum Mechanical Operators
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The limitation on the measurement of an operator imposed by the presence of a conservation law is
studied. It is shown that an operator which does not commute with a conserved (additive) quantity cannot
be measured exactly (in the sense of von Neumann). It is also shown for a simple case that an approximate
measurement of such an operator is possible to any desired accuracy.

1. INTRODUCTION
' 'T was pointed out by Wigner' that the presence of a
~ - conservation law puts a limitation on the measure-
ment of an operator which does not commute with the
conserved quantity. The limitation is such that the
measurement of such an operator is only approximately
possible. An approximate measurement can be done by a
measuring apparatus which is large enough in the sense
that the apparatus should be a superposition of suK-
ciently many states with different quantum numbers of
the conserved quantity. He has proved these statements
for a simple case where the x component of the spin of a
spin one-half particle is measured, the s component of
the angular momentum being the conserved quantity.
The aim of this paper is to present a proof of the above
statement for the general case.

In Sec. 2, we will prove that an exact measurement of
an operator M which does not commute with a con-
served operator L& is impossible. In Sec. 3, we will prove
that an approximate measurement of the operator 3f is
possible if Ll has discrete eigenvalues and is bounded in
the Hilbert space of the measured object.

2. IMPOSSIBILITY OF AN EXACT MEASUREMENT OF
AN OPERATOR WHICH DOES NOT COMMUTE

WITH A CONSERVED QUANTITY

Suppose we measure a self-adjoint operator M for a
system represented by a Hilbert space QI. Assume that
M has discrete eigenvalues p and corresponding eigen-
vectors g» which are orthonormal and complete in @I,

(2.1)

(2.2)

The measuring apparatus is represented by a Hilbert
space @s. Then a state of the combined system of the
measured object and the measuring apparatus is repre-
sented by a unit vector in @IS@s.

According to von Neumann, ' the measurement of the
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LU(1),L7=0.

Our claim is that (2.3) is impossible unless

LLI,M7=0.

(2.6)

(2.&)

For the proof, we 6rst note that, because of the
unitarity of U(f) and the conservation law (2.6), we

' For any state of the measured object, we can write

U (t) (yap) =Z„,y„,IRX„,(y),
where X»(p) depends on p. The Eqs. (2.3) and (2.4) give the most
general form of the above equation satisfying (1) the distinguish-
ability of the measured result,

(x-(e),x"'(4))=o,
and (2) the requirement that the probability of an eigenvalue p in
the state @, as measured by the state of the measuring apparatus
after the measurement, should give the conventionally postulated
value,

&.Ilx-(0 ) II'= &.1(e-,e) I'.

operator M in a state g is accomplished by choosing an
apparatus in a state $ (fixed normalized state inde-
pendent of p) in @such that the combined system, if it
is in the state p» $ before the measurement, goes over
after a finite time t into

(2 3)

where U(f) is a unitary operator describing the time-
development of the combined system. In order to be
able to distinguish the different measured values of the
operator 3f in terms of states of measuring apparatus
after the measurement, we require

(Xp Xs ) =0 if pW jl . (2.4)

We note that, because we are not measuring the de-
generacy parameter p, we have to allow the possibility
that the measuring object remains in any linear combi-
nation of p„, , with fixed fl but with arbitrary p. '

We now assume the existence of a universal con-
servation law for a self-adjoint operator L which is
additive in the sense that

L=LI1+18Ls, (2.5)

where Li and Ls are self-adjoint operators in @Iand @,
respectively. Actually this additivity will be used only
before and after the measurement, when the two sys-
tems are separated. By universal, we mean that, what-
ever measuring apparatus we take, U(t) commutes
with L,
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have

(~. , S, L(~.,&))
= (II(I)(4. , t), fI(i)L(4.,~))
= ((I(i)(e;;5), «(&) (~.,k) )
=(P,-.y„.,-.@X„,,-,L P,-y„,-X„„-). (2.8a)

Although we have assumed in the above proof that M
has a discrete spectrum, the conclusion holds for any
self-adjoint operator M. Namely, suppose

M =
)~pdP (ir)

Because of the orthogonalities, (2.2) and (2.4), we

finally obtain

(4'»'»'~L&4'»») = 0~ (2.9a)

Hence, as the necessary condition for the conserva-
tion law for the operator L, we can write

(~. , (8 &, L(~.,&))
=(Q, P„X„, , LQ, P„, SX„„).(2.8b)

Using the additivity of L, (2.5), we obtain

(~. , ~, L(~.,~))
= (~;, ,L ~.,) (&,r)+(~;, ,e.,) (&,L &)

= E L(~. , -,L.~.,-)(X...-,X.„-)
pit nfl 1

+ (P ' "' P ")(X ' ' 'st LrX ss)). (2.8c)

is a spectral decomposition of 3f. If 3f can be measured
exactly, P(p) for each Iu can obviously be measured
exactly. Since the projection operator P(p) has a
discrete eigenvalue 1 or 0, the above proof tells us that
P(p) for each y, commutes with Lr, which in turn im-

plies (2.7).

3. POSSIBILITY OF AN APPROXIMATE
MEASUREMENT

In this section we will discuss the problem of whether
the operator 3f, which does not commute with the con-
served operator Lj of the preceding section, can be
measured approximately. We will prove that this is
possible if L has a discrete spectrum and L& has only a
finite number of eigenvalues.

We may assume that the eigenvalues of L& are' 0, &1,
&2, ~l. We decompose L's into projection operators

or

(~. ..L ~.,)= &., (~...L ~.,) (2.9b)
L=Qg )iP(X),

L;=Qg XP;()%.), i=1, 2.

(3.1a)

(3.1b)

P()i) = Q Pt()t')Ps(X —X').
/x'/ &s(2.10)jVI=Z»~P» PA»' =4»@»»"

We are now ready to prove that L& commutes with 3f.
For this purpose we decompose M into projection The add'ti»ty (23) imP»es

operators
(3.2)

P„Lg—LgP„—0. (2.11)

To prove the commutativity of L& and M, (2.7), it is
sufhcient to prove the commutativity of L& and P„,

As a first step of our proof, we state the following
Lemma which will be proved at the end of this section.

Lemma. Given two sets of vectors%' ' and%' f in a
Hilbert space @=@@s satisfying

From the self-adjoint nature of P„, (2.9b) and (2.10),
we see that (+ ',P(&)+s')= (+-',P(&)+s'), (3.3)

(4'»» )PAr4»" »")= o»» 4»" (&»» Lr4»"»"),

(y„;,L,P„y„-,-)= r„„-S„„-(y„,,L,y„-;.),
which manifestly demonstrate (2.11). Thus we have
succeeded in proving that (2.3)-(2.6) imply (2.7).'

4 If L2 is unbounded, the above proof does not exclude the
possibility that one can measure M, even if M does not commute
with L&, by a measuring apparatus ($ or X», ) in a state which is
outside the domain of L, because (2.8}would then be meaningless.

However, even if L2 is unbounded, as long as L1 is bounded, we
can modify the above argument in the following way. We introduce
unitary operators

V(S)=exp(iLS); V;(S)=exp(zL;S), j=1,2. (i)
Because of the additivity, (2.5),

V(S)= Vi(S)8V2(S). (ii)

Then, by the conservation law (2.6), we have

(4, , 8E', V(S)(4.,85))
=(»"'4'»'»"'8»'»'»"' V( )(»"&»»"8»p»")) ("0

for every )., then there exists a Hilbert space @s' con-

By the orthogonality, (2.2),

(4»».8k', V~(S)(4»,8&))
= (Z," y„,"8X»»», Vs(S)(Z»' y»»" 8X»»»")) (iv)
=0 (for p H»t')

Combining the two equations above and using the additivity, (ii),
we obtain for p, /p',
(4, , 88, F(S)(4„88))

=(Z, y»» 8X»»», F(S)(Z» y»» 8»»» )), (v)
where

F(S)= (1/zS)/Vi(S) —1$8Vr(S). (vi)

Since F(S) —+ L1, as S —+0, we obtain

(Qr» 8P, Lg(4»»8i'))
=(& - 4 ~ "8X ~ ~ -, L (& "4 "8X -)). (vii)

Because of the orthogonality, (2.4), we Gnally obtain (2.9a) from
which we conclude (2.11)as before.

~ The proof holds without this specihcation but notations be-
come complicated, especially in dividing various regions of values
of ).
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taining Q, and a unitary operator U on @'=@&3@s'
such that (1) a self-adjoint operator Ls' (representing
the conserved quantity in @s') is defined on @'
coinciding with Ls on @, (2) U commutes with the
conserved quantity L' on @', L'=Li1+1SLs', and

L &=0, (S,a) = 1.

$, X», and rl» are given by

(3.12)

with an eigenvalue )i. lf is taken to be a normalized
eigenstate of L~ with the eigenvalue 0,

(3) + f= U+ ' (3 4) X„,=P, X»&, n„,= Z& n„,i, (3.13)

If the set of the indices a is finite, @' can be taken to
be @s.

This Lemma is used in the following way. We will
construct states $, X», ll, and rf» satisfying

(X.n,X")=0,

(X„,rl„)=0, f y &u, p, p, ', p',

ll~. „ll'&,
(rl„„rl„,) =0, for (&u,p) W (&i',p')

(3.5)

(3.6)

(3.7)

U(45)=244, A)44, &IX .)+&)(e), (3 9)

in such a way that the two sets of vectors

Q '=P„ps f, 4 =P&,pX&, &+far&„&„n=(p, ,p), (3.8)

fulfill (3.3). If we succeed in constructing such states,
then by the Lemma, there exists a unitary operator U
in @' which conserves L' and for which (3.4) holds.
This implies, for any normalized state P in @&,

N) 2l/e ——,'. (3.15)

The X»&, are any states in @sz, orthogonal to each other
and with the norm given by

(X„p&„X„., y) =0, for I)t
I
)N 2l, (—3.16a)

= (2N+ 1)-'~„„~„,
for

I
)t

I
(N —2l. (3.16b)

The orthogonal complement of the set {X»zl&u,p vary-
ing} in @&, will be denoted by @s&, .

&f»i are taken from @s&,& and defined in the following

way

where P&„X»i, and rl»i are vectors in Os&, to be speciled
below.

$» is any state in Qs&, with the norm given by

($&„$y)=0, for I)tl)N, (3.14a)

= (2N+1) ', for l)tl &N. (3.14b)

E is any integer satisfying

and, due to (3.7),
lie(e) II'«.

(3.10)

(3.11)

(I) For l)tl &N+»r I)~l &N —3l,

(II) For N+l& l)tl &N l,'—
(&f„,&,rf, , &)

(3.17a)

Thus if we choose the setup of a measurement in such a
way that the Hilbert space of the measuring instrument
is @s, the initial state of the instrument is $, and the
time development of the combined system of the
measured object and the measuring apparatus in a
certain time interval t is described by U(l) = U, then
we can measure the operator M in terms of the states
X» of the measuring apparatus after the measurement
within the inaccuracy representing by &) (»»). This inaccu-
racy can be made as small as one desires by making e

small enough. Because we are only concerned with the
eGect of the conservation law of L, we have assumed in
the above argument that, if U is a unitary operator
commuting with the conserved quantity, then there
always exists an experimental setup whose time de-
velopment in a certain time period is described by U.
There may be many other conditions on U in addition to
that it commutes with L. Hence, our argument does not
assure that a system exists whose Hamiltonian leads
to U.

We now give an explicit construction of states $, X»,
li and r)» For this purpo. se we denote by @&, the
subspace of @s which is spanned by eigenvectors of Ls

where Qi is a projection operator given by

Pi()').
lx'l &l

t& —~'l &~—2E

(3.18)

Note that (P»,Q&,»I&») is non-negative (between 0 and 1).
We now show that p, X», p, and &f» thus constructed

have the desired properties. $ is normalized due to
(3.14). (3.5) and (3.6) are trivially satisfied by our

This means that p»), is defined by

Z
lx'/ &t

l~ —~'l &&
where we have made an isometric linear mapping of @& into @g,&
and @» and Pr(X') thus mapped are called g»t"& and Pr&"&(X').

= (2N+1) ' Q (@„„Pt()t')P„,). (3.17b)
[x'i &l

l) —~'j & iv

(III) For N l& l)tl &N—3l, tf»i a—re any states in

@s&," orthogonal to each other and with the norm
given by

(&f»&„&f„,&) = (2N+1)—'((f »,Q&@»)8„„8», (3.17c)
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choice. To prove (3.3), we rewrite (3.3) using (3.2):

(&-»i(~')4")(4 Ps(~t —Ii') 5)
(X'[&l

(y„„P,(It')y„, )(X„„P,(7 —X')X„, )

Finally, we will prove (3.7). Since P is normalized,

llpsrf~~ll is equal « llrfspll By (3 13) we have

By (3.20), we get

where we have also used (3.12). By (3.13), this is
equivalent to

= Z (O„,Pi(lt')e, , )I lib-~ II' —llx„.i-~ II'~- ~- j

= (n..~,n.' i) (3 20)

(+- Pi( ')+. ')Lll&~ll' —llx-, ~ll'~- ~- 7
M.'

)x'J &l

By (3.21) and (2.2),

(y„„P,(It')y„, )=S„„„.
(X'/ &l

We divide. the range of X into 4 parts and prove (3.20)
separately for X in each of these 4 regions.

(I) If Ilail &N+7,, then IX—X'I &N and (3.20) is
trivially satisfied because all terms vanish.

(II) If N+7) IXI &N —/, then
I
It—It'I &N —2l, and &i LIILIl' —llx-ill'j=+(2N+I) '

hence the term containing X still vanishes. Due to
(3.14b), the left-hand side of (3.20) becomes Combining these, and using (3.15), we obtain

which is equal to the right-hand side of (3.20) calculated
by (3.17b).

(III) If N /& l~tl &N —31, then
hence lip& z II' is always (2N+1) '. By the orthogo-
nality, (2.2), the definition (3.16b) and the equation

Pi(lt) =1,
)X'f &l

the left-hand side of (3.20) becomes

(3.21)

= (2N+ 1)-'8„„.8„. Q (y„„P,(y')y„, )
)Vj&t

)&L1—(2N+1) (X„,,i ), ,X„,,y i.)j. (3.22)

Because of (3.21) and the orthogonality, (2.2), this
expression vanishes and hence is equal to the right-hand
side of (3.20) which also vanishes due to (3.17a). This
completes the proof of (3.4).

Because of (3.16b), the inside of the square bracket of
(3.22) vanishes for lit —Ii'I (N —2l and is unity for

I
lt —X'I &N —2/. Thus, due to (3.17c) and (3.18), (3.22)

is equal to the right-hand side of (3.20).
(IV) If N —3l) IXI, then IX—X'I(N —2l and the

left-hand side of (3.20) becomes

(4...P (It)4")(1—&.'&- ).
fX'/ &l

In the above construction, @sifor
I
It

I
&N 3l should—

have at least the dimension of @i.We need higher di-
mension for @si with N —31&

I
It

I
&N.'

Finally we will give a proof of our Lemma. For this
purpose, we denote the subspace of Q spanned by
eigenvectors of I.with eigenvalue It by @i, the subspace
spanned by PP,)%,' with varying n by @z', the sub-
space spanned by P(X)+ f with varying n by @i,r, the
orthogonal complement of @z' in @&, by @i,', , and the
orthogonal complement of @if in Qi by @&,Ii. Obviously

@=~(@~'@), 'i) = $),(@ifBo~fi). (3.23)

We will first show that

Ui(P .C(PX)+.') =P.C.P(X)+.f, (3.24)

defines a unitary mapping Ui of @i' onto @i~, where

fC ) is a set of arbitrary complex numbers. To see
this, we note that, due to (3.3), P C P(X)N ' and

~In the above construction, the measuring apparatus is a
superposition of eigenstates of L2 with different eigenvalues X
varying over the range of the order 1/e. However, if one counts the
number of equations to be satisfied, one finds a possibility of
constructing a similar measuring apparatus which is a superposi-
tion of eigenstates of L2 with eigenvalues, near a certain large
value of the order I/e, but varying only over the range of the order
of the dimension of Q~, provided that the latter is iinite. Here we
will not pursue the problem of such minimization, but we will only
note that, if we do minimize the number of eigenvalues of L2 to be
used in the measuring apparatus, then X» will be nearly strictly
determined and if that is the case, there is a fair chance that X»
cannot be made macroscopically distinguishable any better
than p„p.
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C P(X)NJ' converge, diverge, or vanish simul-
taneously. Hence, Uz is a one-to-one mapping of @z'
onto @&, . Since this mapping is linear and, due to (3.3),
isometric, Uz is a unitary mapping of @z' onto Qzr as
was to be proved. This also proves that the dimensions
of @i' and @i~ are the same.

If this dimension is finite, the dimensions of @i', and
@zr, are the same. Then there always exists a unitary
mapping Ui, of Oi', onto @&r,. Now we define an
operator U in @.

exceed the cardinal number of the set of the indices o.,
@i'"—=Qi', 8@i," and fir'—=fir, S@q" have the same
dimension. Hence, there always exists a unitary
mapping Uii of @i'"onto @ii''.

We are now in the position to construct the Hilbert
space @&' and the unitary operator U for this case. O2' is
taken to be @28@".Lg' on @2' is taken to be L26L2".
@' can be decomposed as

U= ), UiU), i 3.25
U is defined as unitary mapping

U+= Zx (UH'), '+ U~i+i, 'i), (3.26)

Because of the unitarity of U& and Uz& and the de-
composition, (3.23), U is obviously unitary. For any
%a@

U= Si(U),6 Ui„).

Instead of (3.26), (3.27), we have, for any %eQ'

(3.29)

where
+=Zx(+e++i '.), +i'~@i', +~'«@~'i, (3.27)

is a unique decomposition of + according to the first
equation of (3.23). Since the subspace @iof @spanned
by eigenvectors of L=Lii31+1L2 with the eigen-
value X is mapped onto itself by U, U commutes with I..
This completes the proof for the case where the di-
mension of @&,

' and @&~ is finite.
H this dimension is infinite, then the dimensions of

@i', and @i, i can be different. In such a case we in-
troduce a new Hilbert space @" (on which the con-
served quantity L2" is defined) in such a way that the
dimension of @i" is at least the number of indices n
where @z"is the subspace of g)"—=@is@2"spanned by
the eigenstates of L'=Li1+1L2" with eigenvalues
X. Then since the dimension of @i' and @i~ does not

U+= Z), (UH'). '+ Ui8'). '"), (3.30)

Q —Pi (Q~i+Qiir) Qii&@ii Qiir&Qiir (3 31)

Then by the same argument as in the previous case,
we can show the unitarity of U, and commutativity
with L', where L'~is defined as L'= Lii31+1L-,'.

We note that in our application of the Lemma, the
number of the indices o. is the same as the dimension
of @i.
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