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Transport in Metals. II. Effect of the Phonon Spectrum and Umldapp
Processes at High and Low Temperatures*
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A calculation of the nonmagnetic transport coe%cients of the
alkali metals is made, with improvements designed to take into
account the effect of the phonon spectrum on both the normal and
umklapp regions of scattering. The phonon equations of motion are
solved numerically to obtain a spectrum sample, and spectrum
averages are then computed in a manner similar to specific heat
calculations, although we do not need or compute the density of
states directly. No average Debye temperatures are used, but
rather the sums are obtained in terms of certain combinations of
the elastic constants, which in principle are measurable. Also,
improvements on the shielding part and on the ion part of the
electronic matrix element are calculated and discussed. The results
show that umklapp processes are important down to the lowest
measurable temperatures in the ideal component of the electrical

and thermal resistivities, being completely dominant in the former.
The low-temperature temperature dependence is therefore deter-
mined mainly from the umklapp term, which can show a faster
variation than T' in the electrical resistivity, as is actually ob-
served in sodium. The transverse phonon vibrations dominate the
contributions at all temperatures and even the non-umklapp term
at low temperatures. The computations give absolute magnitudes
for the resistivities which are much too large at low temperatures.
This is tentatively attributed in part at least to a spectrum which
perhaps exaggerates the anisotropy of the transverse phonons.
General expressions for the transport coeKcients are calculated
via the Kohler variational principle which are not restricted to
the model of spherical energy surfaces. A general expression for
the phonon-drag term in the thermo-electric power is given.

HE purpose of this paper is to present some im-
provements in the calculation of the electrical and

thermal resistivities and thermoelectric power of the
alkali metals. In Part I, we discuss the nature of the
improvements and the results of numerical calculations.
In Part II, we place a list of Appendices in which the
details of the derivations and the methods of computa-
tion are explained.

1. Umklapy Processes and the Phonon Syectrum

One of the standard expressions for the thermal part
of the electrical resistivity p; is the Gruneisen inter-
polation formula"

p,= (const/O~)C'(T/O~)' js(O~/T)
where

s'd2:
Js(x) =

(e*—1) (1 e ')
(2)

sCtI= Isy~ g(je). (3)

On the left-hand side, we used q to denote the phonon
wave vector, as does Kilson; whereas on the right-hand

*Parts of this paper were presented as partial fulhllment for a
Ph.D. degree at Harvard University. The calculations were
performed on automatic computers at the Massachusetts Institute
of Technology and Northwestern University, and were partially
supported by a Navy contract and a National Science Foundation
Grant. The author would like to express his thanks for this support.' See, for example, N. F. Mott and H. Jones, Theory of Metals
used Alloys (Dover Publications, Inc. , New York, 1958), p. 274.

~ A. H. Wilson, Theory of 3fetuls (Cambridge University Press,
New York, 1953), pp. 278 and 307.' M. Bailyn, Phys. Rev. 112, 1587 (1958), Kq. (5).

and where the C in (1) is the interaction integral of
Wilson PEq. (9.3.8) of reference 2], and is related to the
I&s LEq. (17b) below) of a previous article~ by the
author (which we shall refer to as I) by

side we use 6 to denote the same thing, as in I and in the
rest of this paper. ((jtr) is a unit vector in the direction
of polarization of the phonon of wave vector ir and
spectrum branch j.k is the electron wave vector before,
and k' after the interaction with the phonon.

The first improvement relative to this expression is
the inclusion of umklapp processes. An umklapp process
is one where the electron wave vector satisfies the selec-
tion rule

s—=k' —k= tr+K,

where K is a vector of the reciprocal lattice. Since k, k',
and cr are reduced wave vectors, there is one and only
one pair e, K which will satisfy (4) for a given k, k' pair.
Umklapp processes were first pointed out by Peierls. 4

Bardeen' later made a calculation which took them into
account, assuming however that the wave vector for the
phonons could be approximated by the maximum value
a. , for such processes. Ziman' improved this by
averaging the 0's over the values consistent with keeping
the electron wave vector difference k—k' constant in
magnitude. The geometry of such processes then allows
for quite small a's to appear in this average. Bardeen
and people previous to him concluded that umklapp
processes would be negligible at low temperatures, be-
cause there is a lower limit on the energy of the phonons
that can enter into such processes (which is what
suggested the Bardeen approximation cr=a. ,„ in the
umklapp region). Ziman however showed that this
energy can be quite small because of the range of a-'s in
the average, and he concluded that the inhuence of
umklapp processes would go down quite far in tempera-
ture, but at suSciently low temperatures, the neglect of
umklapp processes would become valid.

4 R. Peierls, Ann Physik 5, 121 (1932).' J. Bardeen, Phys. Rev. 52, 668 (1937).' J. Ziman, Proc. Roy. Soc. (London) A226, 436 (1954).
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Our work on this aspect of the calculation cannot be
isolated from the second improvement, which is to take
the phonon spectrum into account. In I, we investigated
the effect of the nonequilibrium part of the phonon
distribution, but our remarks in this paper refer only to
the equilibrium part, and its spectrum. In 1956,' Brooks
and the author showed that in the alkali metals averag-
ing over the phonon spectrum under the integral in (2),
not outside it, increased the signi6cance of the umklapp
processes at all temperatures, . but especially at low
temperatures, where there seems to be no temperature
low enough for the umklapp processes to become in-
effective, at least until one is so deep in the impurity
region that the thermal scattering can be neglected
altogether. In fact. our results were that if anything,
the roon umklap-p part could be neglected in the very low
temperature region, at least as far as about O'K, and
that the umklapp contributions would be appreciable
down to 2'K or lower.

Pfennig' recently has come to the same conclusion, for
more or less the same reasons.

We shall here indicate how the form of (1) changes
when we make these improvements. The integral in (2)
is changed from an integral over s=koi/kT where Aco is
the phonon energy, to an integral over scattering angle'
0= 2 k, k'. We shall have in mind a spherical Fermi sur-

face, and scattering can take place from the vicinity of
any point k on the surface to any other point k'. If we

were limited to non-umklapp processes, we would have
for body-centered cubic lattices ~k—k'~, =o. , =2&ks

where ko is the radius of the Fermi sphere. This upper
limit corresponds to a maximum phonon energy 5+,„
=«O' Lsee (1)j.With the inclusion of umklapp processes,

~
k—k'

~
has an upper limit 2ks. The variable of integra-

tion is u=sin(8/2), and u goes from 0 to 1. For each
value of I, there is a value of the electron wave vector
difference s=—

~

k—k' ~, and for each such value there is a
variety of possible rr's. (For non-umklapp processes, all
these e's have the same 0-. For umklapp processes, even
the o. magnitudes vary. There is also an "intermediate
region" for which both umklapp and non-umklapp
processes can occur with the same I—the latter is' an
extremely small region and is neglected, the cutoG
between umklapp and non-umklapp taken at u=2—'
=0.63.) The Ziman avera, ge in the umkiapp region
concerned only the variation in 0. magnitudes, whereas
we attempt to take into account the spectrum of the
phonons, and hence we must be concerned with the
directions of e also. The average we take then is in some
sense analogous to the type of spectrum calculation
made in specific heat theory, where the frequencies
ro(e)'s are solved for particular o values, and the density
of states calculated. Here we do not calculate the density

~ M. Bailyn and H. Brooks, Bull. Am. Phys. Soc. 1, 300 (1956);
M. Bailyn, Proceedings of the Fifth Ietereatioeal Conference og
Low-Temperature Physics and Chemistry (University of Wisconsin
Press, Madison, Wisconsin, 1958), p. 373; M. Bailyn thesis,
Harvard University, 1956 (unpublished).' H. Pfennig, Z. Physik 155, 332 (1959).

of states directly, but we calculate the value of the
resistivity "average-and" Lsee (839), for example) at
several e's, add the results, and then divide by the
number of e's chosen.

We can see from (1) and (2) that the phonon phase
velocity w, defined as &o/o. will cancel out when the 0 '
factor in (1) multiplies the s ds factor in Is. Hence in
the electrical resistivity the average over the spectrum
will concern only the exponentials in (2). If we convert
from Wilson's C to our Iiq as in (3), our Ii,i, in-
corporates an extra factor u, and (1) turns out to be of
the form

r' LIa~' $(j~))'
p, =constT' dee', (5)

(e' —1) (1—e ')

where we have not assumed that Ii, r, (or Ii,i, /I) is con-
stant, but rather have incorporated it as a function of
I, in the integral. ' The angle brackets imply an average
over all e consistent with a given u. This then is how we
anticipate the transport coeScients will look under these
improvements.

2. The Kohler Variational Principle and
Distorted Fermi Surfaces

In Appendices A, B, and C we make the detailed
calculation which leads to expressions like (5) for the
electrical and thermal resistivities and the thermo-
electric power. Vjle use the variational principle of
Kohler, ' adapted to take umklapp processes into ac-
count (see I). The variational principle provides the
transport coeScients in the form of ratios of deter-
minants of an arbitrary number of rows and columns.
The accuracy increases with the number of rows and
columns used. If we keep the usual number (1 for the
electrical resistivity p, 2 for the thermal resistivity 8",
and 3 for the thermoelectric power S), and retain only
terms in the lowest power of the smallness parameter
I'=AT/i, we get the expressions in (A1)—(A3) in
Appendix A, where they are then adapted to take into
account possible distortion of the Fermi surface. The
effect of this distortion on the transport properties takes
perhaps its simplest form in the integrals that appear in
the variational principle. (Tsuji" has already exploited
this. ) In particular, for the thermoelectric power, we
have a high-temperature expression in (C5) which shows

explicitly the eGect of the Fermi surface shape inde-
pendent of the details of the scattering mechanism, in
the approximation of 3 rows and columns. (Keep in
mind however footnote 9.)

' M. Kohler, Ann. Physik 124, 772 (1948); 125, 679 (1949). See
also reference 2. In everything that follows, it must be kept in mind
that the variational principle, as we land others) nse it, starts from
a distribution function of the form (A4) in Appendix A in which
the "time of relaxation" represented by the curly brackets is
assumed to depend only on the energy of the electron, but not on
where on the energy surface the electron is. All our conclusions and
discussions are subject to this limitation, which in fact may be
severe."M. Tsuji, J. Phys. Soc. (Japan) 13, 818, 979 (1958).
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p, = T 'Aoyio n(u)~-o(u)du,
"o

(6)

It is shown in Appendix 8 that a rigorous evaluation
of the integrals yields averages exactly as in (5) so that
the patch-work procedure used above has in fact a justi-
6cation. Making no assumptions about the shape of the
Fermi surface, we arrive at the general expressions
(828), (829), and (C22), for p, W', and S, respectively.
These expressions might be used to gain some idea of
what happens under unusual circumstances, such as
high pressure, for example. It is well known that the
eventual eGect of increasing pressure in the alkali metals
is to increase the resistivity. "Ham" has indicated that
the increase in pressure will make the distortion of the
Fermi surface larger, and that the latter will probably
make greater and greater contact as the pressure in-
creases. Dugdale and Cohen have attributed the ulti-
mate rise in p to this increasing contact. From our
expression (828) we may anticipate that the averages
(i.e., what, follows the integral sign) will change slightly,
but also there may be a tendency for the electron
velocities to become smaller on the Fermi surface since
the distortion must have the effect of making narrower
shapes out of the occupied region: because at the same
time (1) the fraction of the zone filled must remain the
same, and (2) the e6ect of pressure according to Ham is
to have some of the filled region touch more and more
the zone boundary. These narrower shapes will have
smaller cross sections (than the undistorted sphere) and
this implies smaller velocities on the surface. "' Since in
(838) p, Lvg')j ', where vQ) is the average velocity
on the Fermi surface, we may expect that the eGect of
pressure is ultimately to raise the resistivity, through
the decrease in v(t'). Perhaps we have here the mecha-
nism for the ultimate rise in p under pressure. " (There
are other effects of course, such as the change in the type
of connections on the Fermi surface, changes in
I~o., etc.)

If we use spherical energy surfaces, not necessarily in
the effective mass approximation however, we get the
results in (839), (840), and (C25), of which we cite the
erst two:

where A0 a,nd I0 are const@,nts, y& is discussed below
Lsee (11)$, n(u) involves the matrix element Iso t-see

(843)], and the P„ are averages:

F„= jo s'; s—= s s, 8

p& ——(mo/m*)yi,

where from (842), (C23), and (C6)

d'E/dk'
yo=2to

(dE/dk) g r mp FMA

(9)

(10)

yi=
Akp/mp m*

vQ.) m0 EMA

2ip d
lnv(E)A(E)

3 dE - E t ~0 EMA

(12)

Here A(E) is the area of the surface of energy E, and
v(E) is the average velocity on that surface Lsee (A12)),
and i p and kp Ldefined in (A10) and (A11)) are the
Fermi energy (approximately) and the radius of the
Fermi sphere, respectively. Translating Barrie's nota-
tion into ours, we get

which replace the I„'s of references 1 and 2. (Note that
Fo corresponds to Jo, Fo to Jq, etc.) The average in (8)
is over all directions of s (s determines e) for a given
s magnitude, which then amounts to the exact same
average as in (5).

Our results for the eGect of including exchange and
correlation corrections to the one electron energies can
be seen from (839), (840), and (C25) to diGer from
Barrie's. "What is sought is the ratio of the transport
coefficient calculated with exchange eGects to the result
calculated on the effective mass approximation (EMA).
Our expressions yield directly the ratio with respect to
the free electron approximation. We can obtain the
former ratio from the latter by defining three g~'s as
follows:

3uo —2
W;=T-'I WoyP t n(u)] Eo+ E, (du, (7)

&o & 4'
P/PENA ~/~EMA 'll

S/SEMA= s (go+pi)
Barrie.

(13a)

(13b)
'" P. Bridgman, Physics of H~gh Pressures (G. Bell and Sons,

Ltd, London, 1949).
'o F. Ham, Bull. Am. Phys. Soc. 5, 161 (1960).1.mote added &s proof.—As pointed out by Dugdale (private

communication), one could have distortions that would not pro-
duce decreases in v(f). Hence, the statement in the text above
must be regarded as a guess in which, however, we can now begin
to have some faith as a result of Ham's calculations. ""The author is indebted to a talk given by M. Cohen, Bull. Am.
Phys. Soc. 5, 183 (1960), and to many conversations with and
communications from J. S. Dugdale on this subject and from A.
Gold on related subjects. F. Ham (private communication) has
found substantial negative k4 terms in the expansion of the energy
function for K, Rb, and Cs which increase with decreasing lattice
constant. This result tends to support the suggestion that v(t)
decreases with increasing pressure.

We find from (839), (840), and (C25), however

P/PEMA ~/~EMA 'gl (14a)

S/SgMA= s(gp+2gi)
Here,

(14b)

' R. Barrie, Phys. Rev. 103, 1581 (1956).

where the exchange and correlation eGect on the matrix
element is ignored (for this, see Sec. 5 below), and
where the change in the yp term in (C25) is not con-
sidered in (14).
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3. The Phonon Spectrum

The method for computing the averages in (8) is
explained in Appendix F. The solutions of the phonon
equations of motion must be obtained, and up to next
nearest interactions for bcc lattices they are of the form
in (F1):

Cls+ C44

Dw'/c44= 8(ao)—' 1—84+ —e(4r)
2444

(15)

for the velocity m, where the c; s are elastic constants, u

the lattice parameter, D the density, 84 given in (F4),
and e(4r) an eigenvalue that requires numerical com-
putation. We solved on computers the equation (F2) for
e(4r) Land consequently for the eigenvectors g(jo)j at
several points, and with this information computed the
averages in (8). More details are in Appendix F.

From a small sample of points in the elastic limit (long
waves), we found' the following characteristics of the
spectrum. Let the three polarizations j be denoted by
L (longitudinal), Tz, and Tii (transverse I and II), Tii
being the one with the smallest velocity for a given e.
We find that the T vibrations have velocities which are
considerably smaller than those of the L, vibrations, and
are highly anisotropic. In T», some velocities (in the 110
direction for example) become as low as —,

' the T velocities
in the 100 direction. Also the cosines ($(j4r) 4r/o. )' for
Tz and Tzi are very small but not zero. The early work
on conductivity problems in metals approximated the
transverse ((Trr) rr/o as zero, which would be valid for
an isotropic substance (phonon velocities constant).
Despite the smallness of these cosines, the exponential
factors in (6) will favor the T modes (actually T»
mainly) at low temperatures sufficiently to make them
dominate even the non-umklapp processes!' (Pfennig'
has recently reached the same conclusion. ) At high
temperatures, however, the ($.4r/o)' factor cuts out the
T modes in the non-umklapp term sufficiently so that
that term is dominated by the I. modes. The umklapp
contributions are dominated by the T modes at high
temperatures.

It should be emphasized that it would be very
di%cult to get the correlation between the disposition
of 0 magnitudes in the umklapp region and the tremen-
dous anisotropy of the x's if we did not make a "point
calculation" as described above. This correlation turns
out to be very important, since the small 0. magnitudes
frequently occur with small m's, and this makes for a
very large weighting in the J"„averages. Our early work
on low temperatures in reference 7 was an estimate on
very rough spectrum calculations neglecting the correla-
tion, (of the same sort of accuracy as Pfennig'ss) and
our present more accurate calculations indicate that
the preliminary results are qualitatively correct but
quantitatively very bad. We discuss this below. %e feel

that more accurate computations and a more accurate
spectrum are still very much needed.

TABLE I. The Gr'st row contains the temperature at which the
resistivities of the following two rows were computed. The units
of p are 10 4 ohm-cm. Ap'= (4a*/4ap)'Ap, where Ap is given in
(841). It's units are 10 ' deg-ohm-cm. s0 is defined in (FS) and
si in (F12). The units of the elastic constants are 10M dynes/cm'.

T
p (th)
p (exp)
C1

CI/C0
Ap'

s, (4'K.)
s1 (4'K)
c44(4'K)
e(4'K)
c„—c„(4'K)

297
0,20
0.94
0.1
0.005

15.75
0.044
0.937

13.58
426

2.83

Na

125
0.14
0.17
0.25
0.011
1.77
0.148
1.067
6.02

172
1.089

70
0.14
0.13
0.32
0.014
0.81
0.196
1.122
2.65

96.7
0.516

Rb

211
0.56
1.15
0.42
0.019
0.303
0.232
1.173
2.03

59.5
0.400

Cs

158
0.50
1.48
0.43
0.019'
0.181
0.273
1.235
1.68

44.4
0.344

4. On the Previous Neglect of Umklapp
Processes at Low Temperatures

It should also be emphasized that the main reason the
importance of umklapp processes at low temperatures
was previously underestimated was that the spectrum
averages were performed in effect outside the I integral.
When an average Debye temperature is used, it corre-
sponds to taking the bracket average in (5) outside the
I integral, and this procedure underestimates the im-
portance of the very small 0's and the very small m's

which conspire together to provide tremendous umklapp
contributions at the very low temperatures. It is never-
theless useful to have a parameter with a signihcance
similar to a Debye temperature, but not involving mis-
leading averages. We define therefore t see (F14)j

0= (!skp/s) (c44/p)i, (16)

which depends only on the lattice constant (through kp)
and on @44. Values are given in Table I. We shall refer
to this substance-characterizing quantity frequently in
what follows.

n(44) = (r,/as)'(r, /e) 4N'Iis', (17a)

Iss. EJ f(k', r)*P(k,——r)Vv(r)d'r, (17b)

where r, is the radius of the Wigner-Seitz sphere, g~
the Bohr radius, and where v(r) is the potential associ-
ated with the ion of the cell at r=0 plus the electron
cloud around it which shields the ion plus the electron
hole around the electron which "antishields" the
electron. Bardeen' in 1937 calculated this quantity using
the Hartree equations for the electrons. This takes into
account shielding of the ion, but neglects the exchange
and correlation hole sects. His result was that II,~

5. The Matrix Element

Our results (B39), (B40), and (C25) are in terms of
a, dimensionless quantity n(u):
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I' ro. 1.The ratio of the shielding
factor as calculated in this paper to
the Bardeen result (reference 5).

E.O

AC Oi7

could be written in the form,

Igg. ——S(s)I;.~(s) = I'-(s),
1+Ss„a~~'

(18)

I;, (s) =E P(k', r)~f(k, r)Ve;.„(r)d'r, (19)

where v;, is the potential from the ion alone. In 1955,
Bardeen and Pines" treated the problem by means of
the collective model for the E-particle electron system
to take exchange and correlation sects into account.
These authors concluded that for small wave-vectors
s=—k' —k, the 1937 Bardeen result still obtained, but
that for large s there would be a correction that they did
not attempt to work out. We have approached' the
exchange and correlation problem for the matrix element
by employing the Har tree-Fock equation for the
electrons and introducing the correlation correction
simply by cutting oG the long wave Fourier components
of the Coulomb potential 1/r that appears in the
exchange term. Our results can be written analogously
to (18) as follows:

1—S„„'(k)
I'-(s), (20)

where S~, contains two terms, one arising from the
Coulomb term in the Hartree-Fock equation and which
reduces to the Bardeen term in (18) when the one-
electron energy is treated in the effective mass approxi-
mation, the other arising from the exchange term in the
Hartree-Fock equation, and which in the limit s —+0
becomes negligible in comparison, with the other terms,
but otherwise is not negligible. The S„„depends on k
as well as k—k', and hence wants to be averaged some-
how. First one squares I», and then one averages over
the circle of length talked about between (B24) and
(B25). Unfortunately, reference 16 was written before

"J.Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955)."M. Bailyn, Phys. Rev. 117, 974 i1960l.

we had seen how the matrix element fits into the
scheme of averages in (B25), and we averaged in
reference 16 over the entire Fermi sphere. We repeated
the calculation correctly for this paper however, the
details being given in Appendix 0, and the results in
Fig. 1. It should be noted that if we pick any one of the
the points on the circle of length /(s) we get the same
value for S as for any other point on the circle. Therefore
we do not in fact need to do anything extra to average,
nor do we have to worry about averaging S' instead of S.

Our results indicate (except for a small wiggling) that
for extremely small ~k—k'~, the (1937) Bardeen result
was too small and as

~

k—k'~ increases, S/Ssgpg e, goes
through a minimum and increases steadily up to the end
of the umklapp region. The eGect of the exchange and
correlation hole is to increase the scattering over the
Bardeen value, S' becoming as much as 1.6 times the
Bardeen value in the umklapp region. Other con-
sequences of our results are discussed in Appendix G. In
particular, we note that our results do not reduce to the
1937 Bardeen result even right at k—k'=0.

The disparity between our results and Bardeen and
Pines' result has been reconciled by Pines'7 (see also
note added in proof to reference 16) who has been able
to show that if one makes a canonical transformation
which will remove the short-range electron-electron
interaction (a term which in the Bardeen-Pines paper
was neglected when they concluded that their results
reduced to the 1937 Bardeen result for small s), and
makes the adiabatic approximation, then their new

results are identical with ours. Hence our one-electron
model approach and the subsequent computations have
been justified by a more rigorous argument.

An approximation that went into this computation
was the use of plane waves for the electron wave func-
tions. Brooks" has shown how an improvement can

» D. Pines (private communication).' H. Brooks (private communication). See also reference 16.
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i~

o-~ - (JS)

o
p, ~ y.g y, g y, q P,S Ag &.7 d.F d,f LO

Q~
FIG. 2. The matrix element squared, using the Bardeen shield-

ing factor. An error has crept into this 6gure. What is plotted is
~(N) =u'(JS)', not (JS)'.

be made and suggests that the error in neglecting it may
be large.

Also, we have used the first order exchange and
correlation correction to the one-electron energies. The
second order correction" is certainly not negligible, and
may play also a significant role numerically. "

The remainder of the computation of the matrix
element concerns the ionic factor which we consider in
the dimensionless form

r, (r, )sJ o (s) =)V
I

—
I

~
P(—k', r)*P(kr)Vu;, „(r) ter. (21)

a~& e

The approach we use to calculating (21) was introduced
by Bardeen. ' The modifications that we make were
suggested by Brooks. The first improvement is to use
wave functions of the form

g (kr) =cV 'aoe' [no(r)+if'i](r)k r/r+ ' ' ']'(22)
for which the necessary parameters to use in the
Bardeen-type approach were obtained by Brooks by
the quantum defect method'o (see Appendix E). A
second correction was the use of the Ewald sum tech-
nique" to calculate the part of the integral in (21) that
lies outside the cell in which the e;,„is situated.

We can sum up our results qualitatively as follows.
(A) The quantity Jbecomes rather small in the umklapp
region (for lithium it goes through a zero) and hence
becomes sensitive to small corrections. Because of the
factor F„ in the transport integrals Lsee (6), (7), etc.$,
the umklapp region is extremely important, and these
small corrections have actually rather large eGects.

"J.G. Fletcher and D. Larson, Phys. Rev. 111,455 (1958}.
'"' F. Ham, Solid-State Physics, edited by F. Seitz and D. Turn-

bull (Academic Press, New York, j.955), Vol. 1.
"See texts such as M. Born and K. Huang, Dynamical Theory

of Crystal Lattices (Oxford University Press, New York, 19541,

co= LJS/tel. =o',

h(tt)= 1—4.25tt'+6. 25tc4 —4 70N'
(24)

The form in (23), non-umklapp part, uses the 1937
Bardeen shielding factor. The adjusted co and c& are
given in Table I. We note from there that the umklapp
region gets relatively more important as we go from
Na to Cs. In Table I, co and c~ correspond to Fig. 2.
These values were used in computing the results given
in Fig. 3. We now give correction factors for certain ap-
proximations as follows: first the average of (S/Sis„s„„)'
in the umklapp region (i.e. , the exchange adjustment
of ci); second this factor times the velocity correction
of Eq. (14) adapters from Barrie's numbers; and third,
(S/Sis„a„„)s times the second order velocity correction
adapted from Fletcher and Larson. "We find: Na (1.92;
1.56; 4.66); K (1.56; 1.36; 4.53); Rb (1.43; 1.27; 4.22);
Cs (1.34; 1.17; 3.90). Each of these numbers times the
resistivity in Table I gives a new resistivity in the
corresponding approximation. The third number in each
case gives evidence that the second order effects are
terribly large and provide very poor agreement with
experiment. (It should be noted that the shielding
factor used for the third number is the same as for the
second, and does not include the second order correction
to the one-electron energies in its calculation. Thus the
third numbers are to this extent inconsistent. Never-
theless, the results are of interest. ) We anticipate also
a non-negligible e8ect of the second order exchange cor-
rection on the matrix element. This further cautions
us that we cannot be confident in calculations of the
matrix element. In the following section, the discussion

'"Pote added ie proof.—In addition to the above-mentioned
use of free-electron wave functions in computing the shielding
factor, we mention the fact that the "vacuum fluctuations" of
the phonons give rise to a temperature-dependent Debye-Wailer
factor in the matrix element J;, . This factor depends exponen-
tially on N2 and may be very important when Bloch waves are
used. A paper will appear shortly in The Physical Review on
this point.

(8) The improvement of the wave function, and the
use of the Ewald technique in performing the lattice sum
increases J in the umklapp region considerably, but not
much in the non-umklapp region. We estimate the
error in this part of our calculations to be of the order
of 10%%uo

Despite the improvements on the matrix element, we
feel that we are still far from having truly reliable
values for n(tt)" . Consequently, we did not think that it
was worth while making calculations that took more
than a crude average effect of the improvements. In the
umklapp region, we approximated n as a constant c~ to
be adjusted to fit the average theoretical calculation for
each element. And in the non-umklapp region, we used
a single curve for all the alkali's (see Fig. 2) with a,n
adjustable multiplying constant co'.

tr (tt) = cote'h(tt) 0 (tt (0.63 (non-umklapp),
(23)

Cg. . . 0.63 (tt(1.0 (umklapp),
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applies to the simplest case, the Bardeen shielding
factor and no correction on the velocity. The same
discussion would apply with the consistent erst-order
exchange correction made in the velocity and in the
matrix element. However, the discussion below con-
cerning magnitudes would not be applicable if the
second-order exchange correction were contemplated.

At low temperatures, the extreme region, I=1.0
becomes relatively more important than at high tem-
peratures. Therefore the same c~ cannot be a correct
average at all temperatures for a given substance. How-
ever in the temperature range, c& would vary by at most
about 50%, whereas the transport coeKcients for other
reasons change by a factor of 10' or more. Hence we do
not need to worry about this obscuring any temperature
dfects.

6. The Results of the Calculations

Ke here repeat the conclusions of a general nature
that were first announced several years ago by Brooks
and the author' on the basis of preliminary calculations.

1. To the extent that the Born von Karman spectrum
is valid, and the anisotropy of the relaxation time
neglected (see footnote 9) the electrical resistivity is
dominated by umklapp processes at all temperatures
down to which we have calculated (8'K for sodium,
2'K for Cs, 20' for lithium). The thermal resistivity,
subject to details of the matrix element, has about equal
contributions from umklapp processes and non-umklapp
processes, the latter beginning to become relatively less
important at the lowest temperatures.

2. The transverse phonon modes dominate the
electrical resistivity at all temperatures, and are of equal
importance with the longitudinal in the thermal
resistivity.

In our preliminary calculations, which employed an
average Debye temperature in the umklapp region (for
the low temperatures) we found quite good agreement
with experiment in going from high to low tempera-
tures. We were suspicious of this approximation, how-
ever, since there is a significant correlation between
the anisotropy of the transverse phonons and the dis-
position of 0- magnitudes in the umklapp region. Un-
fortunately, our worst fears were confirmed. "In Fig. 3,
(see also Table I), we indicate the experimental and
theoretical curves that were obtained. (These were
equated arbitrarily at some high temperature. ) We
notice that the resistivities (electrical and thermal) are
in all cases too high as we go lower in temperature, the
disagreement getting worse as the temperature gets
lower, but setting in already at temperatures about 2
the Debye-type temperature 0 Lsee (16)$. The best

"The recent results of Pfennigs are essentially equivalent to
our preliminary calculations, the Blackman spectrum that he uses
to get an average Debye temperature being of the same sort as
ours. Our comments refer therefore equally well to his results as to
our previous computations,

metal is cesium, the worst is sodium, while lithium
(which is a metal which seems well to contemplate in
a special category) is quite good. In the electrical re-
sistivity, the disagreement in sodium at 0/T=20 is
such that the theoretical number is 10 times too large,
for cesium about 2 times too large, the other metals
ranging between these, potassium about 3 times, (and
lithium, best of all, about 1.25). The magnitudes at
some high temperature are listed in Table I, and we
get good results for Na and K, rather poor results
for the other metals, as is usually the case. It is in-
teresting to note that if we multiply the factor that
our high-temperature calculation is too low, by the
factor that our low-temperature calculation is too high,
we always get between about 5 and 10. For example, in
sodium we get (1)(10)=10,for potassium, (1)(5)=5,
for rubidium, (2)(3)=6, and for cesium, (3)(2)=6. In.
the case of lithium, the high-temperature value is too
small by 4.0, but that is giving the matrix element a
value which is probably too large. The total factor for
lithium would be then larger than (4) (1)=4. We notice
in addition that the sodium value is conspicuously larger
than that of the other metals. 1A"e regard this as another
aspect of the strange situation found in the specific
heat" that all theoretical calculations for sodium based
on an analysis of the spectrum yield Debye temperatures
that go through a minimum as T gets down to about
10'K, where experimentally this is not observed;
whereas a minimum is observed in potassium. '4

In a qualitative way, we have interpreted our results
as implying that the spectrum we have used (that
actually resembles the spectra that went into the
specific heat calculations) has a shape that is worst
suited for sodium from among all the alkali metals, and
perhaps best suited for cesium. The characteristic of this
theoretical spectrum is the high anisotropy in the
transverse modes. We therefore draw the conclusion that
this high anisotropy is actually fairly appropriate for
cesium, but not for sodium, and the difference far more
spectacular than merely some large change in the
elastic constant parameters ss and si. (See Fig. 4 and
(F5) and (F12) for ss and sr.) This proposed systematic
change from relatively small anisotropy to relatively
large anisotropy as we go down the alkali metals would
have significant consequences in the phonon drag eGects
"See the review article by D. H. Parkinson, Reports oe Progress

ia Ehysfcs (The Physical Society, London, 1958), Vol. 21, p. 226.
'4 Dr. D. L. Martin has pointed out to the author that the lack

of a minimum in the Debye temperature of sodium at low tempera-
tures probably has to do with the martensitic transformation in
that metal at low temperatures. (See J.S. Dugdale and D. Gugan,
Proc. Roy. Soc. (London) A254, 184 (1960) for a recent analysis of
the transformation in lithium and sodium. The other alkali metals
have not revealed any such transformation despite great eGorts to
detect it. ) About 50% of the specimen may be expected to convert
to a faulted hcp lattice, and there has been some work which indi-
cates that an hcp structure does not provide a pronounced mini-
mum in the Debye temperature (see C. W. Garland and L. J.
Slutsky, J. Chem. Phys. 28, 331, 1958). This would further our
contention that sodium is somewhat of a special case. (We have
come to a similar conclusion apropos of the phonon drag compo-
nent of the thermo-electric power. ")
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as we go down in temperature, the importance of the
matrix element at I=1.0 becomes more and more
important since Fo becomes more and more greatly
peaked at that point. Therefore, glancing at Fig. 2, we
would expect for sodium and potassium that the eRec-
tive c~ should get smaller and smaller as we go down in
temperature. (If we had relied on the 1937 Bardeen
calculation, this effect would be increased. ) It is how-
ever hard to see that this eGect would be able to provide
more than an increase of at most a factor of 2 for these
metals (as mentioned above), even if we relied. on the
Sardeen matrix element. Thus we do not feel that this

distortion than is available, in order for the calculations to become
signi6cantly more accurate. However, our view is that the im-
portance of the spectrum should not in any case be underestimated
and surely not neglected,

can be the major orgin of the discrepancy. Another
possibility is the possibly poor extrapolation of the
elastic constant parameters s~ and so. This however is
totally inadequate to get alterations of the size needed.
Distortion of the Fermi surface would also be inade-
quate, especially as that gets worse as we go from Na to
Cs, whereas our discrepancies get worse in the other
direction. One can however combine this eGect with

others to get changes in the right direction. Tote
added in proof. Dr. J. S. Dugdale has suggested that
the correct spectrum might yield a general resistivity
reduction that is simijar for all the metals, but which

would be compensated more and more as we go from
Na to Cs by the increased distortion of the Fermi sur-

face, This is an attrative alternative to attributing (as



390 M. BAIL YN

we tentatively do) the discrepancy mainly to the spec-
trum. It should be noted that a distorted Fermi surface
gives rise to smaller possible wave vectors in the
umklapp region, and hence smaller possible phonon
energies. This will have an eRect therefore similar to
some extent to an increase in anisotropy of the phonons,
in the present problem. We are not convinced by these
combinations, however, at this stage. Phonon drag
eRects are in the right direction, but they can be
eliminated simply from the fact that there are no ap-
preciable drag eRects theoretically in the thermal re-
sistivity (see I), whereas we get great discrepancies
in the thermal resistivity calculations of this paper.
There is a possibility that the spectrum points chosen
in (F10) were not representative, but we avoided un-
representative highly symmetric directions such as 110,
and we had 25 points in 1/48 of the' sphere, so that
this way out, although possible, seems to us unlikely.
We therefore tentatively suggest that the origin of the
discrepancy is a poor spectrum: the Born von Karman
model including next-nearest neighbors may not be
adequate for good quantitative comparison with experi-
ment. In all this, we must not forget that the curly
bracket in (A4) was assumed not to depend on the
direction of k. This may in fact hide serious errors. "

It should be noted that since the umklapp processes
dominate the electrical resistivity, the T' law previously
accepted as the limiting low-temperature T dependence
does not set in until such extremely low temperatures,
that the thermal component of the resistivity would not
be large enough to distinguish from the impurity
component. On the other hand, the umklapp term itself
varies exponentially at low enough temperatures, and
we may expect this to be Ineasurable in some of the
metals. Experimentally, a T law is found in sodium
below 9'K, and this is quite consistent with our results,
and could never be arrived at with just non-umklapp
processes. However one would also expect something like
this for lithium, and that is not observed. Possibly this
has to do with the martensitic transformation which is
more extensive in lithium than in sodium. Ultimately it
must reQect something about the spectrum or the matrix
element. In lithium, the possibility that the umklapp
contribution is greatly weakened by a small matrix
element in the umklapp region is not unlikely, especially
if the zero in the matrix element occurs at n= 1.0. Under
such a situation, we would not expect the umklapp
processes to dominate at the lowest temperatures (they
usually do so through a great peak at u= 1.0), and hence
would not expect a T dependence more swift than the
non-umklapp limit T'.

In the thermal resistivity, we find discrepancies of the
same type as in the electrical resistivity as a function of
temperature. They seem however to be generally

'~ For experiments see: D. K. C. MacDonald, G. K. %hite, and
S. S. Woods, Proc. Roy. Soc. (London) A235, 358 (1956); and
D. K. C. MacDonald and K. Mendelssohn, Proc. Roy. Soc.
«,
'I,ondon) A202, 103 (1950).

smaller, except for lithium. The reason for this is un-
doubtedly the fact that in the thermal resistivity, the
non-umklapp contribution is significant and this is less
sensitive than the umklapp part to the spectrum
details. One important result of our calculation is that
there is no mirlimum il the ideal thermal conductivity (or
maximum in the thermal resistivity) as the temperature
descends below e/4, except very slightly for rubidium,
which more than likely arises from poor extrapolation
of sp and s~ or some other accidental error. Previous
theories'~ have predicted such a minimum, which was
never observed. It therefore seems certain that the
spurious minimum in the thermal conductivity arose
from an underestimate of umklapp processes, and of the
eRect of the spectrum on the umklapp processes. Note
added irl, proof. A lessening of the anisotropy which
we proposed three paragraphs above would not tend
to produce again a maximum in the thermal resistivity
provided the umklapp term remained important. In-
stead, it would make even more pronounced the steady
decrease in the thermal resistivity as 0/T increases.

In the thermoelectric power, we do not have a
quantity that is linear in the scattering mechanism
(except in the phonon drag part which we neglect here).
One can however rearrange terms as in Appendix D" to
provide an, expression

S= (el,pT/f'p)S',

S'= Wp/W+3 (1—Wp/W)S",

(25)

(26)

~7 See reference 2, p. 309. See also Ziman, reference 6. Ziman
went a good way toward getting rid of the minimum by means of
his umklapp corrections.

2' This type of manipulation has been made by M. Kohler, Z.
Physik 126, 481 (1949)."D.K. C. MacDonald, W. B. Pearson, and I. M. Templeton,
Proc. Roy. Soc. (London) A248, 107 (1958).

where S" can be estimated theoretically Lsee (D7)],
and Wp/W, the ratio of the impurity component Wp of
the thermal resistivity to the total 8", can be obtained
from experiment. The resultant S' can then be calcu-
lated. We compare in Fig. 5 this calculation of S' at low
temperatures with the straight lines assumed by
MacDonald, Pearson, and Templeton. "

Of far greater importance at low temperatures is the
phonon drag e6ect. We have performed a numerical
calculation of this eRect based on an expression first
derived in I. This has been written up in a separate
paper referred to in footnotes 24 and 25. A derivation
and discussion of the basic expression generalized to the
case of distorted Fermi surfaces and more than one band
is however included in Appendix H of the present paper.

Finally, we take the opportunity to speculate on what
might tend to smooth out the anisotropy of our spec-
trum as we go from Cs to Na. First of all, there is the
possibility that the interactions of atoms more distant
than next-nearest neighbors may not be negligible in
the Born von Karman formulation of the problem. This
is something that gets swiftly very complex, especially
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and more important as the temperature decreases, be-
cause of the strange geometry (in wave-vector space)
of the umklapp interactions. The success hitherto ob-
tained with simple spectrum models in matching theory
and experiment in sodium was not, in our view, a result
of an ideal, but rather of a very unusual situation. '4 We
suggest in fact that the ordinary transport properties
are so sensitive to the lattice spectrum at low tempera-
tures that these may in fact be as good a test of some
aspects of the spectrum as is the specific heat.

y
&P I aoT~

FIG. 5. The quantity 5' of Eq. (D5).

since we then have to deal with more than 3 force
constants, which cannot therefore all be reduced to the
three elastic constants. One would have to appeal to
x-ray data. Secondly, there is the possibility that the
electron-electron interaction as treated by Bardeen and
Pines" would yield an increase of the "dressed"
frequencies as opposed to the "bare" frequencies. [See
Eqs. (3.12) and (4.8a) of reference 15.] Their results
provided a decrease in the frequencies, but there may
still be some loopholes by which alterations of the
required sign could occur.

V. Conclusions

In the three basic nonmagnetic transport properties,
we find that the umklapp processes are not only not
negligible even at very low temperatures, but actually
provide the distinguishing temperature dependence. In
the electrical resistivity, the higher than T' law in
sodium could only come from umklapp processes; in the
thermal resistivity, the spurious minimum disappears
when umklapp processes are taken into account; and in
the thermoelectric power, it is the umklapp contribution
to the phonon drag term that provides the anomalous
positive sign. The first two of these results are discussed
in the present paper; the latter was suggested by the
author in I, and has since been computed numerically by
Ziman' and the author. "The general expression is dis-
cussed below in Appendix H.

We find also that as a first approximation, it is far
better to neglect the longitudinal phonons than the
transverse phonons at any temperature, but especially
at low temperatures.

Finally, the numerical results according to Fig. 3 are
so far o6 that one begins to wonder what reliance can
be put in the standard semiclassical transport theory.
We feel, however, that the conclusion is not that the
transport theory itself is inadequate for the phenomena
discussed in this paper, but that the temperature de-
pendence and numerical results in general in the alkali
metals are unexpectedly sensitive to the details of a
very anisotropic phonon spectrum which becomes more

» J. Ziman, Phil. Mag. 39, 371 (1959).See also reference 23.

II. APPENDICES

A. The Form for the Transyort CoefBcients

From Eqs. (84), (85), and (86) of I, neglecting phonon
drag eGects, we get

p =doo/~o',

W= Tdii/7i',

(A1)

(A2)

(WS) =
—~ovidio+&ividoo+&ovodii

0'0 pz
(A3)

We change the expressions for the n„'s, y„'s, and d„,'s of
reference 9 slightly in order to take into account distor-
tions of the Fermi surface. The electron distribution
function f(k) is taken to be

where fp is the Fermi function, f the Fermi energy, and
8 * is defined in I (equals 8 +e 'dt/dx, where h is the
electric Geld), and mo is the free electron mass. We would
get the f used in reference 9 or in I by replacing
mpk '(VE), by k,. When (A4) is used in the Boltzmann
equation, and in the variational principle, we have

moe r
e~. ,= —(VZ).(VE).

X (E i )"d'k/4'' (A5)—
gjV

('mp'l o
t

(~—t)"(~~)*L ((~—t)'(«) *I
EV) ~

Xd'k/4 ', or(A6)
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where for thermal scattering

~IPI =2 d'k'(D- /&)'8
XLfl(—)g(—)+f1(+)~(+)X—P(k)+P(k') j (A't)

The I.operator is obtained from Eq. (15) of I and is the
collision operator in the Boltzmann equation. The 0.„'s
are obtained rather directly, and are

3 e
Ap=

~' (zT)'

mpe
A(f)v0')

12m' A'

mp e
)

m*@~p EMA

0!y= —e+p=—
mpe

™d
(~T)' v(E)A (E)

36m A2 dE

e (aT) '

2 hhp (fp) gM~
(A9)

The last expressions in (AS) and (A9) are what one gets
in the effective mass approximation (EMA). Here hp is
the volume per atom, and

5' (3v'q & A'k ' m*
(A10)

2mp & Ap 2 2mp mp EMx

kp'hp =3x'. (A11)

The quantities i p and kp are defieed (for any Fermi
surface shape) by (A10) and (A11).A (E) is the area of
the surface of constant energy E, and v(E) is the average
velocity on that surface:

v(E)A (E) = dSv(E) =— dSi VEi. (A12)
E A

In deriving (AS) and (A9) we have assumed cubic
symmetry.

d„„=Bi ~ I d'kd'k'(D»;/LV)

&Lfl(+)b(+)+fl(—)~(—)36'" (»)
D» is given by (9b) of I;

3. Reduction of the tf „'s, and Calculation
of the Resistivities

To calculate the d „'s we start from the formulas (16)
and (44) of I neglecting phonon drag effects,

6„.=$—(E—f)~VE+(E'—f)~VE'j
(E——f)"VE+ (E' f.) V—E'j, (82)

(mph'6 1 11--
~

E i't ' ) Sv' 4v' 3 2
(83)

~dk, 'Q(a)P(k') =2vkP(k'(W))LdE/dk, '$-', (85)

where k'(+) is obtained from k' (on E) by going along a
line perpendicular to the energy surfaces from E an
energy distance happ up k'(+) or down k'( —). We
assume that there will always be a solution to the
selection rule k'(+) —k+e& K=0 along this line that
satisfies the energy condition E'—E~Aco=0. dS' may
now be taken as element on the energy surface E, and
we must sum over the + and —cases.

Next the E (i.e., ki) integral is performed. We regard
the factors VE, V'E' and Cpz Lsee Eqs. (9b) and P)
of Ij as slowly varying with respect to the exponentials,
in the vicinity of the Fermi surface. Outside the vicinity
of the Fermi surface, the contributions are very small.
Hence we take the above-mentioned quantities out at
average values near the Fermi surface. Consider then
two points k and k' (centered in dS and dS', respec-
tively) on the Fermi surface, and consider taking the
two integrals dk, and dk, ' through k and k'. For every
energy surface E that dk, (E) hits in the tail of the
distribution, there will be contributions from two points
k'(E&) hit by dk&', where k'(E+) is on the energy
surfaces E+4r, etc. Thus when we take out factors like

(VE(/( VE'
I at average values in the tail, they should

be averaged with this correlation in mind. (See
Appendix C.)

Also, as we integrate through the tail of the distribu-
tion, the small changes of the phonon parameters e, ~

In Bi the factor 1/(Sv') comes from converting the k'
sum to an integral (we do not count 2 for spin since
interactions with phonons are assumed not to change
the spin), the factor 1/(4v') comes from the delnition
$(32) of If of d„, and the factor —', compensates adding
the second term to the second bracket of (32). We
have made the velocity correction Lreplaced k, by
(VE),mph '7, and simplified for cubic symmetry (re-
placed (V'E), (VE) by ipVE VE'j.

We introduce a quantity dk&' which denotes the
differential segment perpendicular to the surfaces of
constant energy at the point k'. The volume element
d'kd'k' is then

d'kd'k'= dSdkidS'dk&',

where dS' is the element of surface on the energy surface
E' at k'. Now let us choose a k lying on an energy surface
E, and integrate k&' through some other point k' on the
energy surface E. This integral will exercise the delta
function nature of 0 and gives



TRANSPORT I N METALS. I I 393

{ }ii——Lvii ' ()(Tz)'ivii(')L)LTs]
X[(1—e-z) (ez —1)]-' (313)

are neglected. The e used is the one appropriate to the
dS, dS' pair on the Fermi surface.

The J'dk, is converted to an energy integral
(dki=dEI V'Ef ') to regain the usual form for the
integrals, and we find (814)Li n')(——2T2/3

I
VE—VE(~) I'

VOO=Z VOO(~) =Z
+- +- IVEffvE(a)'I

f
VE—vE' I'—2, (815)
fvEI fvE'f

I«l'- I«(-) I'
voi=p voi(~) =

+-
I
vE

I I
vE(—)'I

I
vE f2 —

I
vE(i)'

I

(816a)
I «fl VE(+)'I

(—) (i)+ T„„(+)(i)
VE(—)' VE(+)'

VE(i)'vE(-)'i
V'Il

T (+)(2)T ( )(2)+
VE

VE.V'E( —)'
( )(2)

I
VE

I I
vE( —)'I

where

( ) (o ()(T)&+v+ll (vz 1]—1

1 1
vE vE(i)'

T„,(+)('), (86) I &
I
vE(—)'

I f
VE(i)' I)

I VEII VE(+)'I
I
VE(+)'I —

I
vE(-)'I

2 fvE —vE'I'
X

i
4 ~'fo(E) fo(E A(v))X„(—)'), (8—7) V (2) =P V (~)(» =

—(X) +- 3
I
vE

I f

vE'
f

T"(+)"'=( T)"'""(1— ') ' vz ve+2, (817)

X „de e'fo(E) fo(E+A(0)X„,(+)('), (38) =p v„(+) ' =p v„(a). (818)

(~) (i) —~z+v

X„„(a)(') = (~as) z+",

X„.(W) (» =e(.+s)"+ (~as) ze

(89)

e= (E i)/kT s=k(o/)(T—. (810)

The factors containing VE in (86) Land the factors V' „
in (815)—(318) below) must be understood as averages
over the tail of the Fermi distribution along lines
perpendicular to the constant energy surface at k and k',
as discussed above. The energy integrals can be
evaluated using Eq. (A.5.11) of Wilson. ' We find for the
relevant quantities /the curly brackets on the left
referring to the corresponding brackets in (86)]: dS(ES'=A(f')2(( ))F.s.. (819)

The sum over + and —in dao and dii a111ollllts to
multiplying by 2, since accounting for the difference
between VE( )' and VE(+—)' would give a very small
correction. In doi however, (816) would give zero if we
made the same approximation. %hen we expand as
shown below it turns out that the 6rst nonzero terms of
doi are of the same order as the terms in dpi that are
calculated. %e therefore must be rather careful in
evaluating (816).

Our results for the d 's are given below in double
angle brackets. These are de6ned to mean an average
over all two-point connections on the Fermi surface:

{ }()()=Voo)(TsL(1—e *)(e*—1)] ',

{ }()1=Voi-', ()(Ts)'L(1—e—*)(e' —1)]—',

(811)

(812) Thus using (7) of I, we get

(Eo = (& / T)& (t')'((Uo (k,k')-,'A(dL(1 —-') ( *—1)]-'))

Ai = (32/1(T)~ (i )'((LLi U00 (k,k') + (h(0)'U'i i (k,k') ("]f(1—e-z) (pz —1)]-i))F,
=LBoo+ (A/1(T) & (i )'(((k(d)'Ui i(k k') ("t (1—(;

—*) (ez—1)]—'))F s

(320)

(821)

(822)
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Bp =27rhB)/2NM,

M being the ionic mass, and

Upp(k, k') =p { 11,p'((j(r)]'V'op,

(823)

(824a)

The double angle brackets on the right indicate an
average over all s(s) for a given s. This is equal to the
in.tegral over all directions of s(s) with weighting factor
equal to the ratio of the length l(s) to the integral over
all lengths for the given s magnitude:

Up((k, k') =P LID(,' ((je)]'V'p), (824b)

U() (k,k') ("=Q LIpp g(j(r)]'V')(('). (824c)

l (s)
(( {{}} ))=J (.)

JI dQl (s)
(s)

(826)

(( ))F .= ( (( {{}} )) ). (825)

The next step in reducing the d „'s in a general way
is to isolate all the connections that have the same diGer-
ence vector a=k' —k, and to average over all such con-
nections. If the Fermi surface is a sphere all these con-
nections can be imagined to be enumerated by allowing
a rigid rod of length s oriented in the direction of s to
roll ori the inside spherical shell. The tips of the rigid rod
will each describe a circle of circumference l(s)=ors.
In general, for say ellipsoidal or other shapes, we will

still have a length l(s) covered by the tip of such a rigid
rod rolling without change of orientation, but the length
will not be precisely ms. The advantage of performing a
preliminary average over all connections with a given s
is that the phonon parameters do not change during it.
We shall use U „{s } and {{ }} brackets to indicate
averages over all k, k' with the same s. Then

"d. " dQl(s){{ «}J ~()
(( ))~s =

ds dQ l(s)"(.)

(827)

The electrical and thermal resistivities due to thermal
scattering (denoted by subscript i) are then

(Here J'dQ is the integral over solid angle of s on a
constant s-magnitude surface. ) The single angle brackets
in (825) mean an average over all s magnitudes. This
is equal to the integral over all s with weighting factorfdQ l(s)/f dsf dQ l(s), the '(normalized) composite
lengths l(s) associated with a magnitude s. Thus

p;=BpL)(T()O)'$—' "ds ~I dQl(s)Uoo{s}L(1—e-~)(e*—1)]-'
J ~dsj~ dQ l(s),

(~)

(828)

Ii =BpLIp)(T t)(l)'g ' ds dQE(s)LUoo{s}+37r 's'U(){s}(P)jL(1—e *)(e'—1)g
4()

I ds ~I dQ l(s), (329)

where

Bp=BpL127ro))1,'mo 'e 'j'= (6o/M)(37r/4)(A/e') (830)
or P)(o/3 eo (831)

and
r'

ds
'

dQ l(s) = Svr'ko'.
~J()

Un"'=p LI&), ((j(r)]'(2—4u'/3) (836)

The expressions in (828) and (829) apply to any
shaped Fermi surface. If we wish to go any further, we
must make some model of the shape. The advantage of
(828) and (829) is that it is possible to extend calcula-
tions to shapes more complicated than the spherical.
But in this paper we shall content ourselves with the
usual spherical Fermi surface. If we call the radius ko,
then from (315) and (317), we get l(s) =ms, and:

V'op =2 (k—k')'/(kk')=4(1 —cos8) =Su', (332)
V'))(') = ——,'u'+2, (833)

e=sin(8/2) . 0(m(1, (834)

U„=P { I,„,.g(& )g Sg, (835)

Thus the resistivities due to thermal scattering are

1

p;=AoT 'yP ~ n(e)Fo(e)de,
40

g—2L —ly 2

(839)

and

A = 167r'(4/97K) **(mo/M) (h/K),

hkp/mp m*

$1
&(I) mp zM&

(I)= (1{s})'I'(r,/a„)'(r, /e)', (843)

r' 3Q 2
X ' n(N) Fo(N)+ Fp(e) dg, (840)

0 4n-2

where

s =2kos) (837)
(844)
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The F„(m) are averages over all directions of s for a given
s magnitude. The average is indicated by the angle
brackets. The factor n(u) is introduced for convenience
in computations: it is dimensionless and of order of
magnitude 1. It should be noted that what enters as a
coefficient is y& (squared) which is inversely proportional
to the velocity; the eGective mass, i.e., the second
derivative of the energy does not enter directly into p;
and S";.'4

dip d
25 = inc (E)A (E)

dE
(C3)

At high temperatures and very low, where the Wied-

mann Franz law holds, we have the general result that
the 6rst two terms in the circular bracket yield an
expression So independent of the details of scattering
mechanism:

C. The Thermoelectric Power

The variational principle in the approximation of
three rows and columns gives the expression (A2) and
(A3) which can be reduced to

S=Sp(1—8),

xgT$2
Sp=—

(C4)

+0 o'1 pT pl d10
TS= +——

0 yi ~ 0,0 d'ii

(where p and W are the total resistivities in this
approximation), or using the values of n„and y„ in (AS)
and (A9)

m' ~'T d
S=—— 1nv(E)A (E)

lel dE

—2a I, (C2)
LTW i '

2fp d
y, = inn(E) A (E)

3 .dE E=f mo EMA

(C6)

which displays in a simple way how the shape of the
Fermi surface enters. At high temperatures an argument
can be made that 6 is often negligible, The neglect of 5

cannot be made generally valid even at high tempera-
tures, but we shall indicate how the argument, when

valid, goes, If we substitute (821) and (822) into (C3),
then with (827)

2fp ~
ds i~dQ l(s) Up~I sPkuL(1 —e-*) (e' —1)j-'

ds ~ dQ l(s)LUppI s}+(Ace/aT)'(3/pr')

Units}

&"Jl (1—e ') (e*—1)j '
J

(C7)

The second term in the curly brackets in the de-

nominator is negligible at high temperatures; in any
case it is positive and would help make 5 small. The
major problem is to estimate Uo&, that is, to average V'0&

through the tail of the distribution. We shall refer to this
as the "tail-average" or "T-average" in what follows.

In (816b), we notice that the numerator of the second

curly bracket can be expanded

I
«(+)'I -

I
«(-)'I

dE' IvEI

d'E'/d(k„')'=2ho;, (CS)
I VEI

I
vE'I

the T-average now being replaceable by the value (at
the two points k and k') on the Fermi surface. We make
no special notation for this average.

To get an analogous result for the erst curly
bracket of (816b), we assume that VE is suKciently
smoothly varying so that the T-average of the ratio
IVEI/I VE(—)'I does not change significantly if we

step up the energy E by 2'.
VE(E) VE(E+2A )

VE(E A~)' VE(E—+A )'
(C9)

we get

V'E

VE(—)' VE(+)'

IVE(E+2a ) I
—IvEI

I«(+)'I
2&a)b

(C11)
I
vE

I I

vE'I'

and from (816b), (CS), and (C11),
2%v (5+f ')

(C12)

De6ning

V = I I Q,(Izp'((je))'} }s"I (e*—1)(1—e—')j-' (C13)

both sides averaged through the E Mtles in the tail of
the distribution. )If V'E is not sufEciently smooth, (C9)
will still be valid at high temperatures, when the energy
span of the tail is much larger than Ace.]Defining

b =d'E/dkg (C10)
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(see the discussion apropos of (825) for the double curly brackets), we get

b+b'
' ds dQ l(s)Vp

[ VE[[VE'[

m' yp 1" l l
VE V'E' —I'

,

i ds dQl(s) Up -+—VpVll"'
I vE[l vE'I

(C14)

Now for the effective mass approximation (EMA)

[ VE—VE'['
=4m'= order (2),

(C16)

Hence in this case the order of magnitude of b is

1 t'Apl )
4lr' (zT )

(C17)

since yp ——m*/lplo=i in this case. If we take the effect of
(~T/A&p)' in Vp to be of the order of a factor of 5 at high

t.emperatures, then b is of the order 1/200, a sufficiently
small number. If we now distort the Fermi surface so as
to cause the velocities 5»V'E to average out to half their
former selves, this would still not upset the smallness of
8. Thus we suggest that at high temperatures for
situations that are not widely different from an isotropic
Fermi surface, (and perhaps even then), we may
neglect the h. Thus (C5) should probably apply to the
noble metals for example and to the alkali metals under
pressure. (See however, footnote 9.)

If we are determined to get in general some more
concrete estimate of b, we may return to (821) and
(822), writing these in terms of a double integral via
(819), and using (C12) and the high-temperature
approximation for the exponentials. Then

b+b'dol 1 t'—=BpxT '

~

dSdS'P(I& pP(je))'
PI »Gp ~ I«l[«'l (C18)

where we have let d»»= pI.»o, 02 at high temperatures. If we do the following drastic things, we can get a measure of
this result in terms of the result for some standard substance like sodium: let us neglect the influence of (I g)' in

(C18), and let b+b' be represented by the inverse of some effective mass m~. Then the integral in (C18) is propor-
tional to the square of the density of states at the Fermi surface, and we get

dS[V'E[ —'
[ "dS[VE[ [)„.LDm*y, &/f j .

bNz f~~ ypp/fj (
[

~
dS[ VE[-

l dS[ VE[
Nz

(C19)

where D is the density M/hp which enters through the constant Bp.
The final thing in this appendix will be to obtain from (C1) an expression for the thermoelectric power not

restricted to high temperatures. From (C1), (A8), and (A9), we get

e Bp 3yp
(WS);= ——— ds dQl(s) 2Uppjs}+—Ulljs} — Uoljs}

»(f-)' 2l-. ~ ~2 ~2K2+2y2

Xt(e' —1)(1—e ')j '
~

ds " dQl(s). (C20)

If we now divide by (831) we get

S;= (SW);/W;

f' 3s Il &gp
,

ds I dQ l(s) 2Uoo+—Ull"' — Uol L(e*—1)(1—e ')j '
eZ, or3y, » "

~
"

~Vry,
(C21)

2f'o t tz 3s
dQ l(s) Uoo+ Ull~p) L(ez 1)(1 e z)j—1

This is the S analogous to (830) and (831);it makes no assumption about the Fermi surface shape. To go further,
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wc shall use spherical energy surfaces as in Appendix B. If we de6ne

(lsd/tlk)'- 222'

yo=2l o

- (d&/d&) E=r 2NO EMx
then from (824) and (C12) we get

(C22)

We get 6nally by reducing (C20)
Blel ~o t' (3—yo/y2)u '—2

(SW);= — —-ysyr2 a(u) Fo+F2
to T "o 82r2

(C23)

(SW); rrstr2T ~ p

S,= = — y,
W, lelfp

(3—yo/ys)u '—2
tr(u) I&'p+F2

8~'

Bu 2—
n(u) Fp+F,

0 4m'

(C24)

This reduces to Sp Lsee (C5)$ at high temperatures. TheexpressionS" canbecomputedtheoretically, Wp/W
Note that the S term in (C4) corresponds to the term in can be attempted theoretically or experimentally, and
yo in (C24). hence S' anally estimated.

D. The Ideal and Impurity Components of
the Thermoelectric Power

The total thermoelectric power S is not the sum of the
residual and thermal parts since S is not linear in the
scattering cross section. However SW is. Let the residual
and thermal parts of SH/' be denoted by the subscripts
(p) and (;), respectively. Similarly with W. Then wehave

S= (SW)o/W+ (SW)'/W (D1)
For the residual part we shall assume the usual expres-
sion (see Mott and Jones', pp. 306 and 311)

(SW) p el.pT Wp
(D2)

W lp W

where I.o 2r tr'/(Be' ). W—e—can also write

1/W = (1—Wo/W)/W,
and then

(SW), ( Wp) (SW).;1—
W & W) W,

and using (825) for (SW);/W;

eLpT
S= S',

Wp ( Wp)S'= +Bl 1—
W E W)

(SW);

tr(u) = (l JSl)2us, (E1)

where we hope there will be no confusion between the
shielding factor S here (discussed in the text) and the
thermoelectric power S of Appendix C. J is

r, )r, q'J=i—
l

—
l
X p(k', r)'p(k, r)V'lt(r)dsr. (E2)

ah e ~ crystal

One improvement discussed in this appendix arises
from use of the wave function

p(k, r) =X la„e'~'ug,—(r)

=E 'a e'"'Pup(r)+sfrt(r)k r/r+ j, (E3)

which is an extension from the plane wave approxima-
tion. The functions up (the "s" function) and fll (the
"p" function) satisfy certain radial wave equations
which we do not discuss here. "The only numbers we
actually need are the values on the surface of the
signer-Seitz cell, and those can be obtained from the
quantum defect method (reference 20, p. 185).

The normalization parameter a„ is obtained in terms
of an auxiliary parameter p

E. Calculation of the Ionic Part of the
Matrix Element

The quantity n that enters into our expressions for
the transport coeflicients is conveniently expressed as

eLpT H~;
a =groups(r, )]—l, (E4)

4u Ql F0+F2((3—yo/y2)u ' 2)/g2rsj

=- y~
—--

I du trl Fo+F2(3u '—2)/42r21

(D6)

y=-. Apuos(r, ) ) up'(r)d'r.
eel 1

The general lines of computation follow Bardeen. '

st J. Bardeen, J. Chem. Phys. 6, 367' 372 (1938).
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J& is itself reduced by the method shown in reference
5 to a surface integral involving the total potential
minus the integral of the gradient of the screening
charge arising from the electrons which screen the ion.
The exchange hole gives a constant potential (since the
electron is always at its center) and does not enter in
this part of the calculation, since it is the gradient of the
potential that is required. In the surface integral, we
used the recent values of the appropriate quantities on
the surface of the Wigner-Seitz cell as computed by
Brooks." In the subtracted oG potential, we made a
detailed calculation using the Np value for lithium
computed by Silverman" and found that there was no
signidcant difference from the free electron result. Since
we expect the greatest deviation from free electron
results for lithium, we assumed that this subtracted oG
term will be close to the free electron value for all the
alkali metals. The result can then be written

t'r, ~
' r, j2(x,)J;„=s ypi( —

[ Pe(r, )—Ep]j~(x,)+3-
&a~f ~If, Xe

y & t l l l 1 l 1 L l
g o,g p,p y, Q d, s- q5, 0,7 op' g9 l.

Q~
FIG. 6. The function P(N) of Eq. (E13).

x,=
~
k —k'~ r, =2(9m/4)'I,

g= (de/dr)r =r /Np(r ),

(E9)

(E10)

3f%rq t
g(3~ ~ ')j2(x) (ES)

2&4)

We make a separation of the integral into two parts, a
part in the cell centered at r=0

J; =XV—
~

—
~

ply(k', r) "lp(k, r)]v'0;,„d'r, (E6)
y fr ) p (t'8

ap„E e

plus the part in the rest of the crystal

re (rs 't '
J..t,

——1V—
/

—
f

a, &e)
e2

)& Q e' ~-"' ' ~ P(k, r)P(k', r)*V', (E7)
Ri&0 tr —R,

f

where R, means the equilibrium position of the ith ion.

where n(r, )—Ep refers to the total (including the elec-
tron-electron term) potential and energy, where the
j„(x)are the spherical Bessel functions of order n, and
where v(r, ) and Ep are in atomic units. Ep=E(k=0).
The last term in (ES) results from the cross terms in the
square brackets in (E6) when At'* is written out.

The evaluation of J2 was obtained by the Ewald sum
technique" erst applied to this problem by Brooks.
This has the consequence that the r integrals need
extend only over a cell. The sum over E, is replaced by
two sums, one over R; and one over K;, where the K,'s
are the vectors of the reciprocal lattice. These sums have
the advantage of being much more rapidly converging
than the original sum as it appears in (E7).The result is

r, (r,)' 4mie' k—k'+K;
exp-

ap & e) ap x' ~k —k'+K['
(k—k'+K;('

4F'
R

'r r 'r*e '&" " e'
gyle

fp exp( —P)dh p(k r)if (k', r)*e-""-~'"' (E11)

where F' is chosen to make the series converge rapidly.
(We used 7'=1.20kp. ) The primed E sum means that
the term R=O contains only the second term in the
square bracket. Although this looks formidable, the

convergence is so rapid that the only signi6cant terms
were the R;=0, and K,=O ones. The resulting expres-

3' R. Silverman, Phys. Rev. 85, 227 (1952);also thesis, Harvard
University (unpublished).
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sion may be written

3)r 4q &r,
J,„,=g-l —

l
—LN-' exp( —I'/1. 44) —P(N)7,

2&9 i ug

where the I' function is

I
92r ~

~ ~'
p r y |' 24p(r) ~

2

~(N) =2I —
I ~l —

I vl( 4 3 &p tr, i I Np(r)i

equation
)P- t,P,2-t,),-t3=0, (F2)

(E12) which is what de Launay's (11.2) reduces to when our
hypothesis (Fi) is made. The rest of the symbols mean
the following:

~1 ~0~1'

$2= (1—sp2) d2-38(),

f2 = dpLsp +sp(fl —3)+2847,
4 t

"~
jl(l k —k'l r)— x2 exp( —x2)dx . (E13)

This has been estimated and the result is shown in Fig.
6. The factor p in (E13) makes P(24) roughly indepen-
dent of the metal.

This in brief outline was how the ion part of the
matrix element was calculated. An investigation of the
error involved in neglecting the interference term in J,„~,
and in other neglections, was made and it was estimated
that the error should not be more than about 10'%%u(),

except for lithium. We have occasionally stated "except
for lithium" in this discussion, and the reason is that in
the surface integral in J~, the corrections arising from
the extra term in (E3) were about 100%, and there
seemed to be no sign of any convergence in sight, when
we added a third "d" term in (E3). This lack of any
semblance of convergence forces us to the conclusion
that the free-electron approximation is a poor place to
start a calculation for this substance, and that the
methods used here simply are not good enough, even
roughly. The lithium case is further complicated by the
fact that the total J goes through a zero in the middle
of the umklapp region, and the resulting contribution to
the resistivity is very sensitive to where the zero occurs,
since the umklapp contributions get more and more
important as Q approaches 1. We have used our results
up to "d" terms in lithium just to get some numbers.

F. The Syectrum Calculation, the Method of
Averaging in the Non-Umklayy and

Umhlapp Regions, and The
Computation of Elastic

Constants

The secular equation for the phonons on the Born von
Karman model is obtained from de Launay" equation
(11.7). The solutions are taken to be of the form

4(ao)2D24)2/c44 2(1—d4)+L(cl2+——c44)/c447X(o), (F1)

where m is the velocity of the phonon, 6 the wave vector,
u the lattice constant, and D the density of the material.
The elastic constants c;; replace the force constants the
relationship obtained by going to the limit 0 —+ 0. The
force constant 6 is neglected, as was originally suggested
by Born and von Karman. The function X satisfies the

~ J. de Launay, Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc., New York, 1956},Vol. 2.

where

Sl= T,+T„+T„
82 ——T,T„+T„T,+T,T„
83=T,T„T„
a4 ——(1—u, +e2—S,7~,

T,= [sin(o', (2/2)7,

SP (Cll C44)/(C12+C44) ~

When the eigenvalues 2()(j)(j= 1,2,3) are obtained, the
eigenvectors $(j(r) which appear in (844) can also be
obtained by going back to the secular equation. In this
way, if we are given e, we can calculate the "average-
and" in (844).

The remaining task is to find what e's to average over
in (844): Here we must distinguish umklapp from non-
umklapp processes. The separation comes at Q= 0.63 for
a body-centered cubic material. For the two types of
processes we have

Q(0.63,

s=4r+K 24)063
(F6)

p0.63

40
4w S(s) w Z (((((iv) o.y=)'

r
"' E(s)'s "24&

dN-- --, (F8)
( '—1)(i— ')

Thus in the non-umklapp region, if we are given an
s magnitude, the average in (844) is over all (r's of this
same magnitude, but with di6ering directions:

(( ))=(( ))«.), non-umklapp,

which we have indicated by the symbol (r(o).
'Although we could have performed the rest of the

non-umklapp calculation in a way identical to the
umklapp calculation as explained below, we found it
more convenient to do it a diferent way, mainly because
once the calculations issue from the machine, there is
still a tedious amount of work to be done that can be
simplified for the non-umklapp case. The simplification
is to suppose that the variation of the eigenvectors and
eigenvalues do not change much as a. magnitude in-
creases for small 0 (this' is in fact just the elastic limit
solution). Hence in (840) and (841) we shall be able
to write
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TxsLE II. The numbers from Eq. (F11).

I 4 8 10 14 16 20 22

ns/es' 1/3 2/4 1/5 2/7 1/8 2/10 1/11
4/5 5/7 4/8 5/10 4/11

7/8 8/10 7/11
10/ii

26 28

2/13 1/14
5/13 4/14
8/13 7/14

11/13 10/14
13/14

4rs'/41 are given in Table II)
e= (~/30) (~/4),

q = (4N/m') (s/4),
(F11)

FK'. 7. The Leometry of umklapp processes. The vector K is a
vector of the reciprocal lattice. The s sphere of radius 2k0 is the
locus of scattered wave vectors 8=k—k' in an interaction.

o,=s sing cosp —2 &E,

o„=s sine sing,

O-, =s cos0—2 &IC,

(F9)

where the polar angle 8 is measured from the s direction.
In this way if we are given an s magnitude in the um-

klapp region, we compute the o's from (F8) over the
appropriate range of 0 and q, calculate the correspond-
ing eigenvectors and eigenvalues from (Fi) and (F2),
and compute the corresponding "average-and" from
(844). The only remaining problem is to choose the
various 0, q's to compute the 0's for. The appropriate
region to average over can be obtained by an examina-
tion of the geometry of the face-centered cubic reciprocal
lattice. It is actually 1/48 of the unit sphere, and the
region is given by:

0&8, y&45',
O5'&e&5O' O4',

2-&&cosy &cotta.

(F10)

We have taken the following points (where 44 and

where the velocity appearing in s is the same for each e
for a given 4r/o. In other words, we have taken the aver-
age in front of the integral, and we use the elastic limit
solutions. However, when eventually converting to an
integral over s, it is essential to make the upper limit a
function of the velocity even at extremely low tempera-
tures. This general procedure is quite unjustified in
the umklapp region.

In the umklapp region, we consider the s-sphere of
radius 2ks. The geometry is as in Fig. 7. There will be
associated with each of the 12 nearest neighbor E's a
region in the s-sphere (which will be a surface segment
for a given s magnitude of course), and we need average
over only one of these segments, in fact, because
of the symmetry, over only 4 of one. From (F6)
we have for the choice of the reciprocal lattice vector
E= (E/2'*) (1,0,1):

$1 (c1'&+C44)/(2c44) ~ (F12)

The values we chose to make our calculations for were
0.05, 0.15, and 0.30 for sp, and 0.9, 1.0, and 1.1 for si.
These were selected before we were aware of the work
of Swenson, and were based on a range of values implied

by some rather poor theoretical extrapolations for the

~ C. P. Swenson, Phys. Rev. 99, 423 (1955).

which neglect region II in (F10) but should give a good
average, provided the Born-von Karman theory is suK-
ciently accurate in the nearest neighbor approximation.

In order to get numerical results, we have to know the
elastic constants c;;. These are obtained by the method
of Fuchs (see reference 32, footnote 47), using for the
room temperature compressibility values which we
interpreted from the measurements of Bridgeman" and
for low-temperatures values obtained in experiments by
Swenson. '4 The compressibility seems to be a hard
quantity to estimate from compressions, and we are not
too sure what sort of accuracy is rejected by the results
cited in Table I.We notice that at O'K, the sp parameter
rises as we go from lighter to heavier elements, but this
trend starts to reverse itself at rubidium when we get to
77'K. At room temperature the same situation as at
77'K holds, except that cesium is now relatively quite
low compared to rubidium. so is very sensitive to the
value of the compressibility, and we must regard these
numbers with caution. It is interesting to note that at
77'K, we get a negative so for lithium, which means that
the longitudinal phonon in the 100 direction is slower
than the transverse phonon, which implies instability.
It is known that lithium undergoes a martensitic tran-
sition at about that temperature. Curiously however, at
O'K, we regain a positive so for lithium. However, at
4'K, we have in units of 10" erg/cm', for lithium,

cll c44= 1/7r+ s (cll cls) c44

= 12.82+1.89—13.59= 1.13.

Hence a 5% error in the compressibility x provides
about a 50% error in c11—c44! (Lithium is more sensitive
than the other metals, however. )

In Table I we give the values for sp and s~ which are
required in (F1), where
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compressibility. t,uckily our new so values still lie in
the above-mentioned range, but the s& values lie beyond
1.1 for the heavier elements. Ke therefore had to
extrapolate s~ for these elements.

Finally there is the elastic constant c44 that appears in
the s of (844). We introduce a temperature 8 by

a=bop/~T= (8/T) (D2c2/c44)'(o'/ko), (F13)

where the Dwo/cpp is what we calculate in (F1), and
where

e= (lo&o/~) (cpp/D)& (F14)

depends on c44. Numbers for 8 are given in Table I, and
we see that they are close to the ordinary Debye
temperatures obtained from specific heat data. How-
ever, our 0's are not averages over a spectrum: They are
precisely defined by (F14). 0 may be used in the specific
heat or resistivity without any error arising from there
being different averages involved. It is the rest of (F13)
that gets averaged.

Since so and s~ are functions of temperature, we must
use the appropriate values at the appropriate tempera-
tures. The same is true for c44 and hence 8. However, in
the range from O'IZ to 77'K the density remains ap-
proximately the same (see reference 34) so that quanti-
ties which are functions of the density only do not
change in this region. This includes c~~, c~~, c44, and
hence 0.

G. Evaluation of the Shielding Factor

In this appendix we shall have occasion to use the
symbols p, x, s, 8, q, Lp, I., a, D, X, and p with meanings

different from what was used previously. The definitions
are given below. S of course here means the shielding
factor, not the thermoelectric power.

From reference 16 we get the shielding factor in the
form LEq. (32)j

1+ho/(a, .)- (a, (k))j5=-
1+so(a„)

(G1)

where the denominator and (a,) are evaluated in that
reference. The electron wave vectors k and k' are on the
Fermi surface and satisfy

k'= k+ s. (62)

The energy function is

F(k) =Eo+ (5 k2o/22m )o(Px2 Pq—xo), (63)

(G4)~= &/&o.

The parameters p and q appropriate to a given r, /a„are
cited in reference 16. Finally from Eqs. (2S), (AS),
(A9) of that reference:

).o= I 12m. (9m/4)&] '(r, /ao)u 4, (GS)

s = ~s Coul ~s ex) (66)

(a,)o,„(——(a, (k) )o,„g——12u2F (u), (G7)

(a,),„=—12u'G(u h). (GS)

In (G7), (a, (k) )o.„~does not depend on k, hence it equals
(ap)cpoi and drops out of the numerator. The functions
Il and G in (67) and (GS) are given in reference 16.The
problem here is to evaluate

3 A's4

(a, (k)),„= ' d'& Ã(I) —&(I+s)P-'t (k'+l~ —+ ~k —I(
—j (k'+I( &P, ; ~k—I( &k„(69)

4mkoo 2mo "«„o
where k' satisfies (G2) and is on the Fermi surface and
where k, is the Bohn-Pines cutoB wave vector. In
reference 16, (A9) was evaluated by first averaging k
over the Fermi surface. However, if s is given, we should
actually average only over the k's that lie on the circle
of length l(s) in (826). The difference is that instead of
averaging over the k's for a given s magnitude, we must
average only over the k's for a given s vector, and in
fact, we should average S' not S. What we shall do is
evaluate (G9) directly as it stands without averaging
over k (or k') at all, so long as it satisles (G2). We shall
then find that for all the proper k's, the result is the
same and we need not average at all ~ This does not mean

the polar axis being now —k. It can be shown that the
two terms in the square bracket each contribute the
same. We therefore consider only

(a, (k)) =I.oL, (611)

that the matrix element does not depend on k; it means
that the dependence does not change so long as k is on
the circle of length t(s).

To start, we shall change the variable of integration
from I to li in the term in k in the square brackets where

(610)

I'22p ~1
L=&0

~ g &~/ko

sinttde d y li—'ko'p
( Ii+k

(
'—

( Ii+4+s (
'—(q/ko') ( ~

Ii+k (

'—
[ I2+k+ s (

')j-', (612)
~ o

3kp fi's' 2mo 2 24 I'
0

42rko' 22No fiokp2 p pr p
(G13)

Io contains a factor 2 from the sum of the two terms in the square bracket of (G9). The limit we placed on the
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8 integration can be obtained from a glance at the geometry of the tr-sphere. With a certain amount of algebra,
and with s'+2k s=0, we can reduce (611) to

(a.(l ))=—6tt2 )2 ~
1

dx
sp az

p2+

Exb'Dj ' — +
0 cost D—cos~

(G14)

where we have made the notational changes 2 lr

dq Ecost) '=2s.Es'+tt' —1j '*, (G18)

and where

s= —k/kp,

D= (a'+b's)/b'I) 0,

9 =1 2g —2(x)
b'=4',
P=k /ko,

(G15)

(G16)

23'

dyED cost—) '=2s'Ea&+brs+c2s'] ', (G19)

provided the quantity contained in the square brackets
is positive, the integrals are zero if the quantity in
square brackets is negative. Here

am ——(a'/b'tt)' —1+et'

1—Q 2Q

with

cost=I lr/lr=us+E(1 —I')(1—s') j& cos(e. (G17)

I' b'

c2——(1—tt')/I'.

(620)

Here p is the azimuthal angle of lr around s and we The restriction requires that z' be greater than 1—u' in
choose @=0 at the azimuthal of s around s. I'rom (G18), but is automatically satisfied for all s in (619).
standard integral tables" we And We indicate the remaining integrals:

1 2NS
- (2(1-u&)k

(a (1))=-
~1 x-1

ds+ dx, dz
~(1—u ) Ja()—a )t ~g/2 -a+bs (s 1+I)

12N' p' p' x '
dx dS "(1—u')» p/2

p & s &,lr a'+b's (a2+brz+c2s')&

12N' p' p' x ' i

p "t) ~,t, a'+b's (s'—1+et')' (ar+b2z+c2s')l
~ (1—tt') & (P/2. (G21)

The s integrals can be obtained from standard tables. "We shall not indicate the quite complicated results of that
integration. The 6nal integral over x was carried out on the IBM-650 computer at Northwestern University.

The limiting case N=O, is of interest. We 6nd

lim (a, (ir) ).„=—2e' 1 2
In—,

p 1—2q P
(622}

lim S=
1—Es.(9s /4) &1 '(r, /a), )Ep (1—2(7)j—'E6 (sr—p/2+ p'/8) —ln(2/p) g

L-(9-/4)ij- (r./a.).— (G23)

S p t9zi & -'r, )1 p p'i 2-
»m —— —~j —

i
—6( —-+—

(
—ln- .

Sn~~n 1+2/ - & 4i - ah- &2 2 8& P
(624)

The quantity in (G24) has the values 1.67, 1.30, and
1.04 for r,/a), ——3, 4, and 5, respectively.

In the theory of the phonon drag component of the
thermoelectric power at low temperatures, the quantity

'e W. Grobner end N. Hofreiter, INtegrattafet (Springer-Verieg,
Mien, 1958), Vol. 2, formula 331 (41e, f).

36 B.O. Pierce, A Short Table of Ietegrals (Ginn and Company,
Boston, Massachusetts, 1929), 3rd. ed. , formula 195.

(I(s)/I) ()
' (S/I} ()

' I;, (0) '

I(s)„r s„g I;.„(1),
(G25)
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is important. "Our calculations give

(S0/Sg)'

(So/Si) s«ra .'
From Eq. (86) of I, the phonon drag term is

Sg=T 9o'/00.

For ao we may use from (AS)

(H2)

(H3)

v(li) =A—' (H4)

equal to 1.54, 0.91, and 0.65 for r,/a«equal to 3, 4, and
mpt,

5, respectively. Thus the Bardeen shielding factor con-
, Z~(ii) (8), '

siderably underestimates the growing importance of i''
umklapp processes at @=1 to non-umklapp processes
at m=0 as we go from lithium down the alkali's to where A(8) is the area of that Part of the Fermi surface
cesium. (We are assuming that the tendency set up in 'n the lth band~ and where v(li') is the average velocity
going from r,/a«=3 to 5 will continue to 5.5, which is on ~(8'):

rthe appropriate value for cesium. Ke did not make this
additional calculation as it would involve a considerable dS

l «I/~(li)
extra amount of numerical work. )

H. General Expression for the Phonon Drag Term
of the Thermoelectric Power in Metals

(Including Distortion and More
Then One Band)

If the Fermi surface cuts more than one band, we
describe the situation by the reduced wave vector k and
the band index /. A higher band is to be conceived as
having been reduced into the first band by translations
of the various portions by reciprocal lattice vectors. In
terms of the reduced wave vector, we still get for any
phonon transition the selection rule

k' —k= »+ K (or —»—K).

[$ee Eq. (4) of I.]

We may use (79) of I for y,':

yo'= —— p (d&0;/«)«. ~ 00,
3Shp ~~

provided that in Qo [see (76) of I] we replace p by
mov(lk)/h

fi ~l

QD(j») =—moA ' P [v(lk) —v(l'k') j
Xn(j»; kl, kV). (H6)

Here n.(j»; kl,k i') is the relative probability that the
phonon j» will interact with electrons in a kl~k'l'
transition:

n(j»; kl,k'l') =—— E D»itpQ( )8( )

dÃ0; 1 &~w

+ P S ~D»~~pQ( —)6( )
ds «Tr, (»)»'«'

(H7)

The sums in (H6) and in the denominator of (H7) are
over all interactions kl+-+ k'l' in which the particular
phonons jcr are permitted by the selection rules to
enter. This includes interband umklapp processes as an
example. 1/r;(») is the sum of the reciprocals of the
phonon-phonon collision time, the phonon-impurity and
phonon-boundary collision times and any other phonon
relaxation processes not involving electrons.

Considering a one-band metal, if we sum (H7) over
all processes that involve one particular je and one
particular umklapp type of process, we get back the
relative probabilities n (j»; »+K) previously introduced
in a paper on the phonon drag eGect in the alkali
metals. "

From (H2) and (H5)-(H7), we get

1 (m ~ dlVO;
Z-

3/e[ (!V) gg ~i dT

where

&.V),«!V~, P ~(li-).(li.)
(H9)

EMA

where EMA means the effective mass approximation.
here refers to the number of atoms involved

(a=E~,).
The "normal" sign for S, (for electrons) is negative.

Since d!V0;/dT) 0, this means that normal contributions
to S, occur when

Vco [v(lk) —v(l'k') )&0. (H10)

For the case of one band, and free electrons, we have
v k, and with Vao», we get from (H10)

Va) [v(lk) —v(l'k')j» (k—k')= —» (»+K). (H11)

Co'il Thus for non-umklapp processes (K=O), (H11) is
,„(j» kl k'p)[v(lk)-v(pk') j, (HS) negative, and we get a normal contribution. For K 0,

kk'/l' (H11) yields a positive sign in general.
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To analyze the effect of a higher band, we reduce it
into the erst Brillouin zone Dn which now the k and k'
of (H1) roam]. Consider the extreme case of a reduced
zone whose unoccupied part is a sphere.

The velocities on the (Fermi) sphere are then directed
toward the center rather than away from the center (as
would occur if the sphere were occupied rather than
unoccupied). Thus the velocity factor is (H10) changes
sign from what it was when we considered (H11) in the
previous paragraph, whereas V'co does not, since that is
still determined by the k—k' in (H1). Hence for a
sphere of holes, the non-umklapp interactions give an
anomalous (positive) contribution to S„whereas the
umklapp processes would tend to give a normal con-
tribution! If we have other shapes than a sphere, the
situation becomes more complicated of course, but the
general tendency seems to be that if the reduced zone
is characterized by a large central hole, then we will get
the results just described. One can contemplate inter-
band transitions in a similar way, by reducing both
bands into the first zone, and considering the directions
of the velocities at k on the kh band's surface to k' on
the l'th band's surface.

An important point is that once a band is reduced,
and all k space propagated periodically with this
reduced zone, it cannot then make any diGerence where
we choose the origin. As an example, let us take the
two dimensional square lattice in which the Fermi
surface does not quite reach to the corners in the first
zone, yet bulges slightly through the face centers into
the second zone. LSee Mott and Jones, ' Figure 39(b).j
The Grst zone, when propagated throughout k space
consists of a lattice of small hole spheroids centered at
the corners. Let us for this discussion treat these as
spheres. If we take a new origin at the center of one of
these spheres, it is evident that all processes are non-

umklapp, and they will contribute anomalously to S„

Pi.e. (H10) will be positive). If, however, we keep the
origin at the center of the square as in the figure in
Mott and Jones, then there is the possibility of corner
to corner umklapp processes as well as non-umklapp
processes from one point to another of the same corner.
Nevertheless, when one examines (H10), one 6nds that
each transition yields the same result in both descrip-
tions, although sometimes it is regarded as an umklapp
process in one and a non-umklapp process in the other.

So much for the first zone. If we propagate the re-
duced second zone to form a "second zone space, " we

get a lattice of small electron spheroids (henceforth
regarded as spheres). If we place the origin of a new
unit cell in this space at the center of one of them,
keeping the zone edges parallel to the original propagat-
ing zone, then it is evident that the new unit cell con-
tains in addition to the central sphere also bits at the
corners. It can be seen from the geometry and from
(H10) that all corner to corner transitions will give
negative contributions to S,. LThis must also follow
from the fact that the corner bits combine to form a
small electron spheroid. All transitions from one point
to another on this spheroid must be capable of being
treated as non-umklapp processes giving a normal
(negative) S,.j In addition there are transitions from
the central sphere to the corner bits. Some of these will
be umklapp processes, some non-umklapp. We will have
the usual result that the umklapp processes will gener-
ally give positive contributions; the non-umklapp, nega-
tive contributions. These results for the two bands will

hold even if the spheroids are Oat ellipsoids.
Finally there are the band to band transitions. We

take as origin the center of an electron spheroid. There
are then two halves of hole-spheres that 6t in the erst
zone. The signs of the contributions will depend
critically on the magnitude of the velocities, and we find
nothing of a systematic nature to predict.


