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The Ettingshausen effect in semiconductors is mainly due to the generation of electron-hole pairs at one
side of the sample and their recombination at the other side. The Ettingshausen coefIIcient is calculated, in
agreement with Putley, as I'= (L'",/sec)s(1+a) '(y, +pz) where s= (nspI/n. p,)-r,atio of hole conductivity to
electron conductivity. E~ is the gap energy, and a the thermal conductivity. We discuss this formula for
intrinsic, p-type and n-type semiconductors. P goes through a maximum for p-type semiconductors near
the temperature at which the Hall voltage goes through zero. Our results agree reasonably well with the
measurements of Mette, Gartner, and Loscoe of I' as a function of temperature for different samples of
germanium and silicon.

I. INTRODUCTION

' 'N the presence of a magnetic Geld H perpendicular
~ ~ to an electric current J, a thermal gradient is
established in a direction perpendicular to both J and
H. We choose the magnetic Geld along the 2' axis, the
electric current along the x axis, and the thermal
gradient dT/dy along the y axis. The ratio (dT/dy)/
J~=P is known as the Ettingshausen coefficient. In
addition to the thermal gradient a Hall Geld E„ is also
established along y. Early measurements of the Kt-
tingshausen coeKcient for metals and semiconductors
are given, for example, in the International Critical
Tables. ' We shall measure temperature in degrees
Kelvin, magnetic Geld in gauss, and the current density
J in (practical) amperes/cm'. In our units the early
data give P= —10 " deg-cm/amp-gauss for "good
metals" like Cu and Ag. On the other hand for the
semiconductor Si, P=+250&C10 s deg-cm/amp-gauss.
The usual sign convention for P&0 is shown in Fig. 1.
Here the positive current J is towards the right, the
magnetic Geld H is into the paper, and the top surface
is hot.

Recent measurements by Mette, Gartner, and
Loscoe'' on Ge and Si, respectively, (referred to as
MGL) confirm the large positive value of the Et-
tingshausen coefficient for semiconductors. (However,
the early measurements' give considerably larger value
for P.) MGL have made detailed measurements of P
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as a function of the temperature and of the impurity
content of their samples.

The theory of Ettingshausen eGect in metals is
developed by Fieber, Nedoluha, and Koch. ' Physically
we understand the temperature gradient as caused by
the dependence of the mean time of collision 7. of the
carriers (free holes or electrons) on their energy. At a
finite temperature the carriers are distributed in certain
quasi-continuous energy levels. The r(e) associated
with each energy level determines the mean value of
the drift velocity 8(e) for a carrier in energy level e:
namely

8(e)=E,p(e)= E, re( )e/m.

The mobility is denoted by p(e). In the presence of a
magnetic field along s and Hall Geld E„along y, the
carriers are subject to a force F(e) in the y direction
where

F(e) = eHS (e)/c+eE„=EjEe'r (e)/mc+eE„. (2)

In the steady state the Hall field will have such a value
that will give no net current along y. That is, F(e) =0
for a suitable energy e. But the value E„which make
F(c)=0 will certainly leave F(c')00 for e'We. Since
for conductors r(e) is a monotonically decreasing
function of energy, we find that carriers of higher
energy drift towards negative y and the carriers of
lower energy drift towards positive y. (See Fig. 2.) It
is this separation of high and low-energy carriers that
leads to a heat current along the y axis.
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FIG. 1. Sign convention for a positive Kttingshausen coefficient.
The top surface is hot when an electric field E and positive
current J are directed to the right, with a magnetic Geld H into
the paper.

'International Critical Tables (McGraw-Hill Book Company,
Inc. , New York, 1929), VoL 6, p. 419.' H. Mette, W. W. Gartner, and C. Loscoe, Phys. Rev. 115, 537
(1959).' H. Mette, W. W. Gartner, and C. Loscoe, Phys. Rev. 117, 149
(1WO).
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FIG. 2. The Kttingshausen effect for positive carriers. All
carriers move towards the right, but due to the combined action
of magnetic field II and electric field E„, the low-energy carriers
drift towards the top, and the high-energy carriers drift towards
the bottom.

4 H. Fieber, A. Nedoluha, and K. M. Koch, Z. Physik 131, 143
(1952).
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The case of metals is complicated by the fact that
both heat and. electricity are transported by the same
carriers. However, in semiconductors ordinary thermal
conductivity is almost entirely due to the lattice
vibrations. When the motion of the carriers in a semi-
conductor in a magnetic 6eld produces a heat current,
this current produces a temperature gradient which in
turn creates a lattice heat current equal and opposite
to the carrier heat current.

Clearly the magnitude of the heat current from the
carriers will depend on the energy spread over which
carriers are distributed. In a semiconductor where the
energy gap E, is small, one can produce appreciable
numbers of free electrons and holes at temperatures
somewhat above room temperature. The present theory
is applicable only when a semiconductor has both types
of carriers present. Electric current is then carried by
the motion of electrons and holes in opposite directions.
Figure 3 shows that in the presence of a magnetic 6eld
both carriers turn to the top side of the sample. We
wish to discuss the simple case in which both electrons
and holes have the same time of relaxation; and that
their number densities are equal. We expect in this case
that the Hall 6eld will be zero. Because of the electric
current and magnetic 6eld there will be a constant
particle current along y in which the number of holes
moving along y will always be equal to the number of
electrons moving in the same direction. This cannot

go on by itself. We must introduce an additional process
of generation of electron-hole pairs at one side G and
the inverse process at the other side R. In the absence
of any external mechanism the generation and recom-
bination of electron-hole pairs lead to an absorption
and liberation of heat from and to the lattice. We
estimate the current density for both the electrons and
the holes from Eqs. (1) and (2) . In the above mentioned
simpli6ed case since e,=e~=e; p, ,=p~=p,' E„=O we
have the particle current density towards positive y as
np'E~/c. Thus, the heat current due to recombination
is nE,p,'E~/c. The lattice heat current density Q
which will balance the free carrier heat current will be
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considerably larger for semiconductors than for metals.
In addition to the energy diGerence, we note that P is
inversely proportional to ~, the thermal conductivity,
which is larger for metals than for semiconductors. The
observed difference in the absolute magnitudes of P in
metals and semiconductors is of the order 104.

our simplified derivation gives the positive sign for
P experimentally found for semiconductors.

MGL have examined mostly p-type crystals of Ge
and Si. They 6nd a maximum value of P as a function
of temperature. A detailed theory given in the next
sections gives an excellent qualitative agreement with
the experimental results. In this more detailed theory
we take into account N, (T), ea(T), p, (T), pa(T) as
functions of temperature T. Here subscript e refers to
electrons and h to holes. We continue to make several
reasonable approximations: First, we neglect the
dependence of n, and e~ on position co-ordinate.
Second, we neglect the Thomson emf caused by the
temperature diGerence. We further neglect the con-
tribution of electrons and holes to the thermal
conductivity.

As we were preparing the final draft of this manu-
script, we found a paper by Putley' in which he gives
a concise table of equations for the various thermo-
magnetic and galvanomagnetic coe%cients. His formula
for the Ettingshausen coefFicient is

3x kT
P= ——---

I6 e~
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I'lG. 3. The Ettingshausen effect for an intrinsic semiconductor.
Holes and electrons move in opposite directions due to the electric
field 8, but in the same direction due to the magnetic field II.
Electron-hole pairs are generated at the side G, which becomes
cold; and recombination of electrons and holes occurs at the side
R, which becomes hot.

dT Eggy'I', II EgIJ,I'= (HJ.) '=
dy cxHeE 2', 2eca'

Here ~ is the thermal conductivity and we have written
J =eE,2', since the electric current density along x
is due to both electrons and holes.

It should be noted that since E, is of the order of 1 ev
every electron hole pair that recombines produces a
relatively large amount of energy. In the case of metals

the fast and the slow carriers have a difference in energy

only of the order kT. We, therefore, expect that the
magnitude of the Ettingshausen coefFicient should be

(~'p'+~a'pa') ~.~ap'pa (p.+la—a) P+2Eg/&T)
X-

(~,P.+~aPa)'

In our paper we neglect the erst term (e,' .'p+n '
ap)a

in the numerator: this term is due to variation of
mobility with carrier energy e, as discussed above for
single-band carriers. We also neglect 7 in comparison
with 2E,/kT. We assume that recombination of a pair
produces only the gap energy E„while Putley has
included the energy due to the thermal motion of the
electron and hole. When these approximations are made,
Putley's equation reduces to our Eq. (21) for the general
two-band model, and to Eq. (4) for the intrinsic semi-

' E. H. Putley, Proc. Phys. Soc. (London) 868, 35 (i955).
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conductor with equal electron and hole mobilities. (We
note that in his Lorentz-D rude calculation, Putley
includes the characteristic factor 3m/8. )

We have not been able to find in the literature a
derivation of Putley's equation for P. Tote added Az

proof. We—are grateful to Dr. Putley for a reference to
his work: T. R. E. Journal, Oct. 1953,pp. 39—81. In this
paper we provide a detailed derivation (of Eq. 21), and
we also give a physical interpretation of the Ettings-
hausen eRect in semiconductors. We also compare our
calculations with the recent experiments of MGL.

We note that our calculation of the Ettingshausen
coefficient can be combined with the Sridgman relation
to give a calculation of the Nernst-Ettingshausen
coefBcient. The converse route has been followed by
others, ' ' i.e., the calculation first of the Nernst-
Ettingshausen coeKcient, and subsequently of the
Kttingshausen coefficient.

where electronic charge is —e, and f is the distribution
function.

Assume the solution of (5) to be of the form

Then
f=fp+v*fi+v, f~

l9f Bfp
mve+ fi,

BS~ BE

af afp
mvp+ fp

Bvy B6

(6)

(7)

S"bstituting (7) and (6) into Eq. (5) and equating
coefficients of ~, and e„we obtain:

2. CALCULATION

In the presence of an electric field E, along the x
axis and a magnetic fieM H along the s axis a Hall field
is produced along the y axis which we denote by E„.
Boltzmann's transport equation for electrons in electric
and magnetic fields shown in Fig. 2 can be written as

' Bf (eE, ev„' Bf ~eE„ev,
+ HI+

Bve(m mc 3 Ovp(1n mc

f fp—
(5)

The boundary condition is

—
e) fv„pd'v=J„=O= —

e) fpv„'pd'v. (12)

quantities of interest are

je= —
e) fvepdv= —e fivepdv, (13)

Qv= pfv ppd v= p fpvp pd v. (14)

Q„ is the heat current along y and pd'v is the number of
states in the volume element d'v in velocity space.

3. APPLICATION TO SEMICONDUCTORS

The formulas developed in the last section are
applicable to both the free electrons and holes. Using
appropriate signs and mobilities one can calculate their
combined effects on J„J„,and Q„. If only one type of
carriers is present as will be the case in n or p-ty-pe
semiconductors at room temperature or below, one can
use a Maxwellian distribution function and calculate a
heat current using Eq. (14) in a straight-forward
manner. One will then get a nonzero heat current only
if one takes into account the dependence of collision
time r on the energy as discussed in the introduction.

The present paper considers the case of high tem-
peratures where the conduction is due to both the
electrons and the holes. It should be noted that when
we consider two-band conduction in semiconductors,
the dependence of r on energy becomes much simplified.
One can within a very small error associate a mean
collision time r, with the electrons and r~ with the holes.
The mean energy of the electrons and holes is
E,+PpkT=E, and E„-PpkT E„where —E, and E„are
the energies associated with the bottom and the top
of the conduction and valence bands.

Equation (12) under the above assumptions becomes

HE.n,p,'/c+E„n, p, =HE,nhph2/c E„n~h, (15)—

where n, and e~ are the numbers of free electrons and
holes; p, and ph their mean mobilities: e.g. , p, = er,/m.
The Hall field E„is found from Eq. (15):

(8)

(9)

(afp/ap)eE. "f,=f,/r, —

(8fp/ap)eE„+~ f,=f,/r,
Ev HEe(nhph nerve)/(nepe+nhph) ~ (16)

Thus, each side divided by e denotes the actual number
of holes or electrons moving in the positive direction.
[See Eq. (2).]

Equation (14) determines the temperature gradient.
In semiconductors heat conductivity is largely due to

fi (8fp/8 p)eE r[1———E~r/E g.
Similarly

fp (8fp/8 p)eE.rgb——r+E„/E.g.
' P. J. Price, Phys. Rev. 102, 1245 (1956).

We can interpret each side of Eq. (15) as an electronic
or hole current in a field along ywhere co=eH/mc. Assuming that cur is small, we neglect

(&ur)P in comparison with unity, and solve for fi and HE,p, ,/c+E„. (17)
fp, as follows
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the lattice. Since Q„ is the heat current due to charged
carriers in electric and magnetic fields,

Qy = —Kd T/dy.

Using Eq. (17) one finds

dT /E, E„)-
i (HE,n,p.'/c+E„n, p,). (19)

dy e

20

SAMPLE OHM-CM T YP. E
0 50 P
d 45 P
X l9

46 p

+ 38 P

Here we have used E, as the mean energy of free
electrons and E„as the mean energy of holes with
E,—E,=E,; Ettingshausen coefficient I' is defined as

IO

HE, ( n, p+ nap)a

Eg

nerve

(1+E„c/E Hp, ).
e& nepe+napa

(20)

Substituting for E„from (16),

Efl nep en' hy- ,(p.+p )
«ec ( n, p+ nap)a'

(21)

0
I

500 700

4. DISCUSSION

Equation (21) gives the Ettingshausen coeKcient P
in terms of four variables n„n~, p, „and p~. We consider
6rst the special case of an intrinsic semiconductor
where n.=na. (Note that any sample behaves like an
intrinsic semiconductor at suKciently high tempera-
tures. ) Here we note that P is independent of the
number of carriers and we have

FIG. 4. Measurements of the Ettingshausen coefBcient P for
6ve difterent samples of Ge, by Mette, Gartner, and Ioscoe,
reference 2. P is given in units of pdeg-cm jgauss-amp. The resis-
tivities should read 30, 4.5, 1.9, 0.46, and 0,38 ohm-cm.

( .+pa).
«ec (1+s)'

(24)

than unity at stil1. higher temperatures. Expressing P
in terms of z we have

intrinsic.
Kce p~+pa

P=Egpa/«ec, intrinsic. (23)

Consider next a p-type sample. Here na is always
greater than n, . At low temperatures, i.e., below room
temperature, we have only free holes and practically
no free electrons. The problem is then a one band
carrier problem, and our formulas will not be applicable.

At higher temperature there will be some free elec-
trons in the conduction band. As the temperature
increases both n, and n& will increase. The mobility
p, I, decreases faster with the temperature than p, .
Hence, a variable s defined as z=napa/n, p, which will
be nearly in6nite at room temperatures, will become
comparable to unity at high temperatures and smaller

Since p, , and pj, are continuously decreasing functions
of temperature (pa decreasing more rapidly), we con-
clude that for an intrinsic semiconductor I' decreases
with the temperature. At sufFiciently high temperatures
peppy'„glVlIlg

Since z varies much more rapidly with temperature
than p, , or pl, near the region where z= 1 we approximate
P as a function of z only. I' then has a maximum near
s=1. In terms of the variable s we note from Eq. (16)
that the Hall field goes through zero at s = p, ,/pa. Since
p,/pa in this temperature range is of the order unity,
we conclude that for a p-type semiconductor there must
be a maximum I', in the Ettingshausen coefficient
plotted against temperature; and the temperature T
at which the maximum occurs must lie in the neighbor-
hood of the temperature at which the Hall Geld is zero.
From Eq. (24),

Eg (p.+pa)

which is the maximum value of I' for any sample at
this temperature.

In n-type semiconductors above room temperature
z is always less than unity. At room temperature z is
nearly zero, at higher temperature it increases but
remains less than unity, and at very high temperatures
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s falls as ps/p, Thus s as a function of temperature has
a maximum value less than unity. Since s goes through
a maximum Eq. (24) shows that P must also go through
a maximum.

S. COMPARISON WITH THE EXPERIMENTS

Recently Mette, Gartner, and Loscoe' have measured
Ettingshausen coefficients of germanium within a tem-
perature range of 300'K to 700'K. MGL have measured
four p-type and one e-type samples of Ge: their results
are reproduced in Fig. 4. The purest of the samples
(room temperature resistivity equals 30 ohm-cm) does
not show a maximum in the Kttingshausen coefficient.
Instead, P decreases continuously with increasing
temperature. This is to be expected since for the purest
sample (n~,ps/e. p.)=1 at room temperature. If t.he
temperature is sufficiently high so that 2, (1, p, &&(p,„
and n&=N„ then Eq. (24) gives P= (E,/ crt) ps, = (E,/
see) p, q. This is exactly the behavior of P for an intrinsic
sample as given in Eq. (23). Numerical values compare
favorably with the experimental values obtained by
MGL. An estimate at 400'K shows P=19&10 ' deg-
cm/gauss-amp as against their observed value
P=1 )4&10 '. (In our estimate we use E,/e=0. 75 volt;
ps/c=1. 05)(10'T "'=1000 cm'/volt sec; and a=0.4
watt/deg em=0. 4&(10s gauss-cm' amp/sec deg cm.)
Variation of P as a function of temperature arises from
the dependence of p,~ on temperature which agrees with
the experimental observation of the sample of highest
purity in the range of 400'K to 700'K: The ratio
P4oo/Prop is estimated as ps(400)/ps(700)=3. 7, while
the observed ratio P4pp/Pr pp is 3.

With the other three p-type samples, MGL have
observed a maximum in the Kttingshausen coefficient.
The temperature T shifts to higher values as the
sample is more and more p type. The theory explains
this observation, because if initially the sample has
more holes then it will require a much higher tempera-
ture for the ratio Nj,py, /r4p, =s to be of order unity.
Therefore, T will be larger if the sample is impure.
The value of P, will, however, be smaller for the
impure sample than P, for the purer sample because
the mobilities will decrease with higher temperature.
[See Eq. (25) for P, .]

The prediction of the present theory that the Hall
coefIj.cient changes sign near T is con6rmed by pre-
liminary experiments of MGL (private communication).

One concludes from Eq (25) that if a maximum
occurs at some temperature for a certain sample, then
it is the maximum value of Ettingshausen coefBcient
for all samples at that temperature. This conclusion
does not seem to hold for the p-type Ge samples as
measured by MGL: specilcally the values of P for
the purest sample lie somewhat above P for the
other p-type samples. This conclusion seems to be
valid for p-type Si from the experimental curves of
MGL, shown in Fig. 5.

S&MPLE f'/0 Hg-gM

S!
22

.96
~22

&oo 500 700 9oo

FIG. 5. Measuremqnts of the Ettingshausen coefficient I for
four different samples of Si, by Mette, Gartner, and Loscoe,
reference 3. 2' is given in units of pdeg-cm/gauss-amp.

The ratio

P (Ge) P Ep z' p,, (T„)
P (Si) P ' Eo' Ir p, ' (T ')

where the primed and unprimed quantities refer, re-
spectively, to Si and Ge. Comparing results of Ge
sample (0.38 ohm-cm room temperature resistivity)
and Si sample (0.22 ohm-cm room temperature re-
sistivity) one finds from Figs. 4 and 5 an experimental
ratio of P /P '= 5. Using a'/tt= 0.6/0. 4, Eo/Eg'
=0.74/1. 12 and p.(450')/p'. (650') =1800/280 we ob-
tain the theoretical estimate P„/P '= 6.5, which
indicates a reasonable agreement with the experiment.
The thermal conductivities are taken from MGL"; the
Ge mobility p, (450) is from the formula 4.9X jOr T 'o
while p.'(650) is obtained from an extrapolation of
Morin and Maita's data. ~

For lack of experimental data we cannot compare
the theory with e-type samples. One expects the
maximum in these to be lower than the corresponding
maxima for p-type because s(1.
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