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which, on the basis of a 0+ assignment, is calculated. '-'

to be 7.5 ev. Ferrell" has calculated that the l ~ for the
7.66 ~ 4.43 (0+—& 2+) transition is 1',=0.0014 ev (with
an uncertainty of the order of a factor of two). Assuming
this value of F~, one can calculate the percentage decay
of the 7.66-Mev state by a y cascade via the 4.43-Mev
state:

F~/1" =0.0014/8 =0.02%
(with an uncertainty of a factor of two). (4)

As has been mentioned earlier the best experimental
's W. A. Fowler and T. Lauritsen (private communication).
'9 R. A. Ferrell, private communication, quoted in Cook et al. ,

see reference 5.

upper limit' on this number is 0.1%.The 7.66-Mev state
decays in 7X10 '% of the cases t see (2)j by pair
emission.

In summary, it is now clear from the width of the
state and from its decay behavior that the 7.66-Mev
state of C" is a 0+ state and that it can participate in
the process of the buildup of the elements in red giant
stars.

We are very much indebted to Dr. D. E, Alburger,
to Leona Stewart and to Professor W. Selove and Pro-
fessor W. A. Fowler for helpful discussions. Ke are also
grateful to W. T. Newton for assisting us in the expo-
sure of the plates and to B. J. Massey for preparing
the thin beryllium target.
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The lowest odd-parity excited energy levels of Pb"' have been calculated by a shell-model approach
considering a single proton or a sing)e neutron to be excited out of the Pb208 core. Both a, singlet-even plus
triplet-even force and a Rosenfeld force were used as the two-particle interaction. A zero-range force was
also considered. There were no other arbitrary parameters. The results with the various forces indicate
that it is impossible to get a 3—state low enough to be interpretated as the observed 2.615-Mev 3—level.
The results, therefore, support the conclusion that the 3—level at 2.615 Mev in Pb' is primarily the
result of a collective octupole oscillation.

I. INTRODUCTION

ECENTLY there has been renewed interest in
the low excited states of Pb"'. Several people

have contributed to the position and spins of the
experimentally determined levels. ' ' Tauber' has tried
to 6t the excited states of Pb"' theoretically from a
shell-model approach. He had de.culty in drawing any
conclusions due to too many undetermined parameters.
Tamura and Choudhury' have assumed shell-model
conlgurations to explain some of the results of Cohen
et al.' on the inelastic scattering of particles by heavy
elements. They conclude that a collective octupole
oscillation can afkct their results for Pb"'. Lane and

$ This work was supported in part by the U. S. Atomic Energy
Commission and the Higgins Scientific Trust Fund.

*Now at Hans Sentmoring, Munster, Wesphalia, Germany.
f. Now at the Physics Department, Vanderbilt University,

Nashville, Tennessee.
'L. G. Elliott, R. L. Graham, J. Walker, and J. L. Wolfson,

Phys. Rev. 93, 356 (1954).' J. A. Harvey, Can. J. Phys. 31, 278 (1953).
3 B. L. Cohen and A. G. Rubin, Phys. Rev. 111, 1568 (1958);

B. L. Cohen and S. W. Mosko, Phys. Rev. 106, 995 (1957);
B.L. Cohen, Phys. Rev. 105, 1549 (1957).

4 G. E. Tauber, Phys. Rev. 99, 176 (1955}.
~ T. Tamura and D. C. Choudhury, Phys. Rev. 113,552 (1959).

Pendlebury' have recently done some calculations
which support the idea of C. Levinson that the erst
excited state of Pb', a 3—level at 2.615 Mev, is a
surface vibration of the octupole type.

In the present paper, we calculate the energy spec-
trum of the lowest odd-parity energy levels of Pb"'
according to the jj-coupling shell model with con6gu-
ration mixing. The jj-coupling states included in our
study are all those which can arise from promoting a
pr/s or fs/s neutron into the gs/s or irr/s shell and from
promoting a,n st/& or ds/& proton into the hg/s or fr/s
shell. The absolute positions of these jj configurations
are obtained from empirical data; thus, the only arbi-
trary parameters in the calculation are those of the
two-body potential between particles and of the nucleon
radial wave functions. It is reasonable to take for these
parameters values which have worked well in the past
in theoretical calculations on nuclei in this mass
region. '—"

' A. M. Lane and E.D. Pendlebury, Nuclear Phys. 15,39 (1960) .' W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958}.
s M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 773 (1952).
9 M. J. Kearsley, Phys. Rev. 106, 389 (1957); Nuclear Phys.

4, 157 (1957).
"N. Newby and E.J. Konopinski, Phys. Rev. 115, 434 (1959).
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Section II of this paper will deal brieQy with the
evaluation of the matrix elements needed for the calcu-
lation. Section III discusses how the zero-order energies
were obtained from experimental data. Finally, Secs.
IV and V discuss the results and conclusions of this
calculation.

I'(r'~) =
i&j-1

ot(N —1)
),

which is valid between totally antisymmetric states.
The main difFiculty of this method is the necessity of
counting the number of times that sets of quantum
numbers, j&, j2, etc. , have particle labels 1 and 2
associated with them. This counting process is especially
complicated and tedious for cases involving ofI'-diagonal

matrix elements.
The other approach is that of second quantization.

This method has been outlined recently by Brink and
Satchler. " In particular, these authors derive the
consequences of the rotational properties of the states.
This method avoids most of the difhculties encountered
in the other method.

n E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1953), Chaps. XII and
XIII.

~ G. Racah, Phys. Rev. 62, 43g {1942);63, 367 {1943)."D. M. Brink and G. R. Satchler, Nnovo cimento 4, 549 (1956).

II. THEORY OF CORE EXCITED STATES

In this paper we use a terminology which is more or
less standard in nuclear shell theory. The ground state
of Pb' consists entirely of closed proton and neutron
shells. We think. of this state as the "core" about which
the particles move. When higher single-particle states
are occupied we use the terminology, "extra-core state. "
Vacancies in the core states are, of course, "holes. " A
state formed by promoting a core particle into an
extra-core state is a "core-excited state. "

We shall not go into details of the calculations of the
matrix elements of core-excited states because the main
aspects have been studied before. " " We do wish,
however, to point out some results which are unique to
this type of core-excited calculation.

There are two approaches to problems involving
holes in closed shells. Both approaches, of course, yield
the same results. One method involves calculating with
a wave function which explicitly involves the coordi-
nates of all the particles present. If there are E single-
particle states in the core and we wish to calculate
matrix elements for states of E—

q particles, it is well
known that these can be related to the matrix elements
for q particles. This contraction is made possible by the
antisymmetry of the S—

q particle wave functions and
can be effected using either determinant wave func-
tions" or fractional parentage techniques. "The reduc-
tion of the Hamiltonian matrix elements is brought
about by the use of the relation

The second-quantization approach employs the use
of creation and annihilation operators which obey
anticommutation relations as follows:

(rt t;,rt t; )=0,
(gym, gt m) =0,

{rt jmqrtj'm't o jj'3mm' ~
u'"

The operator gt; creates a particle with angular
momentum j and a 2' component m, while qj annihilates
this particle. "One should refer to the paper of Brink
and Satchler" for a detailed account of how to use
these operators.

Brink. and Satchler also introduce creation and
annihilation operators for holes. That is, they consider
a filled shell with 2j+1 particles as a state with no
holes. Then the operator" (—1)' rt; will create a
hole with angular momentum j and a s component —m.
As these operators obey anticommutation relations,
all particles are automatically antisymmetrized with
respect to one another. It is this antisymmetrization
and the introduction of the hole creation and annihi-
lation operators, as well as the particle creation and
annihilation operators, which enables one to bypass
most of the complications which arise in the Racah
approach mentioned above.

We will consider only the excited states in Pb~'
where one neutron or one proton is excited out of the
core. That is, we neglect all excitations of two neutrons,
two protons, or a proton and a neutron, etc., out of the
core. We shall describe a state which has a particle
missing from the core with angular momentum j& and
a particle outside the core with angular momentum j2
as ~j tj sJ3f), where all the particles are coupled to an
angular momentum J with a z component M, and all
equivalent particles are antisymmetrized with respect
to one another.

We shall use the notation

.(~1 ~joll~()lii&~) =(j j ~~I~()lii~u)
—(—I)'~'4 '(itjs~~l~(r) lj j ~m),

for a two-body matrix element calculated with anti-
symmetric states. Also, j.will refer to a particle in the
Pb"' core. Then one can show that for like particles

(i j ~~I & I'( *)ti j ~~)
i%j

= 2 Lk (j i'~~I~(r) li.j'J~).jd;:,.
jc jc

+ & L.(i.i s~~
I
I'(r)

Ij j2&~).jd;, .
Pc

—2 C (j irJ~I ~(r)lj.j t~ftI).jd' s+V' g (4)

where V;„t; represents the interaction of the holes with

"Note that our notation for creation and annihilation operators
is the reverse of that of Brink and Satchler.

'5 See reference 13 for details about the phase of the hole
creation operator (—1)~'~; .
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the extra-core particles, The erst three terms in Kq.
(4) only occur when

I jijsJM&= I jsj4JM& as indicated

by the "diag, " i.e., are nonzero only for diagonal matrix
elements. The first term in Eq. (4) is the total core
energy. The second term in Eq. (4) is the interaction of
the core with the extra-core particles, while the third
term is the interaction of the core with the holes. The
third term has a minus sign because we have included
in the erst term the interaction of the particles which
are missing from the core with all the other particles in
the core. We consider the first term in Eq. (4), which is

the energy of the Pb"' core, as our zero point of energy.
Although Eq. (4) is written for the potential energy of
the system, the total energy, kinetic, Coulomb, and
nuclear potential energy, can be broken down in this
way. The extension of Eq. (4) to the kinetic energy is
almost trivial, since it is a one-body scalar operator.
The second and third terms of Eq. (4) will be evaluated
from the experimental data in Sec. III. The Coulomb
interaction was considered explicitly in the hole-particle
interaction term, V;„t, in Eq. (4), and this will be
discussed in Sec. IV.

The last term in Eq. (4) is the interesting one as it
represents the hole-particle interaction. This term in

jj coupling is ""
V ~= —2 (—1)"+' '~"LA]lV(j&jsj4js, II&)

JI x.&j,j,I,IrI, IV(.)li j I,IrI,&' (5)

Note that the minus sign which occurs in Eq. (5)
indicates that the hole-to-particle interaction is repul-
sive for an attractive force.

We shall assume that the two-body potential is of
the form,

V (r) = r&(r) $A+Bps+CprPDPrP~)

where P and P" are the spin-exchange and space-
exchange operators, respectively. For a Wigner force,
B=C=D=O, we can write

V (r) =Ps fs(ri, rs) Ps(coseis)
=Qg, fs(ri, rs)C&i'& Csi"&. (7)

If we insert Eq. (7) in Eq. (5) and consider the case

when ja= j& and j4= j2, we get"

V;.& ———
I &jijsI~I V(r) I jij2I~)+(—1)"+"LIP '

XR'(jijsjsji)(jill c'Iles&&isll c'll ji&j
where the 6rst term is the direct matrix element and
the second term arises from the exchange matrix
element. Note that the sum over J~ and k has been
carried out explicitly in order to get this result. Note
also the over-all minus sign which indicates that the
hole-to-particle interaction is repulsive for an attractive
potential. R"(jrjsjsjr) is a Slater integral. When one
considers non-Wigner forces, that is, forces with P' or

«We write (21+1)as LJg."C~&s& is a Racah tensor operator and (j&~~ C"~~ju) is a reduced
matrix element a,s de6ned in reference j.2.

P" in them, such as Eq. (6), the reduction of the sum
over Jj and k as was done above for Wigner forces is
no longer trivial. It is much simpler if at the beginning
we transform the states

I gi jrJM& and
I gsj 4I3I) to the

I.S representation.
In the Pb' core, all shells are 61led both as I.S

shells and jj shells except the 1i neutron shell and the
1h proton shell. The 1i~aj2 neutron shell is full while the
1i»~2 shell is empty. Likewise, the 1h»~2 proton shell is
full and the 1h9~2 shell is empty. We shall only consider
the possibility of the 3pi~, or 2fs~s neutron or the 3$&~s

or 2d@2 proton being excited out of the core. Then the
only shells which get broken up in the core are those
which are LS-closed as well as jj-closed shells. For this
special type of excitation, one can transform the
original many-particle state from the jj to I.S coupling
scheme as if one were considering just two-particle
wave functions. That is,

&irisJ I 2 V(r' ) I jsi4I&
i&j

= P (jijsJ(li/s, $&$s,LSJ)(/3/4, »$4,LSJjjj 4J)
L, S

X()&$&,/2$s, LSJI p V(r, ,) I /3$3/4$4 LSJ&, (9)

where we have suppressed the M dependence and the
coeflicients (jijsJIt/i/s, $&$s,LSJ) are the jj-to-LS re-
coupling coeKcients. We can now work in I.S represen-
tation which we shall see is easier. The breakdown of
the energy as in Eq. (4) is essentially unchanged.

We now wish to study a term in V; & for a given I.
and S, which we can call V; &,(L,S). Then

V;„~(L,S)=(l&$r, /s$s, LSI P V(r;;) I
ls$s, /4$4, LS&

i&J

(—1)"+'~'~"I L&PLS&]R'(/i/r/4/» LL&)
I I,SI

XW (Si$s$4$3 SSi)
&/3$3 /$$s L1Si I

V (r) I
/i$i /4$4 L&S&&„(10)

where the subscript a means an antisymmetric two-
particle state as before. Consider now a Wigner force.
This force can be expanded as in Eq. (7) and inserted
in Eq. (10).The sum over Li, Si, and k can be performed
and the result is

V;. (L,S)= —L(—1)&~' (/, / LSI V(r) I// LS)
—28 o(—1)~LLj-'Rr (/ /, /, /, )

x&/, IIC II/.&(/sllC'll/r&j, (»)
which we see is similar in form to Eq. (8). because we
are in an I.S representation, we can also in a straight-
forward manner repeat the above procedure for the
general type of force which involved a P and P", or
both. The result for a potential as given by Eq. (6) is

V; t(L,S)= —L(A —D)+2(B—C)8$sj(—1)'r&"

X (/i/sLS
I r&(r)

I
/s/4LS)+ L2 (A —D)h $s

+ (B—C))(—1)~l L$ 'R~(/s/s/4/r)

x(/ II c'll«&(/ II c'll/ &, (12)
where A, B, C, and D are defined in Eq. (6).
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TAm, E I. Ground-state and 6rst excited state con6gurations' TAsLE II. Experimental data used in 6xing the absolute energies.
of Pb, Pb~, Tl~, and Si~'.

Nucleus

Pb20?
Pb209
Tl~'
Q j209

Ground-state
con6guration

3pl/9
2g9/2

1h9/2

Con6guration

2fs/~
1&11/2

2A/2
2f7/2

0.57
0.79
0.351
0.91

First excited state
Energy above
ground-state

(Mev)

Reaction

Pb"'t,'y)n)Pb"'
pbp07 (d p)pbpp8
Bi+'(v,n )Bi"
Pb'ps(d p)Pbmp
Pb"' —+ Bi 0'+P
gi~8+E.C. ~ Pb2o&

Tl~~ —+ Pb+~+P

Q vaiue (Mev)

Q1 —7.380
Q2= 5.14
Q3= —7.28
Q4= 1.71
Qs= 0.63
Q6= 29
Q7= 1.45

Reference

a
a
a
b, c
c
c
c

a The data in this table with the exception of the first excited state of
Pb'09 were taken from D. Strominger, J. M. Hollander, and G. T. Seaborg,
Revs. Modern Phys. 30, 585 (1958};Nuclear Data Sheets (National Research
Council, Washington, D. C.); and D. Strominger and J. M. Hollander,
University of California Radiation Laboratory Report UCRL-8289, June,
1958 (unpublished).

b This level was assumed from the experimental results of M. T. Mc-
Ellistrem, H. J. Martin, D. W. Miller, and M. B. Sampson, Phys. Rev.
111, 1636 (1958},and is further supported by the results of reference 2.

The only other type of matrix element which we must
consider for our calculations in Pb'" is the oG-diagonal
matrix element between a state vrith a neutron excited
and a state with a proton excited. More complicated
cases are ruled out by our not considering the states
where two neutrons, two protons, or a neutron and a
proton are excited at the same time. In this case, we

only have V; & in Eq. {4) and we can transform from

jj coupling to JS coupling as before. We dnd that

v; g(L,s)

(l]8$(), /&s& (e),LS
I p V (r„„)I

/pap (p), /4s4 (p),LS)
S) g)

(—1)'2+'P z'+"' s'I Lg]l Sg]W(/g/p/4/p, LL~)
I1,S1

XW(sisps4sp, SSi)

X(/psp(p), /ps, (~),LxSxl V(r) I/4s4(p), /xsz{~) LxSx),
(13)

where the l and s associated with a neutron or a proton
has been so indicated.

Using Eqs. (6), (7), and (13), performing the sum
over I.1, S1, and k, we get

Vent(L, S)
= (l~B~(I),lpsp(e), LS

I p V {r») I /pBp(p), /4s4(p}, LS)
f

= (D+2C//sp) (—1)' "(/g/pLSI v(r) I/p/4LS}

+ (8+2A6sp) (—1)iLL] 'Ri(/p/p/4/g}

x&/pll&'ll/, }(/ II&'ll/~} (14)

for the neutron-proton interaction.
W'e have now essentially reduced a many-particle

matrix element to a single two-particle matrix element
where we have split the two-particle matrix element up
into a direct term and an exchange term. Equations (12)
and (14) are now in a form where we can calculate
matrix elements. For a singlet-even force, Eq. (6) will

have the following form

V (r) = v {r)[,' 4P + ', P' 4i"'P'g. -- —— -——

D. M. Van Patter and W. Whaling, Revs. Modern Phys. 26, 402 (1954).
b M. T. McEllistrem, H. J. Martin, D. W. Miller, and M. B. Sampson,

Phys, Rev. 111, 1636 (1958).
e NNclear Data Sheets (National Research Council, Washington, D.C.);

D. Strominger and J. M. Hollander, University of California Radiation
Laboratory Report UCRL-8289, June, 1958 (unpublished).

One might expect to get zero for Eqs. (12) and (14)
with a singlet-even force vrhen S&0. This, however, is
not the case as one can see by the inspection of Eqs. (15)
and (12) or (14). Equations (12) and (14) represent
interactions between an extra-core particle and the
particles in the core, and it is expected that the extra-
core particle and some particle in the core will have a
relative S value of zero. So vre do get a contribution to
the matrix element for a singlet-even force even though
the total S of the system is not zero. The same reasoning
applies to a pure triplet force.

S (A+1)=E(A)+I—E(A+1},
and the proton separation energy is

(16)

S~(A+1)=E(A)+P E(A+1), (—17)

where E(A) is the energy of the ground state of the
nucleus A. One can then easily show that the 6rst three
terms of Eq. (4) are just

E *(7/»p gp/p) =S (Pb"') S (Pb"') (18)

when we excite a 3p~/p neutron out of the core into a
2g~ state, and that

En*(~~/p»p/p) =Sp(Pb"') —S.(»"') (19)

when we excite a 3s1~2 proton out of the core into a
1k9/Q state. From Table I, we see that it requires 0.57
Mev to excite a 3pq/2 neutron in Pb"' to the 2fp/2 state.
We can then say that

(jp/2 gp/2) E (pl/2 gp/p)+0. 57 Mev, (20)

and vre can obviously extend this reasoning to other
neutron (and proton) core-excited states.

Table II gives the experimental data used in deter-

III. ABSOLUTE ENERGIES

As mentioned in Sec. II, vre shall consider the Pb' '
core as the zero point of energy, and refer all energies
to this. It is also possible to predict the zero-order
absolute energies (relative to the Pb'" core energy) of
the core-excited states of Pb'" when one particle is
excited out of the core. To do this, we note that the
neutron separation energy is
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Pb + n+H

208
b }~ 738O MEV Pb )= 7.37 MEV

pb' +n

n-H
pb'"+ n

n-H

( Bi ) 3.79 MEV

)= 3.6 MEV

, ROS
i

(c) (d)

Pb +n+H

) = e, aSMEV

b ) = 3.94 MEV
p

ROS

ROSy

(e)
FIG. 1. Schematic mass diagrams used for determining neutron and proton separation energies. (a) shows how S„(pbro') was deter-

mined with (b) as a check on this value; (c) determi'nes S„(Biro') with (d) as a check on this value; (e) and (f) determine g (pbss)
and S~(pb~'), respectively. The various Q values are listed in Table Il with the exception of Qd the deuteron binding energy, which
was taken as 2.23 Mev. The neutron-hydrogen mass di&erence was taken as 0.78 Mev.

S„(Pb"')=—Qr
——'/. 38 Mev,

S„(Pb"')=Qs+Q =3.94 Mev,

(21)

(22)

S (Bi I)=Q +S„(Pb'I)+H—rs=3.79 Mev (23)

S (Pb~s) =Qr+S (Pb"s)+H —m=8.05 Mev. (24)

mi»ng &.'(pl/2 g9/2) and h„*(ll/s kg/s). Figure 1 shows
schematically how the separation energies were deter-
mined. We shall take for these

Using Eqs. (18) to (24) and the values in Table I, the
zero-order energies of the excited states of Pb' were

determined and are given in Table III. The energy
values given in Table III are not expected to be in
error by more than 0.1 Mev or 0.2 Mev at the most.
We shall see that even if, for example, Z~*(sr/s, hs/s)

were 4.00 Mev instead of 4.26 Mev, we would reach
essentially the same conclusions about the excited
states of Pb~'.
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V(») = ~/» (25)

IV. RESULTS

A. Coulomb Energies

As was seen in Sec. III, the Coulomb energy contri-
bution to the matrix elements was automatically taken
into account with the exception of the last term in
Eq. (4). To calculate the Coulomb energy of V; 2

between the proton hole and a proton outside the core,
we used Eq. (9) and Eq. (12) with V(r) in Eq. (6) as

Con6guration

Pl/2) g9/2

fs/21 gs/2

Pl/2) Zll/2

f5/2) Zl1/2

~1/2) h9/2

~3/2) h9/2

S//2 f7i12

&312, f712

Particle
excited

neutron
neutron
neutron
neutron
proton
proton
proton
proton

Possible spins
(odd parity)

4, 5
2) 3, 4, 5, 6) 7
5, 6
3, 4, 5, 6, 7, 8
4, 5
3, 4, 5, 6
3, 4
2, 3, 4, 5

Energy
(Mev)

3.44
4.01
4.23
4.80
4.26
4.61
5.17
5.52

TABLE GI. Zero-order energies of the excited states of Pb~',

The Coulomb energies pertinent to our calculations
were calculated and are listed in Table IV. One may
note from Table IV that the diagonal matrix elements
are quite constant and are about —0.23 Mev. This
value is very close to the Coulomb energies obtained

by Newby and Konopinski'0 for two 1hg/2 protons
outside of the lead 208 core. Our negative sign of the
Coulomb energy is due to the fact that we are con-
sidering a hole-particle interaction. The oR-diagonal
matrix elements are also relatively constant and are
about 0.01 Mev in magnitude.

2 (r) = Vs exp (—»2/P2)1 (26)

where Vs ———32.5 Mev and //i=1. 85 fermis. We shall
furthermore assume that the single-particle wave func-

B. Finite Range Forces

At this point, we have determined all parameters
except those used in the two-body potential, Eq. (6),
and the radial wave functions. Previous work' in the
lead region indicates that the force between like
nucleons is a pure singlet-even force. Pryce' suggests
that for unlike particles and a zero-range force, the
triplet-even force is 1.5 times as strong as the singlet-
even force. We shall first assume that the two-body
potential, Eq. (6), is a singlet-even plus triplet-even
potential with the triplet-even part 1.5 times as strong
as the singlet-even part. The parameters in Eq. (6) then
become 3=0.625, 8=0.125, C=0.625, and D=0.125.
For the t/(r) in Eq. (6), we shall choose a Gaussian well of
the same range and depth as that used by True and
Ford, ' viz. ,

tions are harmonic oscillator wave functions with the
same radial falloR as used in the study~ of Pb"'. This
is usually done to simplify the calculation of the two-
particle matrix elements, and one expects that the
results are not too sensitive to the exact nature of the
radial part of the wave functions.

The matrix elements for this singlet-even plus triplet-
even force were calculated using Eqs. (9), (12), and
(14). Using the zero-order matrix elements from Table
III, and the matrix elements for the Coulomb potential
from Table IV, the matrices were diagonalized for each
spin from 2 to 7. The results of this diagonalization are
listed in Table V and compared with the experimental
energies in Fig. 2. The experimentally determined levels
of Pb' 8 are listed in Table VI.

We may note several things from Fig. 2, No calcu-
lated 3—level lies in the vicinity of the experimental
3—level at 2.615 Mev. The lowest experimental 4—
and 6—levels are predicted in the correct energy region,
but about 0.15 Mev too high. The lowest two 5—levels
are also predicted, but are also too high. The splitting
of the lowest two 5—levels is fairly good. The other
experimental levels for which the spins are unknown
are shown by dashed lines in Fig. 2. We have only
indicated these levels when they can be associated with
a calculated level, and the 6.09-Mev level is not shown.
Lane and Pendlebury' have had a private communi-
cation from R. H. Helm, J. Oeser, and M. R. Yearian,
who have found evidence from inelastic electron scat-
tering for a level at 4.3 Mev in Pb' '. The angular
distribution indicates that this new level is a 3—level.
If so, this new level 6ts with the second 3—calculated

TAnx, z IV. Matrix elements in Mev for the Coulomb potential, V,=e'/».

Matrix element

(Ss/shs/2J I
Vc I es/shs/2&&

(s»shs/2J
~
V. 83/shs/2J)

(es/shs/2+ Vc 37/sfs/2J&
(ss/shs/2~ Vc dslsf7/2~&
(~3/2h9/2 J I e ~3/2Ig9/2 J)
&~3/2h9/2~, +c ~1/2 f7/2~&
(Ifs/2hs/2& V. &3/2/7/2&&

(Ss/2fsls+ Vc /Illsf7/2~&
(//7/sfs/2~ Vc /fs/sfs/2&)
(Ifs/sfsl 2&

I
Vc I /fs/2 f7/2&& —0.2572

—0.2286
0.0105—0.0087—0.2272
0.0089—0.2296

Spin and parity
4—

—0.2297
0.0174
0
0.0023—0.2238
0.0021—0.0007—0.2400—0.0111—0.2249

—0.2257—0.0094

—0.0045—0.2131

—0.0017

—0.2412

—0.2402
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TABLE V. Calculated energy levels {in Mev) of Pb+8 for a
singlet-even plus triplet-even force.

TABLE VI. Experimental levels of Pb~s (taken from
references I, 6, and c of Table II).

Spin and parity
4— 5—

Energy
(Mev)

Spin and
parity

Energy
{Mev)

Spin and
parity

6.04
4.80

5.56
5.34
4.94
4.27
3.65

5.53
5.24
4.96
4.55
4.23
4.21
3.68

5.43
4.93
4.42
4.34
4.11
3.77
3.41

4.98
4.67
4,38
4.08

4.82
4.04

0
2.615
3.198
3.475
3.709
3.750

3.961
4.3
5.13
5.44
6.09

6—
{3—)

?

level as shown in Fig. 2. The 3.75-Mev level is predicted
to be 3—.The 5.13-Mev level is also predicted to be
4—,but the theory is not good enough to rule out an
assignment of 3—,5—,or 6—.Finally, the 5.44-Mev
level can be either a 3—,4—,or 5—level. One also
expects other levels (e.g. , due to exciting two particles
from the core) to appear and to become important in
the neighborhood of 5 Mev.

To see how sensitive the calculated energy levels are
to the force used, we next used a Rosenfeld force which
was adjusted to give the same singlet-even force as
above. Kearsley' used a Rosenfeld force to predict the
energy levels of Pb"'. However, she used a Yukawa

well for s(r) instead of a Gaussian well. "For a Rosenfeld
force, we have A= —0.2222, 8=0.7778, C=1.5556,
and D= —0.4444, with e(r) the same as in Eq. (26).
The resulting energy levels are listed in Table VII and
they are compared with the experimental levels in Fig.
3. Comparison of Fig. 2 and Fig. 3 (or of Table V and
Table VII) shows that this Rosenfeld force causes all
calculated levels to be lower in energy by about 0 to
0.2 Mev than the levels calculated for the singlet-even
plus triplet-even force above. Figure 3 shows that the
6—level at 3.961 Mev is fitted better. The 3.750-Mev
level now appears to be a 7—level instead of 3—.In
general, the experimental energy levels are not fitted

CO

LII
K
4J

LLJ

X

C9
K
W

tLJ

0
p+ 2-

0
0+

Fi.G. 2. Energy levels for Pb~, I. For each spin, the 6rst column
gives the energy levels calculated for a singlet-even plus triplet-
even force. The second column gives the experimental levels. The
dashed experimental levels are levels for which the spins are not
known.

FiG. 3. Energy levels of Pb"', II. For each spin, the 6rst column
gives the energy levels calculated for a Rosenfeld force. The
second column gives the experimental levels. The dashed experi-
mental levels are levels for which the spins are not known,

'8 See reference 7 for a comparison of the Yukawa well used by
Kearsley with the Gaussian well used here.
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as well as with the singlet-even plus triplet-even force
above. VVe still do not have a calculated 3—level in
the vicinity of the experimental 3—level at 2.615 Mev.
The theoretical energy levels are not changed drastically
by this rather abrupt change in the two-body force.

The left side of Table VIII shows a comparison of
the diagonal and off-diagonal matrix elements for the
7=6 states in Pb"' for the single-even plus triplet-even
force and for the Rosenfeld force and this is a typical
case. It is apparent from Table VIII why the Rosenfeld
force gives different results. The diagonal matrix ele-
ments show that the Rosenfeld force is more repulsive
(and so for our case of a hole-particle interaction, more
attractive) than the singlet-even plus triplet-even force.
The off-diagonal matrix elements are much the same
for both forces and so about the same degree of con-
figuration mixing takes place. The net result of the
Rosenfeld force is to cause the resulting diagonal energy
levels to be lower in energy.

In order to find out how sensitive these results are
to changes in the zero-order energies, the energy

TABLE VII. Calculated energies (in Mev) for a Rosenfeld force.

Spin and parity
5—

6.04
4.73

5.42
5.28
4.77
4.11
3.38

5.41
5.14
4.84
4.41
4.15
4.14
3.60

5.19
4.85
4.36
4.29
3.96
3.50
3.25

4.84
4.55
4.31
3.98

4.75
3.75

E„*(sr/s,hg/g) was arbitrarily changed from 4.26 Mev
to 4.00 Mev. This also changed E„*(d3/g kg/Q) to 4.35
Mev, E~*(sr/g, fr/g) to 4.91 Mev, and Er*(dg/s) fr/g) to
5.26 Mev. The singlet-even plus triplet-even force
above was again used and the energy levels were

calculated. The results of this change were compared to
experiment and to the calculated results for no change.
Some levels were barely affected while others were

lowered by about 0.j. to 0.2 Mev. No real improvement
was obtained in fitting the experimental energy levels.
YVe conclude that even if the zero-order energies in
Table III were in error by 0.1 Mev, the resulting energy
spectrum would not be changed very much. (Note
that in above calculation we have changed 4 zero-order
energies by almost 0.3 Mev. )

TABLE VIII. Comparison of the matrix elements for the J=6-
states of pbgpg for various forces. In the table,

l 1)= l lsuggn/g&=6),
l2)= lgs/g, gp/gJ=6), l3)= l fp/ggn/21=6), and l4)= l83igk/g&=6).

Matrix elements in Mev
I'inite-range forces Zero-range limit o

Singlet-even plus Rosenfeld singlet-even plus
triplet-even force force triplet-even force

(1
(1
(1
(1
(2
(2
(2
(3
(3

1)
2)
3)
4)
2)
3)

~(~)
V(r)
V(r)
V (r)
V(r)
V(r)
v(r) l4&

V(r) I3&

V(r) l4)
(4I V(r) l4&

0.175
0.017
0.124

—0.038
0.075
0.006

—0.015
0.123

—0.078
0.320

0.095
0.015
0.068
0.035

—0.026
0.003

—0.043
0.034
0.008
0.176

0.309
0.027
0.282

—0.064
0.165
0.016

—0.004
0.316

—0.095
0.612

TAnr. E IX. Calculated energy levels (in Mev) of Pb'" for the
zero-range limit of a singlet-even plus triplet-even force.

the resulting matrix elements changed in such a direc-
tion as to agree with the matrix elements of a zero-range
force.

Due to these results of Newby and Konopinski, "
it seemed desirable to repeat the above calculations
with a zero-range force. In these zero-range calculations,
we followed Newby and Konopinski and considered a
potential which will conserve volume energy. That is,
Eq. (26) becomes

e(r) = Vppsgr&b(rr —rg).

The above calculations were repeated with the force
given by Eq. (27) and with the same parameters as
were used in the singlet-even plus triplet-even force
above. The parameters used by Newby and Konopinski"
are not suKciently different to drastically change the
results. The energies resulting from this calculation
with a zero-range force are listed in Table IX and are
shown in Fig. 4. The matrix elements for this zero-range
force for the J=6 states of Pb"' are also shown in
Table VIII.

Figure 4, when compared with Figs. 2 and 3., show
that the zero-range force gives the lowest 3—level of
any of the forces used. This lowest 3—level is still 0.5
Mev above the experimentally observed 3—level at
2.615 Mev. In general, it is felt that the zero-range
force does not give as good an over-all fit to the experi-

C. Zero-Range Forces

¹wby and Konopinski' have considered some of
the lowest states in Bi"p and Po'" (two particles outside
the Pb"' core). They found that better agreement with

experiment was obtained in Bi'"with a zero-range force
than with a Gnite-range central force. Newby and
Konopinski also found that when they considered a
tensor force in addition to the finite-range central force,

6.66
5.40

5.85
5.61
5.06
4.12
3.13

5.90
5.25
5.10
4.85
4.52
4.22
3.75

5.86
5.11
4.42
4.30
3.95
3.58
3.08

Spin and parity
5—

5.27
4.94
4.42
4.17

4.73
4.07



512 CARTER, PIN KSTON, AN D TRUE

%+0 Rg0 ~O

lal
X

K
R
4J

0
Q+

FxG. 4. Energy levels of Pb", III. For each spin, the 6rst
column gives the energy levels calculated for the zero-range limit
of a singlet-even plus triplet-even force. The second column gives
the experimental levels. The dashed experimental levels are levels
for which the spins are not known.

mentally observed levels as the singlet-even plus
triplet-even force(excepting the 3—level at 2.615 Mev).

V. CONCLUSIONS

In this paper, we have shown the results of theoretical
calculations on the energy levels of Pb"' The only
arbitrary parameters used were those to fix the nuclear
force admixtures of Wigner, Majorana, Heisenberg,
and Bartlett type forces. For the finite-range nuclear
force, both a singlet-even plus triplet-even force and a
Rosenfeld force were used. In addition, the energy
levels were calculated for a zero-range nuclear force.
Each of these three forces are quite different from one

another. However, none of these three forces produced
a 3—level near the experimentally observed 3—level
at 2.615 Mev. This result supports the conclusion of
Lane and Pendlebury, ' that the 3—level at 2.615 Mev
in Pb" should be an octupole oscillation of the core
instead of a core-excited state.

No transition rates were calculated betweeen the
various levels in Pb"' because the conjectured core
oscillations would make them invalid. One should really
consider the effects of the collective oscillations on the
shell-model configurations before calculating transition
rates, as transition rates are very sensitive to configu-
ration admixtures, A calculation of this sort has recently
been done by Raz" for two 1fq~s particles coupled to
an oscillating core.

Since the singlet-even plus triplet-even force used in
this paper is consistent with the forces used in other
Pb isotopes, one might conjecture from Fig. 2 that the
collective motion of the core will have a small effect on
most of the shell-model energies.

This paper also points out that it is much simpler to
use the second quantization approach with creation and
annihilation operators to reduce a many-particle matrix
element to a two-particle matrix element when one is
considering core-excited states. In addition, when the
core-excited particles are from I.S- as well as jj-closed
shells, it is much simpler to make the above reduction
for non-signer type forces in the LS coupling scheme.
One expects that this approach can be suitably modified
to consider cases when the core-excited particles are
from a jj-closed shell when the respective I.S shell is
not completely filled (e.g. , promoting a 1i&s~& neutron
out of the Pb"' core).
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