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Bounds on Scattering Phase Shifts: Static Central Potentials*
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It has recently been shown that rigorous upper bounds on scattering lengths can be obtained by adding
to the Kohn variational expression certain integrals involving approximate wave functions for each of th.e
negative-energy states. For potentials which vanish identically beyond a certain point, it is possible to extend
the method to positive-energy scattering; one obtains upper bounds on (—k coty) ', where g is the phase
shift. In addition to the negative-energy states one must now take into account a finite number of states
with positive energies lying below the scattering energy. The states in this associated energy eigenvalue
problem are defined by the imposition of certain boundary conditions on the wave functions. A second
approach, involving an associated potential-strength eigenvalue problem, is also used. The second method
includes the first as a special case and, more significantly, can be extended to scattering by compound
systems. If some states are not accounted for, a bound on cotp is not obtained; nevertheless it is still possible
to obtain a rigorous lower bound on p. Upper bounds on g may also be obtained, but in a way which is
probably not too useful for many-body scattering problems.

has no components with an energy less than E,. It
follows that the expectation value of II—E, with
respect to the above function is non-negative. Evalu-
ating this expectation value, one then immediately
finds that

l. INTRODUCTION

N

~l ~(Q E,)~dr&—g
'=' (E' E )

where u& is the trial scattering function. Now of course
the p; are not generally known. It proved to be possible,
however, to show that the bound is rigorous even
though the bound-state functions employed in the
calculation are not exact solutions of the Schrodinger
equation; the only requirement, essentially, is that
they be sufficiently accurate to give binding. If then
one can find X orthonormal trial functions, @;i, which
have the property that the E eigenvalues of the
Hamiltonian matrix formed from them all lie below
E„ the inequality given by Eq. (1.1) remains valid
when the g; are replaced by the @,~.

It would be extremely useful to generalize the above
result to the case for which the initial relative kinetic
energy of the systems is greater than zero. More
precisely, we seek bounds on tan&, where p is one of the
phase shifts. /Actually, it will prove convenient as well
as useful to seek bounds on cot(ii —8), where O~e(~.]
For purposes of simplicity, the present paper is con-
fined to consideration of the zero angular momentum
scattering of a spinless particle by a short-range central
potential. (The case of a short-range central potential
plus a Coulomb potential will also be treated. See Sec.
2B.) As in the zero-energy case, many of the results are
applicable to a wider class of problems, and in fact
throughout the present paper stress is placed upon
those methods which do indeed allow extensions. The
wider class of problems, which are always restricted to
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VARIATIONAL expression which provides a
rigorous upper bound on the scattering length

has recently been obtained for the scattering of one
compound system by another where only one channel
is open and where a 6nite number of composite bound
states exist. ' ' The method consisted of expressing the
scattering length as a variational estimate plus an
error term which is of second order, and then bounding
the error term. This term is of the form J'u (II E,)indr, —
where H is the Hamiltonian, E, is the sum of the un-
perturbed ground-state energies of the two colliding
systems, and m is the diGerence between the exact and
the trial wave function, each appropriately normalized.
It is 6rst recognized that if there are no composite
bound states, the integral is non-negative, i.e., one has
a bound immediately. ' The extension' to the case
where there are E composite bound states, represented
by the functions P; with eigenvalues E,, proceeds with
the observation that the function
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those for which only one channel is open, include the
scattering of one system by another, with the eGects
of the Pauli principle taken fully into account. ' The
results can also be extended to the case of an arbitrary
angular momentum. On the other hand, in contrast to
the zero-energy case, the inclusion of tensor forces
would require a major modification. ' The origin of this
difference is that the mixing parameter, the parameter
which characterizes the relative admixtures of states
of diferent orbital angular momentum, vanishes in

general only at zero energy.
Henceforth, then, we restrict our attention to the

one-body problem, for zero angular momentum. Since
the initial kinetic energy, to be denoted by E, is greater
then 0, there are now an impolite number of solutions
of the Hamiltonian with energies less the energy of
the system under consideration, the X bound states
and the continuum below I'. If, however, we restrict
ourselves to potentials which vanish identically beyond
r=R, it will prove possible by the imposition of ap-
propriate boundary conditions to require the sub-
traction of only a finite number of states with energies
less than E. The problem is then almost identical in
form with that at zero energy.

The technique involved utilizes a connection between
the scatterin problem at energy E for a potential V(r)
which cuts oG beyond r=R, and the boutsd-state prob-
lem for the potential V(r) for O~r(E followed by an
infinitely repulsive potential for r&R. The spectrum
of the bound-state problem is of course discrete, and a
bound on t'to(H E)wdr may —be obtained by per-
forming a subtraction that involves the E negative-
energy states' and the finite number of positive-energy
eigenstates of the bound-state problem which lie below
the energy K This is shown in Secs. 2 and 3.

The reduction of the positive-energy problem to a
form similar to that of the zero-energy problem previ-
ously studied has of course been achieved only at a
price, namely, the restriction on the potential. One
would expect, however, that in practice, for low-energy
scattering, R can be chosen to be sufFiciently large so
that the neglect of the potential tail which exists
beyond r=R gives rise to a negligible error in q, it
may be possible, in fact, to make reasonably reliable
estimates of the error incurred. Of course at higher
scattering energies the labor involved in the calculation
is increased, due to the larger number of states to be
subtracted o6, for R fixed. At higher scattering energies,

' A paper treating the extension to the many-body problem is
in preparation.' The modification should be possible. Bounds on the elements
of the scattering matrix for some simple multichannel problems
have been obtained by L. Spruch and R. Bartram (to be
published).' Here, and in the following, we assume that E has been chosen
to be sufhciently large so that no negative-energy bound states
are "lost" when the barrier is introduced. In those cases where
the number of negative-energy states has been determined ex-
perimentally one can really check whether or not any such states
have been lost.

therefore, one would have to strike a balance in the
choice of R; it would have to be suKciently large so as
to give reasonable accuracy, but not so large as to
unduly increase the necessary labor.

The results of Secs. 2 and 3 lead to a lower bound
on q. Two methods of obtaining an upper bound on g
are discussed in Sec. 4.

The method of Secs. 2 and 3 involves the introduction
of an associated. bound-state energy eigenvalue problem.
It is shown in Sec. 5 that a more general result (which
includes the above as a special case) can be obtained

by the introduction of an associated eigenvalue problem
in which the eigenvalues are certain appropriate
strengths of an auxiliary arbitrarily chosen positive-
de6nite potential, p(r); this will be referred to as the
associated potential-strength eigenvalue problem. The
significant feature of this alternate approach is not that
its greater generality leads to an improved bound on

cot(g —0) and on r). Rather, it is that it makes possible
the extension of the determination of a bound on g to
the scattering of one system by another, with the Pauli
principle fully accounted for. '

The technique of the associated potential-strength
eigenvalue problem was introduced into scattering
theory some time ago by Kato, ' ' who obtained some
rather striking results for zero angular momentum
scattering by a static central potential. He was able
to get both bounds on cot(r) —0), and he did not need
to cut oG the potential. The differences between the
present approach and that of the original work of Kato,
for the one bound that we obtain, are however essential,
as matters both of practice and of principle, if results
are to be obtained for compound systems. The matter
of practice is that we need only calculate matrix
elements of H while the Kato method requires the
calculation of matrix elements of H'; the former is
difFicult enough while the latter is all but impossible
for even the simplest compound systems. The matter
of principle is that the result deduced by Kato will be
less accurate, for the same choice of trial scattering
function, than the result obtained in Sec. 5.

2. UPPER BOUND ON cot(sI —8) USING
ENERGY EIGENFUNCTIONS

A. Potentials Which Vanish Identically
Beyond r= R

The scattering problem is defined by the diBerential
equation

A' d' A2k2)

(H—E)ts(r) =
~

—— +V(r) — ~e(r) 0=
2p dr' 2p i

with boundary conditions

N(0) =0,
1(r)=cos(kr+8)+cot(q —8) sin(kr+8), r~ E.

s T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1931).' See also L. Spruch and M. Kelly, Ph~ s. Rev. 109, 2144 (1958);
I.. Spruch, Phys. Rev. 109, 2149 (1958); L. Spruch and T.. Rosen-
berg, Phys. Rev. 117, 143 (1960).
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u, (0)=0,

N, (r) =cos(kr+8)+cot(ti~ —8) sin(kr+8), r&R.

We then have the identity

(2.1)

fB
k cot(ri —8) =k cot(ri~ —8)+ (2p/5') N, (H E)N—,dr

dp

—(2p/0') )I w(H —E)wdr, (2.2)
0

The last result follows from the restriction, in line with
the previous discussion, to potentials V(r) which vanish
identically for r&R.

We introduce the trial function u~(r) which satis6es

have been able to find M trial functions @;~(r) with the
properties

y;&(0) =pg((R) =0,

(4'~,4.~) =8'.,
(p;(,Hg, g) =E;g8,„E,( &L':,

(2.4)

where i and s each run from 1 through M. The bound
on the error integral is obtained in terms of these
quantities in a manner which is formally identical to
that described previously for the zero-energy case, '
and we omit the details. Inserting the bound in Eq.
(2.2), we 6nd

fR

k cot(ri —8) & k cot(tip —8)+ (2p/h') u, (H —E)N+r

where the diBerence function,

w(r) = N&(r) —N(r),

31

+ (2~/&s) 2
'=r (E—E;,) &~s

) 2

N, (H—E)p;&dr
~
. (2.5)

has the properties

w(0) =0,
w(r) = Lcot(rf, —8)—cot(ri —8)$ sin(kr+8),

r& R (2.3)
(H —E)N~(r) = (H —E)w(r), for all r,

and where we have made use.of the fact that

(H —E)N((r) = (H—E)w(r) =0, r&R.

The identity is due to Kato, but is here specialized to
the case of a cutoff potential. The last term in Eq. (2.2)
is of second order; if it is dropped we remain with a
one-parameter family of variational principles. It is
our present purpose, however, to bound this term.

One procedure for doing so is to adjust 8 and R such
that

kR+8= (8+1)7r,

where I' is an arbitrary non-negative integer. "It then
follows from Eqs. (2.3) that w(r) vanishes at r=R as
well as at r =0.These boundary conditions are precisely
those that would be placed on an energy eigenfunction
for a particle in a spherical box, with a rigid wall at a
radius R, within which a potential may exist. The
desired bound on

w(H —E)wdr
p

may then be obtained by considering the associated
energy eigenvalue problem in which the potential is
V(r) for r&R and is +~ for r&R. Suppose this
potential supports M states with energies below E,.
(These M states include X negative-energy states. )
Denote the normalized eigenfunctions by @,(r) with
corresponding eigenvalues E;. We now assume that we

I This choice can be restated as the condition that rs(r) must
have an in6nite logarithmic derivative at r=R. More generally,
0 and E may be chosen such that the logarithmic derivative oj
w(r) at r 8 has an arbitrarily specified value.

It may be worth stressing that this bound is at the
same time a variational approximation, so that for
reasonably good trial functions I& and @;&, one would

expect the bound obtained to be quite close to the true
value. Further, the form of the trial functions as well

as the choice of the variational parameters which
appear in them may be chosen according to an optimum
procedure, namely, one which minimizes the right-hand
side of the inequality, Eq. (2.5), subject to the require-
ments stated in Eqs. (2.1) and (2.4). Finally, as noted
earlier, we must evaluate matrix elements of B but not
of B'.

The inequality of Eq. (2.5) reduces, for k —+0, to
the zero-energy result of reference 2. This may be
veri6ed by dividing Eq. (2.5) through by k' and letting
k —& 0 and R —+ ~ such that kR+8=w, with 8&0. To
complete the proof it need only be recognized that since
kR is a fixed number less than x and since q —+ Em as
k —+ 0, there exists a k,„, independent of R (provided
E is large enough so that E negative-energy bound
states exist), such that for all k&k, we have kR+ti
&(X+1)m, implying that no positive-energy states
exist in this range. (See Fig. 1.)

B. Potentials Which are Solvable
Beyond r=R

The analysis of the previous subsection depended not
on the fact that the potential vanish identically for
r&E but rather, more generally, that the Schrodinger
equation be solvable in that region. The extension to
the solvable potential is straightforward, but rather
than demonstrate this in all of its genera1. ity, we will

illustrate the point by a brief outline of the procedure
in the particularly important case for which a pure
Coulomb 6eld exists for r)R; V(r) is arbitrary for
r&R, In the pure Coulomb region, the wave function
may be written

N(r) =Gs(r)+cot(ti —8)Ps(r), r&R, (2.6)
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where Fe(r) and. Ge (r) are defined in terms of the regular
and irregular Coulomb functions, F(r) and G(r), re-
spectively, "by the relations

Fe (r) =cos8F (r)+ sin8G(r),

Ge(r) = —sin8F (r)+ cos8G(r).

The choice of the normalization of F(r) and of G(r) is
such that the asymptotic forms of Fs(r) and Ge(r) are

Fs(r) ~ sin(kr —
g ln2kr+zrp+8), r z ~,

Ge(r) —+ cos(kr —$ ln2kr+zrp+8),

g =ZiZse'/htz, exp (2izre) = I'(1+i&)/I'(1 —i&).

The charges, Z~e and Z2e, can each be either positive
or negative.

Introducing a trial function, zzz(r), which, for r)R,
is of the form given by Eq. (2.6) with z) replaced by zlz,

and introducing the difference function m—= I&—I, we

again obtain the Kato identity, Eq. (2.2).
With the choice of 0 and of R such that

tan8= F(R)/G(—R), .

we have Fe(R)=0, whence tzz(R)=0. The problem is
then the by now familiar one of obtaining a (lower)
bound on

energy case, for the number of positive-energy states
will not be known experimentally. It is, therefore, of
some interest that one can still extract some information
which is of a rigorous nature. The results so obtained
concern zl, rather than cot(z) —8). We will now describe
a method for obtaining a rigorous lower bound on g,
and we will then show that this result contains, as a
special case, the one previously obtained by Risberg
and by Percival. Further, the new result should always
be used rather than the old one. LWhile the discussion
could be carried through for V(r) solvable beyond
r=R we will, for simplicity, consider cutoG potentials
in the following. ]

A. Use of the Conditional Inequality

We begin by recalling a theorem due to signer
concerning the dependence of the phase shift on the
scattering energy. Wigner showed" that if V(r) vanishes
identically for r&R, the identity

dz) I'1 )
R+ I I

sin2 (kR+z))+2 I'dr (3.1)
&2k)

obtains, where N(0) =0 and where

N(r) =sin(kr+zi), r& R

The integral is clearly non-negative. For E/0, which
is the concern of the present paper, it is in fact positive.
It follows that for those values k, for which

1.(k;)=k,R+~(k;)= j~,

dl dzi
=R+—)0.

dk a; dk I;
(3.3)

3. LOWER BOUND ON q

There is one weakness in the procedure described in
Sec. 2, namely, one must assume that the correct
number of states with energies less than E, which we

have taken to be M, is precisely the number calculated
in the process of diagonalizing the Hamiltonian matrix.
In fact, it may be more, though it cannot be less. If
the assumption is incorrect, that is, if one or more
states have not been accounted for, there is no justi6-
cation for the bound. The question of the correctness
of the number of states is a rather more serious one at
positive scattering energies that it was for the zero-

We will also have occasion to use a slight generalization
of this last result, which also follows from Eq. (3.1),
namely, that for 1 (k) in the range

jzr pl'(k) ~ (j+-;)zr,

the inequality dl (k)/dk) 0 is satisfied. A typical graph
of 1(k) wersls k is given in Fig. 1. The relationship

1 (0)=Err which has been used is simply Levinson's

theorem '4

Let the energy eigenvalues for the problem in which

a particle is con6ned to the region r~R, in the presence
of the potential V(r), be arranged in increasing order.
We label the general positive-energy term in the se-

"See, for example, J. M. Blatt and L. C. Biedenharn, Phys.
Rev. 86, 399 (1952).

zsA previous discussion oi the zero-energy problem /see L.
Spruch and L. Rosenberg, Proceedirlgs of the Ieternutiorlgl Con-
ference on nuclear Forces and the Fezo )nucleon Froblezzz, I,ondon,

"

July, 1959, Pergamon Press (to be published)j was restricted to
the scattering of systems with like net charges. The present
extension to include attractive Coulomb potentials (and nonzero
scattering energies) is of course made possible by the additional
restriction that the non-Coulombic component must vanish
identically beyond a certain point.

"E.P. Wigner, Phys. Rev. 98, 145 (1955). Alternative deri-
vations of this causal inequality were subsequently given by
M. A. Martin, Compt. rend. 243, 22 (1956),and by E. Corinaldesi
and S. Zienau, Proc. Cambridge Phil. Soc. 52, 599 (1956).See also
F. Smith, Phys. Rev. 118, 349 (1960).

'4 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 25, No. 9 (1949).

where tzz(0) =tv(R) =0. Since, in the finite domain, (3.2)
0&r&R, the operator LI' has a finite number of bound
states, even though we allow for attractive Coulomb where j is an integer (actually, as is shown below, j
potentials, " the bound can be obtained in a manner must be greater than E), we have

identical to that used for the cutoR potential.
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(N+ 2)~

(N+ -')~
2

(N + t)w'

fN + -)Vl
2

NK

quence by E; (j)S), and write

E,,=h'krs/2p. (3.4)

The sequence then is E&, .
, E&, , E;, . The

bound states are characterized by the requirement that
the function vanish at r =R. Now consider that function
which is identical with the jth bound state solution for
r~R and which is a solution of the free wave equation
for the energy E, for r&R, with continuous value and
slope at r=R. From uniqueness, this must be identical
with the scattering solution, which is a multiple of
sinfk, r+rf(k;) j in the external region. Since this must
vanish at r=R, it follows that k,R+ri(k;) must be a
multiple of x.

To prove the equivalence of the two diferent defi-
nitions of k„Eqs. (3.2) and (3.4), it must still be shown
that the multiple of + is in fact j itself. To see this, we
note firstly that by Levinson's theorem, f(0)=rf(0)
= jt/rr. Further, it follows from Eqs. (3.2) and (3.3)
that once f(k) has passed through a given multiple of
s, it can never return to that value. "Thus i (k) starts,
at k=0, at i'", at the first positive-energy bound state,
which is the state labelled by %+1, it has the value
(&V+1)s.. In general, then, we do in fact have that

k;R+ri(k;)=jar, j=E+1,X+2,
'v Actually, the fact that f(k) has a positive slope at sero energy

does not follow from the signer inequality, which reduces to a
trivial identity at k=0, but rather can be established directly.
We 6rst observe that df/dk

~ v v ——R—A, where A is the scattering
length. Now if R were less than A the existence of a zero-energy
scattering function which vanishes at r=A would imply that a
zero-energy bound state exists in a box of radius A. This state
would disappear if the radius of the box were reduced to R, which,
however, runs counter to the condition mentioned in reference 7,
which we have placed on R.

Fio. 1. A schematic plot of f(k)—=kR+v(k) versus k; f (k) need
be defined only for non-negative energies. Since there are E'
negative-energy states, Levinson's theorem gives f(0)=E7f. By
Wigner's causal inequality, df'(k)/dk)0 for any interval of k
which satisires jv~f (k)~ (j+—,')v, where j is an integer, which,
from the above discussion, must be greater than E.By continuity
the slope will be positive for f(k) less than but suKciently close
to (j+1)x. The eigenvalues k; are defined by g(k;)= jm. Once
f (k) has passed through the value jv, which occurs at k=k;, it
can never return to that value. The k; as defined above determine
the positive-energy eigenstates, L&, ;, of the particle constrained to
the interval 0 to E in the presence of the potential, V(r), by the
relationship E;=A~kP/2u.

0+ )L)

where &L, is defined by the relations

(3.5a)

k cot(rfr, —0) =right-hand side of Eq. (2.5), (3.5b)

and
M'vr kR ~ rir, & (M'+1)n-——kR (3.5c)

The technique of treating Eq. (2.5) as a conditional
inequality which leads nevertheless to a rigorous lower
bound on the phase shift is closely analogous to a
procedure used earlier" in a study of the Kato method.

It should be remarked that while the lower bound on

g is rigorous even when one has not accounted for all
of the bound states, a situation quite diGerent from that
for the upper bound on cot(tl —8), the lower bound on

p deduced when M/M' is a very poor one, being too
small by roughly (M M')rr. —

B. Coml)arison with Risberg-Percival Result

During the course of the last derivation, we arrived
at the result that 1'(k))jsr if k)k, . This inequality

"I.C. Percival, Phys. Rev. 119, 159 (1960)."See the second paper mentioned in reference 9, and Sec, 5 of
the present paper.

and that E;=hskrs/2' represents the jth bound state.
It follows that if ja (f'(k) ((j+1)sr, precisely j bound
states of the associated energy eigenvalue problem
exist with energies less than h'k'/2p

The fact that the k, defined by Eq. (3.2) are identical
with the k, defined by Eq. (3.4) can also be proved, "
with the aid. of continuity arguments (the case E=O
must therefore be excluded in this particular proof),
by studying the phase shift as the potential strength is
built up from zero to its true strength.

We are riow in a position to obtain a rigorous lower
bound on g. Thus, suppose that 3f' bound states have
been found with energies below the energy E. If 3E'=M,
where M is the true number of such states, then the
inequality satisfied by k cot(tl —e), Eq. (2.5), is valid.
If, however, M'&M, the above mentioned inequality,
in which M' trial bound-state functions, p, i, are em-

ployed need not be valid. We may, however, simply
assume that M'=III, which implies that

M's. ~kR+rf(k) ~ (M'+1)v-.

If the assumption is correct, Eq. (2.5) will provide a
lower bound on g, namely gl. , where gl, is a known
number which is less than (M+1)s. kR. If, —on the
other hand, the assumption is incorrect we have
rf) (M'+1)vr —kR. Therefore, the inequality rl)rir, is
correct, independent of the validity Of the original
assumption, and we then have a rigorous lower bound
on g.

In summary then, we have, if we have proved the
existence of at least 3f' eigenstates of our bound-state
problem with energies less than the scattering energy
E, that
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itself clearly provides a lower bound on the phase shift
for a scattering energy which lies above the appropriate
level. With the method of Hylleraas and Undheim"
upper bounds, E;&, may be found, yielding a discrete
set of scattering energies for which a lower bound on
the phase shift is determined. This method for getting
a bound on ti(k) is essentially that given earlier by
Risberg" and by Percival. ' The similarity between
their result and that deduced in the previous sub-
section, which grew out of a quite diferent approach,
is rather striking and it may be of some interest to
compare the two. We first note that their result can
be derived using Eq. (2.5) and the concept of the
"conditional inequality. " The question then arises
whether the present technique aRords any improve-
ment. While it is perhaps not appropriate here to
present the analysis in detail we might indicate that
an improvement does exist, and may be traced to the
fact that the inequality, Eq. (2.5), is based on the use
of a sharper form of the Hylleraas-Undheim theorem
than they used. Thus, suppose a set of orthonormal
functions, Q;t, where 1~ i ~M'+ 1, has been found
which diagonalizes the (M'+1) X (M'+1) Hamiltonian
matrix. The functions g;t will, in general, still contain
some free variational parameters. According to the
Hylleraas-Undheim theorem we have

We have, therefore, an improved form of the Hylleraas-
Undheim theorem. The improvement carries over to
the scattering problem by virtue of the Wigner in-
equality, from which we conclude that an estimate of
jtr for f (k) will have increased accuracy as k approaches
k; from above, at least for k sufficiently close to k; such
that. f. (k) ((j+,')~-

Had the sharpened form of the Hylleraas-Undheim
method been used in the Risberg or Percival derivation,
the superiority of our method, as discussed above,
would disappear for the scattering energies E;~ ob-
tained from the Hylleraas-Undheim method. There is
however an inherent advantage, which is primarily one
of convenience, associated with the present method.
The point is that their results, while rigorous, are
reasonably accurate only for energies equal to or slightly
greater than the energies E;U. Thus, for any energy E
greater than E;U„ it follows that E&E; and hence that
f(k))i (k;)=jtr, that is, that rI(k))jm kR; ho—wever,
while rigorous, the accuracy of this last estimate
diminishes rapidly as the di6erence between E and E,
increases. In order to obtain reasonably accurate phase
shifts over a range of energies, it would then be neces-
sary to repeat the calculation for various values of E.
On the other hand, Eq. (3.5a) is explicitly rigorous and
variational for a range of energies above E~ U, and
one would have to perform the calculation for only one
value of E.

the best result, for a given form of functions p, t, is
obtained by choosing the variational parameters to
minimize the right-hand side of the inequality. Clearly,
a lower value of the bound on E~+~ can be determined

by dropping the restriction that &sr ~&,t be orthogonal
to the remaining 3f' trial functions. It may be claimed
that this lower value is better only if it is still guaranteed
to lie above the exact value, E~+~. To see that this
guarantee cam be made, provided (gt, t,H&st)(Esr+r,
where 1~k&M', we note that the inequality we have
obtained for J'm(H —E)wdr may be rewritten as

,
4'tr'+rt(& E),4sr+—rtdr~O, ,

where

Here, for the purpose of the present discussion, m is an
arbitrary function which satisfies the appropriate
boundary conditions. While the (M'+ 1))& (M'+1)
matrix, formed from the operator H —E using functions
tltst, where 1~k~M', and tftsr. +r, t as de6ned above, is
diagonal, no orthogonality restrictions exist for &sr ~r, t.

' E. A. Hylleraas and B. Undheim„Z. Physik 65, 759 (j.930).' V. Risberg, Arch. Math. Naturvidenskab SB, 1 (1956)."I.C. Percival, Proc. Phys. Soc. (London) 70, 494 (1957).

4. UPPER BOUND ON g

The fact that a lower bound on g can be obtained
using a minimum principle, so that a well-defined pro-
cedure exists for improving the calculation, has the
consequence that quite accurate estimates of the phase
shift should often be obtainable. Nevertheless, since
both bounds on g are required to obtain an absolute
measure of the accuracy of the calculation it is of
interest to examine the question of determining an
upper bound. Again we exploit the connection between
the scattering and bound-state problems. We shall
describe two methods, both of which involve a deter-
mination of a lower bound on an energy eigenvalue.
The practical utility of the results obtained is con-
siderably diminished, as compared to the methods
described in the previous sections for o'btaining the
other bound on g, since it is far more diKcult, in general,
to obtain a lower bound than an upper bound on an
energy eigenvalue.

A. Use of Wigner Inequality

To find then an upper bound on g„erst observe that
according to the discussion in Sec. 3, the inequality

f (k) &(M@1)~

is valid for energies E(E~+~, where k is the wave
number corresponding to the scattering energy E.Thus,
if E~+~,z, is a lower bound on E~+~, and if k~+~,1, is
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the corresponding wave number, we have

rf(k~+r, z,)((3II+1)s—ksr+r, l,R

The accuracy of this bound will generally increase as
the estimate of the lower bound on E~+~ is improved.
Since we are now operating in the region in which the
slope of f(k) can be negative, this last statement can-
not be made more precise; the best that one can say is
that the accuracy of the bound will necessarily increase
with increasing accuracy for the lower bound on E~+&
if f(k) is su%ciently close to an integral multiple of x.

B. Use of Energy Eigenfunction Expansion

We again employ the difference function, w(r), as a
trial function in the energy eigenvalue problem intro-
duced in Sec. 2A. Thus, with w(r) satsifying the
boundary conditions

w(0) =w(R) =0,
we have

B 00

w(H F c)'wdr=Q—a—,s(E; E c)-', — —
0 i=1

where the expansion coeKcients, a,, are defined by

a'= (wA ~),

and where c is an energy value as yet unspecified. The
sum is clearly larger than

[mm(E,—E—c)'$ Q a'= [min(E„—X~.
'—c)'] ~t w'dr

i=1 0

Now let c=s(Esr~r E), where E~+t —is the smallest
eigenvalue which lies above E. Then we may write

min(E; —E—c)'= min[E, —-', (Esr+~+E) $'-

=[l(E. + —E)j',
the minimum value being achieved for E;=E.~~+~, so
that

the sought-for inequality

R (R

J
w (H E)w—dr~ (Esryr, r, E) —

Jl [(H E)g—gf dr.
0 0

While both methods described in this section for
obtaining an upper bound on p require that one find a
lower bound on an energy eigenvalue, the second
method has the advantage that an accurate upper
bound on q may be obtained if one can choose a suffi-
ciently accurate trial scattering function, even if a
quite crude lower bound on the energy eigenvalue is
employed.

In a similar manner, the other bound on the error
integral may be obtained as

w(H —E)wdr& (EsrU —E) ' ~ [(H—E)

Here E~~ is an upper bound on E~ which is in turn the
largest eigenvalue below E. This latter result is of little
interest, however, since it is inferior to the result
obtainable from the inequality of Eq. (2.5). The proof
of this statement is quite similar to a proof given in
Sec. 5.

C. Lower Bound on Energy Eigenvalue

We will discuss very briefIy the question of deter-
mining a lower bound on E~+&. One possibility would
be to use a solvable comparison problem. A more
general method would be to use a technique that
involves

G(r,r'; R; E) = (1/k) sinkr&(coskr& —cotkR sinkr&),

which represents the Green's function for a particle
confined to a spherical box of radius R within which
there is no potential. r& and r& represent the smaller
and the larger, respectively, of the quantities r and r'.
Thus, let k~1+~,L represent the wave number corre-
sponding to the lowest value of the energy, to be
denoted by E~+&,L, which satisfies

[H—E—(E —E)j' d-
which may be rewritten as

& [-', (Esr~t —E)]' w'dr,
~o ~~+1,L~ +7f-,

it can be shown" that E~+~ L is in fact a lower bound

"The above results are generalizations of the result due to
Bargmann PV. Bargmann, Proc. Natl. Acad. Sci. U. S. Bg, 961
(1952lj that the necessary condition for the existence of 1V
(negative energy) bound states of angular momentum zero in the
full range 0 to ~ is

Using the Hermiticity of H —E, we obtain the inequality

w(H —E)'wdr& (Esr+t —E) f w(H E)wdr. —
J,

w(H E)wdr~ (Esr+.,—E) '
~

—[(H—E)ug]'dr.

If then we can find a lower bound E~+j,L on E~+~
which at the same time satisfies EKE~+~,L, we have

~ v(.) zr&x.

A paper on the use of Green's functions in the derivation of
necessary conditions for the existence of bound states of given
angular momentum and below a speci6ed energy, for a particle
in a center of force, is in preparation.
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5. UPPER BOUND ON cot(g —6) USING
POTENTIAL EIGEÃFUNCTIONS

We now consider an alternate approach to the prob-
lem of finding an upper bound on k cot(q —8) for cutoff
potentials. Instead of the energy eigenvalue problem of
Sec. 2 we introduce an associated potential-strength
eigenvalue problem, with an auxiliary potential p(r)
which satisfies p(r)) 0 for r&R and p(r) =0 for r) R,
but which is otherwise arbitrary and which will be
chosen for convenience. Ke then consider the equation

with boundary conditions

y(0) = 0, rp(r) =const sinLkr+6(g) j for r).R.

The eigenfunctions y„and their corresponding po-
tential-strength eigenvalues, p„, are dehned by the
condition

The fact that p(r) vanishes for r)R implies the
existence of a lowest eigenvalue. Thus, by comparison
with the in6nitely repulsive square well of range E. we
have

so that, if
6(ii) ) kR for all p, —

8—(8+1)m & kR&8 I'm-, — —
I

p, &+p, (y+y~ for all s.
Here we have made use of the monotonicity of 6(p)
with respect to p. (It may be of interest to note that
in the associated energy eigenvalue problem, the
potentials which one considers are those for which
there exists a lowest energy eigenvalue; the potential
had to be cut o6 to make the energy eigenvalues
everywhere discrete. In the associated potential-
strength eigenvalue problem, on the other hand, the
potential strength eigenvalues are automatically dis-
crete for X&0, and one had to cut off the potential in
order that there should be a lowest potential strength
eigenvalue. )

The bound on cot(iI-8) that will be deduced will
utilize the Hylleraas-Undheim theorem again. This
time, however, the theorem is applied not to the eigen-
states with energy eigenvalues less than the energy E

If Eq. (4.1) is not satisfied, one can still obtain a
lower bound E~+i,l, on E~+i (at least in principle) by
6nding the smallest value E~+~,z, which satis6es

(2p/A') TraceLG(E~~i, J) ~
V

~

$'

We omit further discussion of the possibilities of this
technique.

We might note that the fact that the potential exists
only in a finite range considerably enhances the likeli-
hood of being able to obtain a lower bound on an energy
eigenvalue.

under consideration, but rather to potential strength
eigenstates with potential strength eigenvalues less
than the potential strength under consideration,
namely, @=0. /It is to be recalled that g(k) =8(0). I

In other words, eigenstates for which p„ is negative
are involved. In this connection it may be noted that
for the specific choice

kR+8= (8+1)~, (5.1)

~R
q»~~qm~P«=~ m,

0 (5.2)

pni(+ E) pmidr=IJnione, pni=p~g(2 ) &.0
~o

The indices I and m, here and below (except where
specifically indicated otherwise) each run through the
P integers I' to I'+ T' —1.The C—„iare in—dependent
of r. By the Hylleraas-Undheim theorem, the IJ, i(T'),
when put into an ordered sequence, satisfy the in-
equalities p„i(P) p, where p„ is the corresponding
member of the ordered sequence of exact eigenvalues.
Further, if a (T'+1)X(T'+1) matrix of (H —E) is
formed, with the first T' functions y & the same as
before, and if the eigenvalues of this matrix are labelled
p„,(T'+1), then for the first T' values of I, we have
p i(T') p„&(P+1). The situation is then similar to
that which obtained at zero energy, and at nonzero
energies with the introduction of an associated energy
eigenvalue problem. It follows that if P= T, then we

may deduce a bound on JP w(H —E)mdr which, when

the relevant number of states with negative eigenvalues
p„ is equal to the number of states which appear using
the energy eigenfunction approach. To see this we
recall (see Sec. 3) that

Mm —kR&8(0) =g(k) & (M+1)x kR, —

(M—P—1)m+8&5(0) & (M I' )s.+8—.

The negative eigenvalue, smallest in absolute value, is
then pir p i. Since, from Eq. (5.1), the lowest eigen-
value is p i i(p i i= —~) there are in all M+1
negative eigenvalues. However, the eigenfunction p ~ ~

vanishes for O~r~R and is therefore orthogonal, with
respect to the weight factor p(r), to the other eigen-
functions, so that the number of relevant eigenfunctions
is M, for arbitrary p(r)

We now return to the case for which E. and 8 are
arbitrary, and we let T denote the exact (unknown)
number of negative-value eigenvalues p„ for this case.
)We have just seen that for the choice of R and of 8
which satisfies Eq. (5.1), 7 is equal to M.j Let us now

~assume that we have found T' trial functions q „t, which
satisfy the conditions

&p„,(0) =0, p„i(r) =C„,sin(kr+8) for r) R,
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inserted into the Kato identity, yields the inequality

(2~) B

k cot(g —8) ~k cot(g& —8)+
~

—
~

~ «(H —E)urdr

(2p) -&+&"—i 1 -2

w. , (H—E)«« . (5.3)
n I p q

'()

'I'he trial scattering function, I&, and the difference
function, w, satisfy Eqs. (2.1) and (2.3). In particular,
the logarithmic derivative of w(r) at r=R is j'ust that
assumed by the p„, which allowed us to use w(r) as a
trial eigenfunction in the application of the Hylleraas-
Undheim theorem (in its sharpened form).

The bound given by Kq. (5.3) is very much simpler
to calculate than the corresponding bound deduced by
Kato. Further, it will lead to a more accurate bound for
the same trial scattering function N~. The proof of this
statement follows from the observation that the q „&

may be considered to be the first T' functions of a
complete set of functions, which we denote by (q„,),
with —P'&e& ~. We then have

I'+7' 11——
q „g(H E)«dr-

n=—P Png -~ P J

—P+T'—1

g—p+r' —r, t

)
P ~+y ygn —P

1 )~ L(H —E)«)'
J dr,

s+r x, ~ 0 —p(r)—

where in the last step we have used the closure property
of the set (q,„,). If we identify —p &+& &, , with the
trial value of P to be used in the calculation of the Kato
bound then the superiority of Eq. (5.3) is established,
since in reducing it to the Kato result we have employed
inequalities which decrease the accuracy of the bound.
It might be mentioned that the Hylleraas-Undheim

where gJ.
' is defined by

g) gL, ', (5.4a)

k cot(gz, '—e) =right-hand side of Eq. (5.3) (5.4b)

T'~ kR &rtr—,'& (T'+ 1)m. kR. (—5.4c)

The point is, of course, that if T' is less than T, then
the inequality of Eq. (5.4a) is o,forti ori true.

We now wish to compare the results based on the
associated energy eigenvalue problem and on the
associated potential-strength eigenvalue problem. It
can be shown, in fact, that the latter result includes the
former as a special case. To see this we simply choose
p(r)=pp for r~R where po is a positive constant with
the dimensions of energy, and choose R and 0 such that
kR+0 is an integral multiple of ~. Since the inequality,
Kq. (5.3), is independent of the normalization of the
y, the orthonormality condition given in Eqs. (5.2)
may be replaced by

y ~y Jr=0, NAm.
0

Therefore, the form of the inequality for the error
integral, and the conditions satisfied by the functions
m(r), N~(r), and the q ~(r) (there is a trivial difference
in the normalization of the y„, and of the @;~) are the
same as those of Sec. 2.

theorem is a general method for obtaining a bound on
P; it is however restricted to cutoff potentials, and it
must always be assumed that the correct number of
negative eigenvalues p„have been obtained.

The weakness of Eq. (5.3) is that we cannot in general
be certain that T'= T. Proceeding as in Sec. 3, we can
once again use the conditional inequality technique to
obtain a rigorous bound on g. Thus, assumjeg that
T'= T, it follows that

T'm (8(0)—8(~) ((T'+1)m,
or that

T'& kR(—~(k) & (T'+ 1)~ kR. —
Ke have, as a rigorous consequence, that


