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Vacuum Polarization Effects on Energy Levels in p-Mesonic Atoms
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The shifts of the energy levels of p-mesonic atoms due to vacuum polarization are calculated for the states
n=l+1. The Grst-order perturbation integrals are evaluated both in closed form and by means of series
expansions. A more accurate calculation of the energy shifts which takes into account the alteration of the
atomic wave functions by the vacuum polarization potential is described in the concluding section.

in Grst-order perturbation theory, to the volume
integral of the vacuum polarization potential. The
measurement of the Lamb shift furnishes an accurate
check on the volume integral of the vacuum polari-
zation potential, but tells us nothing further about its
functional form.

The existence of hydrogen-like atoms in which the
role of the electron is played by particles of considerably
greater mass opens the possibility of probing the de-
tailed structure of the vacuum polarization interaction.
Recent experimental studies'~ of the spectra of p,-
mesonic atoms, in particular, have already been carried
to a level of accuracy capable of furnishing information
of this type. For such atoms the Bohr orbits are smaller
in radius than their electronic counterparts by the ratio
of the electron mass to the p,-meson mass. In particular
for nuclei of Z&1 the lowest Bohr orbits for p-mesons
lie entirely within the vacuum polarization cloud sur-
rounding the nucleus. The electrostatic potential in
such states differs at all points kom the Coulomb
potential by an amount of order e'/Ac=1/137. Level
shifts of the order of 1%of the total binding energy are
thus to be expected for all of the low-lying states. The
precise magnitudes of these shifts will vary from one
level to another in accordance with the forms of their
wave functions and the variation with distance of the
vacuum polarization interaction. Thus if uo is the
p,-mesonic Bohr radius, the level shift of a state of
principal quantum number e is a measure of the vacuum
polarization potential in the vicinity of r=nao. Accurate
prediction of a succession of level shifts should furnish
a detailed check on the functional form of the vacuum
polarization potential.

It may be noted that the small radii of the p,-mesonic
Bohr orbits render the effects of screening by electrons
quite small and that indeed the correction due to
vacuum polarization effects is the dominant one.
Because the calculation of the energy levels must
preserve an accuracy considerably greater than 1%,

C. INTRODUCTION

1
W~NE of the well-known predictions of quantum

electrodynamics is that free space has certain
properties analogous to those of a dielectric medium.
The presence of an electrostatic Geld in free space
induces a slight separation of virtual electrons and
positrons, which is referred to as vacuum polarization.
The vacuum polarization in turn leads to alteration of
the electrostatic potential. This addition to the potential
changes, for example, both the strength and the func-
tional form of the interaction of two point charges at
small distances from one another. It adds to the
familiar Coulomb potential energy a term which, for
small distances r, diverges as r 'lnr, and which de-
creases exponentially for distances larger than the
electron Compton wavelength.

%bile the details of the vacuum polarization inter-
action are quite well established from a theoretical
standpoint, the experimental evidence for the correct-
ness of these predictions is fairly meager. ' By far the
most satisfactory verification, until recently, has been
supplied by the occurrence. of the Lamb shift in hydro-
gen. ' The vacuum polarization contribution' ' to the
calculated value of this shift is 27.1 Mc/sec. The
measured and calculated values of the total shift are
found to agree within about 0.2 Mc/sec. Although the
Lamb shift thus furnishes an excellent check on the
theory, it tells us in fact very little about the details
of the vacuum polarization interaction. The latter
interaction, as we have already noted, is negligibly
small when the electron of a hydrogen atom is at a
distance greater than one Compton wavelength from

the proton, a distance 137 times smaller than the radius

of the Grst Bohr orbit. The shifts of energy levels due

to vacuum polarization are therefore only appreciable
in the S states. For the S states the shift is proportional,
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it is important that use be made of an appropriately
accurate value of the p-meson mass in calculating
the energies of the hydrogenic states. At present we
lack a direct measurement of the p,-meson mass to
such accuracy; indeed, recent p-meson mass deter-
minations~ have been based upon the measurement
of the energy of the p,-mesonic x-ray transition. It is,
of course, necessary to correct for vacuum polarization
effects in establishing such a mass. If the mass found
in this way is employed, it requires the measurement
of two or more x-ray energies to secure a check upon
the theory of vacuum polarization. For the purposes of
the present calculation a provisional value of the @,-
meson mass may be inferred from the recent, accurate
measurement of its magnetic moment, by assuming the
correctness of the gyromagnetic ratio predicted by
quantum electrodynamics.

If we write the Coulomb potential as U, (r) = Ze'/r, —
the full electrostatic interaction, including the eBect of
vacuum polarization to first order in the Gne structure
constant a= e'/Ac, may be written in the form

Here P= 2n/3m, and e (r) is a function most conveniently
stated in an integral representation, ' '

by Bearden. ' Petermann and Yamaguchi' have con-
sidered many of the corrections to the Bohr energy for
this line but have not included the effect of vacuum
polarization in distorting the wave functions of the
p,-mesonic atom.

II. SERIES FOR FIRST ORDER ENERGY SHIFT

Ke erst develop a series expression for the first-order
perturbation value of the energy shift, a result that
will later serve as the basis for a more exact calculation.
As the 6rst step, we present a series expansion" for
v(r). For this purpose we note that v(r) can be written

n(t)=E, (2ar)+ ~
—

I
1——

1p)
1q

1+
1

—11e '"&" (2.1)
2P)

where E~(x) is the exponential integral, J~"«e *&/P.

It may be noted that, with the E~ term extracted, the
remaining integral is well behaved at r=0 and hence is
suitable for further expansion as follows. Ke write it
as

1 & (8—1)'
r(r)= ~ «1 1+ 1

e—'&"",

F F
(1.2) (2.2)

where a=me/5 is the inverse Compton wavelength of
the electron. These expressions will be of sufhcient
accuracy for the next two sections of this paper, which
will be devoted to the calculation of the level shift by
means of first-order perturbation theory. In the erst
of these sections a series expansion of the perturbation
integral is developed, which is later used in more
accurate calculations. In the second of these sections
the 6rst-order perturbation integral is evaluated
exactly in closed terms. In the last section we describe
a procedure of calculation which takes into account the
alteration of the wave function by the vacuum polari-
zation interaction. The error of the computed level
shift is thereby reduced considerably.

Ke shall consider in particular the states of p,-
mesonic atoms for which n=l+1. These are the states
most easily attained experimentally, and furthermore
the ones most useful in exploring the form of v(r). The
erst-order vacuum polarization shift has previously
been calculated for the 2I' and 3D levels of phosphorus
by means of numerical integration by Koslov' who also
carried out the measurement of the line resulting from
the transition between these levels. This line is par-
ticularly well adapted to precision measurement, and
the necessary determination of the shape of the x-ray
absorption edge in lead has recently been completed

9 R. L. Garwin, D. P. Hutchinson, S. Penman, and G; Shapiro,
Phys. Rev. 118, 271 (1960).

and perform an integration by parts to obtain

~(~) =& '"" «x(h)

a) ~00

«' x V). (2.3)~ ~

The integral in the first term is elementary and gives
the coeScient of e '"" in the series being constructed.
The integral in the remaining term may again be
integrated by parts to give the coe%cient of (2~r)e '"".
This process may be repeated to yield the required
series. In general, however, at every other step the
integrand obtained behaves like Q'e '"&" at $= ~, so
that the integral diverges at r=0 like E&(2~r). To
continue the process, therefore, we subtract the neces-
sary multiple of Q'e '"&" from the integrand, thus
making it suKciently well behaved at $= ~, and com-
pensate by adding the appropriate term in E~(2~r) to
the series. In this fashion we obtain the following
representation of v(r):

v(r) =P ttc, (2gr)&'e ""+d;(2~r)"Eq(2ar) j, (2.4)'
'0 This expansion was originally obtained in a diGerent fashion

by Dr. C. M. SommerGeld and one of us (W.R.).
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where the c s have the form

j
c;=—P a; „/213! b—;

tnt Ze'p a
-Q23+29 ),

(1+1)X
(3 1)

The first few constants entering (2.4) and (2.5) are

over the radial variable r may be carried out im-
mediately. The expression for the level shift then

(2 5)
becomes

ap =5/6 —ln2; a1———32r/8, a2 ——3/8, ap ———2r/24,

a4 ——(7+3 ln2)/192; bp
——0, b1 1,——b2 ——3/4,

113—11/36) b4
——25/288; d1 ——1, d2 ——0, dp ——1/64.

where the parameter ) is given by

ns
(/+1) =—,

Zap, yg

(8+2)(8 1)'—
d$

$4(1+) p)21+2
Q21+2(~) =

It is now straightforward to obtain the corresponding
series for the shift in the energy level due to vacuum and Q2&+2p, ) is the integral
polarization. We let E~ be the energy of the p meson in
the state with orbital quantum number l and total quan-
tum number 24=i+1. The corresponding radial wave
function (defined in r space so that J' ~%(r)!'dr = 1) is

(3.2)

(3.3)

](214',)2t+3
q

&

0'1(r) =
(

yl+Ie—y Lax

( (2l+2)! )

The integrals Qp(X) may be evaluated conveniently

(2 7) by changing the variable of integration to y= 1/$, and
separating them into two terms,

with y1=ZI4a/re(l+1) where 44 is the reduced mass of
the p meson and m is the mass of the electron. The
erst-order perturbation expression for the change in
E~ due to vacuum polarization effects is then

LL&'&E1=P drV, (r)2(r) ~%(r)3~2'

Q, (X)=J,P,)+-',E,(X),

&1 yk —1(1 y2)$
Jg, (x) = dy,

(y+y) 2

~1 yk+1(1 y2)$
E2(X)=, dg.

J (y+y) 2

(3.4)

(3.5)

= 2P14Ze2 g (c,C,+d;D;), (2.8) These integrals, which are to be evaluated for 0=21+2,
may all be generated by simple operations of diGer-
entiation carried out upon the integrals J1(X) and
E1(X).For k& 1 we may write

with
!r 73 ~

"+& (2l+j+1)!
c,=~, -I

(1+y4J (21+2)!
(2 9)

and 1 1
t

d y
'-'

J,(~) = —
] a —

[ xJ,(~),
(y —1)!X'( ~)(2l+2j+1)!

Dj =pl"+ I21+23+2 (y3) ~ (2.10)
(2l+2)! (3.6)

1 1 ( d
~

2—'
Ep(lj, ) = —

i
X'—

( XE1(X).
(k—1)!X" & dl%, ~

The quantity I, is dined by the recurrence relation

1 I,(x)
IN.1(X)=- +, s) 1,

s(1+x)' x
and

(2.11) The integrals J1(!1)and E1(X), which are elementary,
are given by

I1(x)= (1/2:) ln(1+2:). (2.12)

The application of these expressions is straightforward
and will prove especially useful in the determination of
the energy shift with the corrected wave function.

III. EXACT EVALUATION OF FIRST-ORDER
ENERGY SHIFT

An exact expression for the erst-order level shift may
be derived in terms of elementary functions without

difhculty. The expectation value of the vacuum polari-
zation potential in the state r4=l+1 is given by the
integral noted earlier in Eq. (2.8). When the integral
representation (1.2) is used to represent the vacuum
polarization potential in this expression the integration

J1(!1)= (1—'A2) & SeCh 9 —1+-2'2rX,
(3.7)

E1(X) = M (1—X2) '* sech 'X+-'3 —42rX —X2+-2'2rX3.

The combination of Eqs. (3.4), (3.6), and (3.7) yields
similarly elementary expressions for the level shifts. In
particular for the 1S state we find

Q2
——(1—-2'X2—2') (1—X2) & sech 91

—11/6+34m.X—2X2+2r!12 (3.8)

and for the 2I' state

Q,=P——;&2—(45/4)&«+ 2Z 3—imp)
g(1—l1') lsech 9+(5/4)(1 —X') '+4(1—X') '

—(14/3)+a22rX —10X2+52rX3. (3.9)
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In practice the atomic states which interest us have
values of /+1 much smaller than Z, and consequently
values of the parameter X which are much smaller than
unity. For such cases it is convenient to evaluate the
integrals Qo(+o for states of angular momentum /)2
by means of an expansion of J&(X) and 1&.&(X) in terms
of in/, /2) and powers of X. In this way we find, for the
3D state,

189 231 187 9m

Qo = —1— X4— Xo+ ~ In P,/2) — +—X
4 60 4

63 3747 30671——X'+14&rA'+ X'+ Xo—,(3.10)
160 1440

a result which is amply accurate for present appli-
cations.

The use of the above expressions for the level shift,
or of the equivalent series development (Eq. 2.8) of
Sec. II, leads to the prediction of increases of the x-ray
frequencies for p-mesonic atoms. For the case of the
3D—2I' transition in phosphorus, with the p,-meson
mass taken as 206.77m, we find a fractional frequency
increase of 0.003758, which agrees with the result
evaluated numerically by Koslov. '

IV. REFINED CALCULATION OF THE ENERGY SHIFT

The accuracy of the above results is necessarily
limited by the fact that the energy shift was calculated
to the first order. The correction to be attained by the
use of the exact wave function is of the same order as
that found by considering terms of order n' in the exact
expression for the vacuum polarization potential. ' An
estimate of the maximum error introduced by this
approximation can be obtained by 6xing an upper
bound for the second-order correction AEl(2). For this
purpose one modifies the usual expression" by replacing
all the energy denominators by the lowest one, El—El+&,
so that they can be removed from the summation, and
then applies closure to obtain

'

we may write

H=Ho+V&(r),
Ho'= Ho+y(r),

V '()= V ()-e(r),

H =Ho'+ V&'(r).

(4 3)

(4.4)

Our procedure is now based on the following circum-
stances. (1) The operator Ho' has the same form as
Bp and hence has eigenfunction-eigenvalue solutions
of the same form as the hydrogen atom. (2) To the
extent that Eq. (4.2) gives a good approximation for
V&(r), V&'(r) is a small perturbation and may therefore
be treated by first-order perturbation theory. Specifi-
cally the energy of IIp' for orbital quantum number 1 is

Ei'= Er (Z')+C (4.5)

where E& (Z') is the usual expression for the energy of
a ictitious p,-mesonic atom of atomic number Z with a
principal quantum number /'+1, i.e.,

Ep (Z') = yZ"e'/—2A'(/'+ 1)',

with /' and Z' given by

/'(/'+1) = /(/+1)+2pA/0'
Z'= Z 8/e'. —

(4.6)

The corresponding wave function (in r space), 4'&'(r),
is the same as that given in Eq. (2.7) with / and Z
replaced by I,

' and Z', respectively. To obtain a better
approximation of the eigenvalue of H we take V~'(r)
as a perturbation on Hp' and compute the corresponding
shift in the energy 6&')E&'.

cedure for diminishing this error. For this purpose we
first remark that, for the range of r of importance in
the cases contemplated here, V((r) may be very closely
approximated by a function g(r) having the form

P(r) =Ar '+Br '+C. (4.2)

If we take H to be the Hamiltonian in r space (i.e.,
after separation of the angular part for a fixed /) and
put

where

«V~'(r) I+&(r) I'
Jp

I
g(o)@I(-

~l+1 +l
(4.1)

(4.8)

Again we can estimate an upper limit on the error as

V& (r) =PV, (r)o(r).

For instance, in the case of p,-mesonic phosphorus we
6nd, by numerical evaluation, for the l= 1 state,

I
6(')E&

I
(0.058)&15pe((', as compared with

I
Ao)E

I

=(4.64)15pe'&(. (The unit Zpe'&( is a measure of the
magnitude of the energy of interaction between the
meson and the nucleus due to vacuum polarization
eGects inside of the range of the vacuum polarization
potential. ) Our next task is to develop a simple pro-

"L. I. Schi8, Qgantgm Mechanics {McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed. , Chap. VII, p. 153.

dr I%'(' I'Vg'(r)

I
g(o)g, 'I (

+l+1 ~l
(4 9)

Our object, of course, is to minimize this quantity and
we undertake to select the coeKcients 2, 8, and C so
as to achieve this goal. After approximating %l' by 0 l

in the integral of Eq. (4.9), we demand that its partial
derivatives with respect to A, 8, and C vanish. V(e
thus obtain a set of three linear equations in A, 8, and
C in which the coeKcients depend on quantities of the
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form Jp" dr
~
4t

~
'V~(r) r ".These can easily be evaluated

by the techniques discussed in II.
We are now in a position to calculate 6("Eg' and

hence the energy shift which is Et'+6'"Et' —Et. The
evaluation of the relevant integrals entering Eq. (4.8)
is quite straightforward with the aid of the techniques
given in Sec. II. It is necessary, however, to make some
detailed changes in view of the fact that 4&' is essentially
a radial wave function corresponding to a nonintegral
orbital quantum number. The erst of these is the trivial
one that any expression of the form (l'+k)! must be
replaced by 1'(l'+k+1). The other is that some special
techniques are demanded in the calculation of I„the
integral involving E~(2ttr). The recurrence relation of
Eq. (2.11) still holds. Therefore, the only alteration in
the procedure required is that it is necessary to calculate
I~+g~ where dl=l' —L. To do this we note that d/ is
small and approximate I~+g~ by

It is also possible to approximate in Eq. (4.11)
directly for large l and thus to obtain convenient
expressions for checking the iteration. As before, the
first integral is evaluable in closed form while the
second m@y be approximated by

xe &'—"~goo N 1
4$

~ o e*—y/(y+1) ~=~ nz

+0/8 (X 1,—3+1)j, (4.13)

where Ã is an arbitrary integer to be selected to achieve
the necessary accuracy, B(m—~, i+co) is the beta
function of the indicated variables, and E(l+tm) is
de6ned by

Ig+t, t I,+ (dI——,/ds), tel,

ignoring subsequent terms in the power series.
The quantity (dI,/ds), & can be written as

(4.10) t+~y (1 e) t l m——

E(3+m) = —(1—c) ~'+"~ lne —Q (4 14)

X~d*
~0

g
—(l—Ox xe &'—"

1
+ —ln'(1 —e) —lne ln (1—e)

2

e 1( e
~ ~ ~

4 (1—e)
(4.12)

with e= 1/(y+1) small for the cases of interest.

For /= 1 the erst integral can be evaluated immediately
in closed form while the second integral has the fol-
lowing series representation:

This procedure has been applied to the case con-
sidered earlier, i.e., the evaluation of the eGect of the
vacuum polarization potential on the frequency of the
3D—2E line in p-mesonic P. This involved the deter-
mination of A, 8, and C as outlined above, and the
subsequent evaluation of E&' and 6&"E&' for the E and
D states. The frequency increases by 0.3767%. The
maximum error as estimated from Eq. (4.9) in units
of 15Pe'tt amounts to 0.00086 for the I' state and
0.000030 for the D state, a decrease from the corre-

sponding values of 0.058 and 0.0051 obtained without

the corrected wave function.
The procedure of Secs. II and III lends itself to the

rapid calculation of vacuum polarization energy level

shifts while the technique of the present section permits
a considerable improvement in accuracy with little
extra labor. It seems likely that the general technique
discussed in this section may have a wider range of
applications for improving the accuracy of perturbation
calculations.


