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Earlier work on the inclusion of half-integral powers in the Ritz-Hylleraas ground-state solutions of the
nonrelativistic wave equation for the helium atom is extended through functions involving 18 parameters.
Energies that are lower than those found with other published comparable functions are obtained in all
cases. Preliminary results are also given of calculations involving more general fractional powers, Z values
different from 2, and half-integral-power solutions for which the expectation value of the square of the
Hamiltonian is 6nite. With the latter type of expansions one obtains, at least at an early stage, an additional
improvement in the approximation. Thus, with 11 parameters one Gnds the energy —2.903704 atomic units,
which divers by only 0.0007% from the 80-parameter solution of Kinoshita. The initial results found for
Z= 8 indicate an improvement in convergence over that obtained for Z= 2; the energy —59.156560 atomic
units, which was obtained with a 12-parameter, function, was only 0.00006/o larger than the energy obtained
by Pekeris with his 210-term function. The computed mass polarization corrections give also satisfactory
results as judged by the similar results obtained with the most extensive solutions available.

r. INTRODUCTION
' 'N a previous note' there were presented initial results
~ ~ on the use of Hylleraas functions with half-integral
exponents, i.e., expansions of the form

p=e s"p ct „s'"p"u~t'

(s =r r+ rs, t = rs rr, Q—= rrs),

l, m, n =0, 1. (1)

as Ritz approximants to the ground-state solution of
the nonrelativistic Schrodinger equation for the helium
atom,

where 3f is the nuclear mass and all quantities are in
atomic units. At the time of writing of that note, the
accuracy of the published results on this solution' was
still pretty much of an open question, there existing no
certain way of ascertaining the rapidity of convergence
of the computed Ritz-Hylleraas sequence. ' The intro-
duction of half-integral exponents in the Hylleraas
expansion tended to considerably improve this con-
vergence as shown by the initial results presented in
Table I of I. This provided the stimulus for further
calculations of this type through functions involving
18 parameters, the limit on the number of parameters
being in part imposed by the limitations of desk

*This work was supported in part by the U. S. Atomic Energy
Commission. Part of this work was done while the author was a
visiting professor at the Technion, Israel Institute of Technology.' H. M. Schwartz, Phys. Rev. 103, 110 (1956).This paper will
be referred to as I.

'S. Chandrasekhar and G. Herzberg, Phys. Rev. 9S, 1050
(1955).

calculator work. The results are given in Table I
(Sec. 2), which includes also a correction to the 13-
parameter function of I.

A comparison (Table III, Sec. 2) of the energy results
with those in reference 2 as well as with those of Hart
and Herzberg' and of Kinoshita, 4 shows that the
functions of type (1) give invariably closer energies for
trial functions of the same number of parameters. On
the other hand, this superiority of functions (1) ulti-
mately begins to decrease with the increase in the
number of parameters. This decrease is of course to be
expected. %hat is perhaps sti11 an open question is
whether the advantage shown by functions (1) will
subsist or will be completely washed out as the number
of parameters becomes comparable with the highest
number employed by Kinoshita. 4 In what concerns the
finding of a suKciently precise value for the lowest
eigenvalue of (2), this question may well have already
lost its practical significance, inasmuch as it is quite
likely that the very extensive solutions found by
Kinoshita and by Pekeris' do already give this eigen-
value to the required accuracy. The uncertainty which
still exists in this regard derives from the insufficiency
of the presently available theoretical estimates of the
error which attaches to the energy values computed by
the Ritz method. Another related difficulty is the
meagerness of our present knowledge of the analytical
properties of the exact ground-state solution of (2).
For these reasons, at least, the study of various types
of solutions of (2) appears to be still justified.

The functions of Table I of I as well as those of Table
I of this paper do not give a finite result for the mean

3 J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).
4 T. Kinoshita, Phys. Rev. 105, 1490 (1957); 115, 366 (1959).
s C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
6 Nevertheless it can in fact be shown by a reasoning which

while not completely certain admits of a high degree of probability,
that the limits of error on the values of Kinoshita and of Pekeris
are already very close to those imposed by present experimental
uncertainties.
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TABLE I.Nonrelativistic wave functions of Hylleraas type with
hali-integral exponents for the He ground state, for which (II')
diverges. The energy is in atomic units; the coeScient ci~„as
given in Eq. (1).~ The functions are normalized.

3.5 3.51 3.5 3.5
inputb

tputb

2.903714 2.903714 2.9037168 2.9037190

3.500063 3.510051 3.500018 3.500015

2.903714 2.903714 2.9037174 2.9037186

000
001
010
002
100
200
101
011
004
012
003
102
110
013
202
300
005
014

1.396891
0.176230
0.329918
0.518531—0.232072
0.007720—0.173014—0.255171
0.023654
0.066024—0.244199
0.136041
0.030952

1.396267
0.176456
0.330492
0.520100—0.229571
0.012139—0.176040—0.258750
0.024203
0.066989—0.248732
0.143005
0.033774

1.3998363
0.1539403
0.4119643
0.5560845—0.2307628
0.0071788—0.1726858—0.4367977
0.0291609
0.1956241—0.2686550
0.1357688
0.0307856—0.0297931

1.3715826
0.1156624
0.4551549
0.6159175—0.1153529—0.1146762—0.1672808—0.5735045
0.0751512
0.3497075—0.3649887
0.1820912
0.0314524—0.1046422—0.0195603
0.0389373—0.0073613
0.0132067

a The notation in Eq. (1) relative to the designation of the coeKcients
is slightly diferent from that employed in Table I of I.

b This terminology is explained in footnote 11.

value PP) of the square of our Hamiltonian operator.
This failure need not prevent the sequence of energies
computed from such Ritz approximating functions to
converge to the true energy value (Sec. 2). However,
while the existence of (B') is not required for the
calculation of the nonrelativistic energy, this expression
enters in the relativistic correction, and for this reason,
a recalculation was made with functions of type (1)
but with omission of the terms in I& and s&e& which are
responsible for a logarithmic singularity in the integral
of (EP).r The results are shown in Table II and are
discussed in Sec. 2.

In order to have an additional check on the goodness
of our functions, the mass polarization corrections were
computed with these functions. The results are dis-
cussed in Sec. 3.

The motivation, largely empirical, in the introduction
of the semi-integral exponents in (1), leads to the
question raised in I as to the further improvement that
may be possible with the use of more general fractional
exponents. Preliminary work on this question (Sec. 4)
is not particularly encouraging, but this work is of too
limited a scope to be conclusive. On another question
raised in I, the dependence upon the nuclear charge Z
of the advantage of using fractional exponents in the
problem under discussion, preliminary results (Sec. 4)
are more definite, and point to an additional relative

A preliminary result was given in J. phys. radium 19, 505
(1958).

p8 A%4

J
ds

i
dl dte 's't'I'

o ~o

=I'(a+b+c+3)/(b+1) (b+c+2) (3).

It is seen that fractional values of a and of c do not
lead to any significant complication. On the other hand,
the introduction of terms involving log s, which is a
related procedure, does introduce some computational
complication, inasmuch as in place of (3) we also get
expressions which involve derivatives of the gamma
function. Such terms have in fact been used by Hylleraas
and MidtaP and to very good advantage. '

TABI E II. Nonrelativistic wave functions of Hylleraas type
with half-integral exponents for the He ground state, for which
(II ) is finite. The energy is in atomic units; the coefficients c&„„,
as given in Eq. (1).' The functions are normalized.

output

2.903666

3.500100

2.903666

2.903704

3.499909

2.903704

3.5

2.903711

3.560151

2.903711

000
002
010
100
Oii
003
102
012
013
110
004
202

1.477574
0.535292
0.465583—0.294954—0.527949—0.161543
0.051240
0.237770—0.033982
0.031565

1.456080
0.659123
0.408421—0.286999—0.436981—0.316917
0.040603
0.194866—0.030215
0.035130
0.057239

1.447247
0.679155
0.421906—0.274295—0.465458

—0.259914—0.047367
0.216767

—0.035105
0.033076
0.037792
0.028654

a The notation is the same as in Table I.

8 See, for instance, H. A. Bethe and E. E. Salpeter, L'ncyclopedM,
of Physics (Springer-Verlag, Berlin, 1957), Vol. 35, Sec. 32.' E. A. Hylleraas and J. Midtal, Phys. Rev. 103, 829 (1956);
109, 1013 (1958). The second paper corrects a numerical error
contained in the Grst.' As the authors give only the final energy result for a function
involving 24 parameters, it is not at present possible to compare
their results with those presented here. Neither is there as yet
available a discussion of the analytical motivation, if such exists,
for the inclusion of their particular logarithmic term.

improvement in the energy eigenvalue for nuclear
charge larger than two.

2. SOLUTIONS INVOLVING HALF-INTEGRAL POWERS

As stated in the introduction, the choice of half-
integral exponents in (1) was dictated mainly by
empirical considerations. It was suggested in the 6rst
place by an examination of the relative distribution in
size of the coeKcients in the approximating functions
computed by Chandrasekhar and Herzberg. ' Another
consideration was the purely practical one of ease of
computation. The matrix elements entering in our Ritz
variational problem' involve only integrals of the form
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TABLE III. Comparison of the energy results derived from Ritz approximations employing half-integral powers with those derived
from integral-power expansions. Entries are the absolute values of the energy in atomic units.

Number of parameters

Positive-integral-power expansions
Integral-power expansions'
Half-integral-power expansions'

2.903603
2.903626
2.903666

13 14

2.903701b

20

2 903715e 2 90371'

2.903704 2.903714 2.903717 2.903719
2.903714

ss S. Chandrasekhar, D. Elbert, and G. Herzberg, Phys. Rev. 91, 1172 (1953).
b See reference 2.
e This value is a closer approximation for the 18-parameter function of reference 2, as given in reference 4.
d See reference 3.
e See reference 4.
& The first two entries in this row are from Table II, the others from Table I.

The new solutions are presented in Table I. Included
is also a 13-term function, which represents a correction
of a small numerical error that crept into the earlier
work for this function. ' This error was detected when
it was realized that the difkrence between the values
—2.9037190 atomic units (a.u.) for the "output. "
energy11 and —2.9037135 atomic units for the "input"
energy was in excess of what could be reasonably
expected. '2 As a test for the stability of the solution
with respect to small variations in the parameter k
Lwhich appears in the exponential factor in Eq. (1)$
and as an additional check on the computation, the
same function was recalculated for k=3.51 and is
also included in Table I.

The motivation for the calculation of the functions
presented in Table II was given in the introduction.
It is seen that for these three functions there is in fact
an appreciable improvement over the corresponding
older functions" as judged by the energy values. This
improvement would seem to disappear, however, with
the 13-term function, as judged by the following results:

13th exponent-triplet: -'„0,0 1, 0, 0 0, 0, 3 2, 0, 0
—Z lin atomic units): 2.9037119 2.9037119 2.903713 2.903712

In this connection, it should be noted that with the
exception of the above case the experimentation that
was done with respect to an optimum choice of expo-
nents has been quite limited in all cases, especially for
the functions with the higher number of parameters.

The choice of the value 3.5 for the parameter k was
made after a number of trials with the 6-parameter
function of Table I of I, It has been retained for the
functions involving more parameters in the belief that
the choice of an optimum value for k becomes less
critical as the number of parameters increases. In order

"The "output" E and k are given by the formulas obtained
by variation with respect to the parameter k. See Eqs. {'32-19)
and (32—20) on p. 235 of reference 8.

~ In reference 8 lp. 235) it is stated that the output energy
represents a closer approximation to the true energy than the
input value. However, when the number of parameters to be
varied is suKciently large and the choice of the scaling parameter
k is su%ciently good, the difference between the input and output
energies can be expected to be relatively small, and this is borne
out by all the available results.

"Table I of I did not include a 12-parameter function. Such a
function, obtained by adjoining a term with the exponent triplet
(& 0,1) to the 11-term function of that table, yielded the energy
value —2.902696 atomic units.

3. MASS POLARIZATION CORRECTION
CALCULATIONS

The correction to the energy eigenvalue E of (2)
arising from the 6niteness of the mass of the nucleus
and additional to the correction implicit in the replace-
ment in (2) of the electronic mass by the reduced mass

p, the so-called mass polarization correction e, is given
by the expression'4

e=— V'tp V'2' dr.
M~

(4)

The resulting matrix element:s for the functions (1)
have the same form as for the solutions involving
integral powers, " with all factorials replaced by the
corresponding gamma functions.

Results for the 13-term, 14-term, and 18-term func-
tions of Table I and for the 6rst three functions of
Table II are given in Table IV. For comparison,
published results for other functions are also included.

'4 See reference 8, Sec. 37.
~5 Equation (18) in L. Kiletz and I. J. Cherry, Phys. Rev.

103, 112 (1956). The factor 4 in the formula should be replaced
by 2.

to check this, several k values were tried for the 10-term
function of Table II, with the following results:

k= 3.7 3.55 3.5 3.45

—E (in at. units) =2.90364 2.903662 2.903666 2.903659

An additional indication that the chosen value for k is
not too far from the best value is provided by the
closeness of the output and input" 8 and k in all cases
investigated.

The comparison of the results presented here with
similar results that have been published, ' 4 given in
Table III, does not include any functions with loga-
rithmic terms' because, as stated earlier, no functions
of this character involving a smaller number of pa™
rameters than 24 have as yet been published. From
the point of view of constructing the best wave function
(best, as judged by the corresponding energy eigen-
value) for a given and reasonably small number of
parameters, it would seem to be of interest to investigate
further expansions involving logarithmic and fractional-
exponent terms.
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Reference

Table II
Table II
Table II
Table I
Table I
Table I

a
a
a

No. of
parameters

10
11
12
13
14
18
10
10
18
22
39

e (in atomic units)

2 ~ 182X10 '
2.187X10 ~

2.183X10 '
2.182X10 5

2.182X10 '
2.182X10 5

2.187X10 5

2.092X10 '
2.182X10 '
2.183X10 '
2.181X10 5

TABLE IV. Values of the mass polarization correction, 6.

No. of
parameters

6
10
10
10
12
6

10

Absolute value
of energy in
atomic units R Lgiven in Eq. (5)]

0.526541 0.06'
0.526967 3 ib
7.279817 0.36c

59.15647 0 35c
59.156560 )Pekeris values =59.156595]
2.903381 0.29c
2.903639 0,31'

TAsr. z V. Energy eigenvalues for the ground state of H, Li 1z,
and 0 var computed with half-integral-power Ritz-Hylleraas
expansions. Values of the ratio R, given in Kq. (5), are included
for comparison.

' See reference 4 (first paper), Table III.

Presumably the value &=2.181X10 ' a.u. obtained by
Kinoshita' and by Pekeris' is close to the exact value.
It is then seen that with the exception of the 11-
parameter function of Table II, the results yielded by
the other functions both from Table I and from Table
II are quite satisfactory. The exception shown by the
11-parameter function is strange, considering that in
respect of the energy eigenvalue yielded by it, it is
perhaps the best presently available for its number of
parameters. Unless some error had crept into the work
which had evaded detection, the high sensitivity of
expression (4) to the type of wave function employed
is worthy of note.

In this connection, it should be noted that it is
entirely feasible to include the part of our Hamiltonian
which gives rise to Eq. (4) in the Ritz-Hylleraas
variational treatment, obviating in this manner the
necessity of computing any correction for the nuclear
motion. "The usual procedure was followed in order
that the present results could be compared with those
involving other types of wave functions.

4. PRELIMINARY CALCULATIONS FOR NUCLEAR
CHARGE DIFFERENT FROM TWO AND FOR

MORE GENERAL FRACTIONAL
EXPONENTS

In order to check the eKcacy of the fractional-
exponent Ritz-Hylleraas wave functions for nuclear
charge Z/2, a calculation was made for Z=1, Z=3,
and Z= 8 with the sets of exponents of the 10-parameter
function of Table I of I and in the case of Z= 1 also for
the 6-parameter expansion of that table, this work
having been completed before the newer functions shown
in Table II have been considered. The result for the
12-term Z=S function was obtained subsequently and
for it the exponents of Table II were used. The results
are shown in Table V. For comparison, corresponding
results with positive-integral power expansions are also

Using this method, we obtained with the 10-term function
of Table II the value —2.903644 a.u. for the energy including the
effect of' mass polarization. This agrees with the result obtained
with the conventional method employing the best value of the
mass polarization correction.

+ Compared with the value given by R. E. Williamson, Astrophys. J.
96, 438 (1942).

& Compared with the value given by I.. R, Henrich, Astrophys. J. 99,
59 (1944). Henrich's function consists of 11 terms.

& Compared with the values in reference 2.
d See reference 5.
+ Compared with the value given by E. A. Hylleraas, Z. Physik 54, 347

(1929).
& Compared with the value given by S. Chandrasekhar, D. Elbert, and

G. Herzberg, Phys. Rev. 91, 1172 (1953). Our value from Table I of I is
used rather than that from Table II for the sake of more valid comparison
with the R values for Z &2.

where E;„&(E&„,&) is the energy eigenvalue obtained
with the integral (fractional) power expansions, and L~'

represents the energy obtained by Pekeris. The values
of this ratio, E, are entered in the last column of Table
V with a corresponding entry also for Z=2. It is seen
that with the exception of the 10-term function for the
negative hydrogen ion, there is indeed an improvement
in energy resulting from the use of fractional-exponent
expansions. The 10-term function for Z=1 could be
compared only with the 11-term function of Henrich, "
but, even so, it is apparent that at least for the choice
of powers that was made, there is little, if any, ad-
vantage to be gained by using fractional powers. On
the other hand, as judged by the ratio R of Eq. (4),
it is seen that the advantageous feature of the half-
integral-powers expansions does indeed increase for
higher Z values.

TABS,E VI. Energy eigenvalues for the ground state of He
computed with fractional-power Ritz-Hylleraas expansions.
Corr esponding values for half-integral-powers expansions are
included for comparison.

Wave functions

Involving the exponent triplets (l,m, n)':
(0,0,0), (0,0,-', ), (0,1,0), (0,0,1)

4-parameter function of Table I of I
Involving the exponent triplets: (0,0,0),

(0)0$1), (0)1)0)) (0)0$2)) (0)0)2)) (1)0)0)
6-parameter function of Table I of I

—8 (in
atomic units)

3.6 2.90254
3.614 2.90277

3.44
3.5

2.90345
2.90338

See Eq. (1).

"L. R. Henrich, Astrophys. J.99, 59 (1944).

included, as well as those of Pekeris, ' which can be
expected to be of very high accuracy. In order to
compare the results with those for Z=2, we consider
the ratio



SOLUT I ON S OF GROUN D STATE OF TWO —ELECTRON ATOMS

Considering the improvement in energy obtained
with the half-integral Hylleraas expansions for the case
Z= 2, it seemed of interest to see if any further improve-
ment could be obtained by employing more general
fractional powers. Without any precise analytical guide
for selecting the powers, it did not seem worthwhile
at this time to undertake any extensive investigation
of possibilities. Only functions involving 4 and 6
parameters were considered, and for quite a small
selection of powers. The results are presented in Table
VI. The energies for corresponding half-integral-power
functions are also shown for comparison.

5. CONCLVSIONS

The results so far obtained with the use of fractional
powers in the Ritz-Hylleraas method of solution for
the ground state of two-electron atomic systems, indi-
cate that at least for functions involving less than
about 20 parameters, and as far as the energy eigenvalue
is concerned, such use is advantageous. It would be
desirable, however, in this connection, to have also
some detailed information on the eGect of including
logarithmic terms in the Hylleraas expansions,

Although, as stated in the introduction, the search
for a determination of the lowest eigenvalue of the
Hamiltonian in Eq. (2) with a precision consistent with
present experimental accuracy may well have already
been successfully completed, it would still be of some
interest to find out if more rapid convergence, than has
so far been obtained, could be produced by an extension
of the present results to functions involving consider-

ably more parameters. It is, of course, possible that as
soon as the number of parameters becomes sufficiently
large, aB expansions of Hylleraas type show approxi-
mately the same behavior. However, pending a strict
theoretical analysis of the properties of the exact
solution in question, further calculational experimen-
tation may not be amiss.
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