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Direct Exchange in Ferromagnets
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The direct exchange integral which occurs in the Heisenberg theory of ferromagnetism is evaluated for all
internuclear spacings. We Qnd that it is always positive, whereas Bethe originally suggested it would be
positive only at large spacing and more recently it has been suggested that the integral should always be
negative. However, at the observed internuclear separation the magnitude calculated is of the order of 70
times too small to explain the experimentally determined exchange constant in ferromagnetic metals, and we
therefore conclude that direct exchange is not responsible for ferromagnetism in these metals.
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where r1 and r2 are the coordinates of the two electrons
and A(r) and B(r) are the wave functions (assumed
real) centered one on each nucleus. The first two terms
of this expression are positive, the last two are negative,
and clearly all four are of the same order of magnitude.
The sign of this integral is therefore not easy to esti-
mate and, in the Heisenberg theory, ferromagnetism
results only if it is positive.

It is exactly this integral which occurs in the theory of
the hydrogen molecule where the wave functions A and
8 are the 1s orbitals of the hydrogen atoms. For this
latter problem J is known to be negative Lsinglet state
lowestj but Heisenberg postulated that J was positive
for wave functions and lattice spacings appropriate for
the ferromagnetic elements. It was left to Bethe' to give
plausible arguments why J should be positive. He
pointed out that the second term of (1) would dominate
the others if all the overlap between A and 8 were
concentrated in a small region away from the nuclei. He
suggested that this would be the case if the wave
functions A and 8 had (a) small amplitude at their
parent nuclei, (b) angular lobes pointing towards and

' W. Heisenberg, Z. Physik 49, 619 (1928).' A. Sommerfeld and H. Bethe, HarIdblch der I'bye k, edited by
S. Flugge (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part II,
p. 595.

I. INTRODUCTION

'~ VER since Heisenberg' explained how exchange
~ e6ects could account for ferromagnetism, there has

been controversy over the sign of the direct-exchange
integral which appears in the Heisenberg theory. Using
a simple Heitler-London model with one electron per
atom, Heisenberg showed that the spin coupling be-
tween two nearest-neighbor atoms 2 and 8of separation
E was given by the exchange integral

overlapping one another, and (c) small radial extent
compared to the internuclear spacing E.

All three conditions are satisfied by the ferromagnetic
metals. In these metals the magnetic electrons are in 3d
wave functions and near the nucleus these are small
(like r') so (a) is satished. These Bd wave functions also
have strong angular lobes which can be made to overlap
one another so (b) is also satisled. Detailed estimates by
Slater' show that the ratio of the mean radius of these
wave functions compared to the internuclear separation
is smaller for the three ferromagnetic metals than for
any other metal. Hence condition (c) is also well satis-
6ed. It is clear that in general it is hard to satisfy all
three conditions simultaneously so it seemed not sur-
prising that only three metals were ferromagnetic.

From general arguments Bethe was able to suggest
how Jvaried with internuclear spacing E.At small E, he
concluded J was negative because (c) was not satisfied:
as R was increased he suggested that J approached zero,
became positive, passed through a maximum and then
decayed exponentially to zero. Bethe gave a rough
sketch of this behavior and this has become known as
the Bethe4 curve.

Subsequently the validity of Bethe's arguments was
severely questioned and it was suggested by Van Vleck, '
by Slater' himself, and by Zener, 7 that J could never be
positive but simply varied monotonically from a large
negative value at small E. to an exponentially small
negative value at large E.

Because of this controversy an explicit calculation of
J is obviously of value but the integrals involved ap-
peared so dificult that only two such calculations have
been made. The erst was by Wohlfarth' who concluded
that J was always negative. However, for ease of calcu-

e J. C. Sister, Phys. Rev. 36, 57 (1930).
4 R. M. Bozorth, IierromagrIetism (D. Van Nostrand Company,

Inc. , Princeton, New Jersey, 1951),p. AA".
e J. H. Van Vleck, Revs. Modern Phys. 25, 220 (1953).
e J C. Sister, Phys. Rev. 49, 537 (1936); Revs. Modern Phys.

25, 199 (1953).
r C. Zener, Phys. Rev. 81, 440 (1951);S2, 403 (1951);83, 299

(~95&).' K. P. Wohlfarth, Nature 163, 57 (1949).
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lation he replaced his 3d wave functions by spherically
averaged functions. Because this violates condition (b),
his result is not surprising. The other calculation was by
Kaplan' who took proper account of the angular varia-
tion of the wave functions but, because of the difIiculties
of the calculation, made only one accurate estimate of J
and this was for the small internuclear separation of
1.5ao. This value was positive and equal to 0.60 ev. For
larger values of E, Kaplan was unable to make any
reliable estimates of J but concluded that J probably
remained positive out to the observed internuclear
separation of 4.7ao.

In this paper we describe an explicit calculation of J
for all E. We do not use the Barnett-Coulson" method
of evaluation but after some preliminary algebra place
the calculation directly onto an IBM 704. In the Ap-
pendix the procedure adopted is described in some detail
because we believe that this direct method may often be
preferable to the Barnett-Coulson approach and could
be used for a wide variety of problems. In the next
section we define the various integrals and give the
results and these are discussed in Sec. III.

However, we should first remark that there is no
absolute definition of "direct exchange"; the exchange
energies in one model can occur as other energies in
another model and only the total energy has an absolute
meaning. We examine here what has, by convention,
become known as direct exchange in the theory of
ferromagnetism using a strict Heitler-I. ondon model.

II= —2J'(A, B)Sg Sn, (2)

where Sz and Sn are the spins in orbits A and B, re-

spectively, then

J'(A, B)={J(A,B)—5'(A, B)C(A,B)}
X{1—5'(A,B)) ', (3)

where C(A,B) is the Coulomb interaction

C(A,B)= ' dr&drs B'(rs)

II. THEORY AND RESULTS

Before discussing the precise form of the integrals
involved, it is well to remark that J as given by (1) is
only an approximate form for the spin-spin coupling
parameter. Indeed this is evident from the appearance
of the term e'/R in (1) because the effective spin
coupling cannot depend directly on the interaction
energy between the nuclei. It is easy to show that if we
define the effective spin coupling between orbits A and
8 by

and 5(A,B) is the overlap integral

S(A,B)=~ drr B(rt)A(r&). (5)

Our results will show J'(A, B) differs appreciably from
J (A,B) only at small E so that for all practical purposes
the correction can be ignored.

The erst term of (1) we call J&(A,B) and is simply
e'5'(A, B)/E; the second term is dificult to evaluate and
we call it Js(A,B);the last two terms are equal and their
sum Js(A, B) is 25(A—,B)P(A,B) where P(A,B) is
defined by

P(A B) drl B(rl)A (rl)e /rlB. (6)

The geometry of the problem is illustrated in Fig. 1.
YVe imagine nucleus 8 placed at distance E along the s
axis relative to A; r~~ and r~g are the vector distances of
electron 1 from the nuclei 3 and 8, respectively; r»
and I'2z are defined similarly. For this problem the
functions A and 8 are the 3d wave functions of iron and
these are conveniently taken as real and given by

d,.~ (r) = (5/16s ) -*'(3 cos'8 —1)P (r)/r,

d, ~ „~(r)= (15/16s) 1 sin'8(cos'q —sin'y)P(r)/r,

d,„(r)= (15/47r) ' sin'8 cosy sing P(r) /r,

d„,(r) = (15/47r) & cos8 sin8 sin pP(r)/r,

d„(r)= (15/47r) 1 cos8 sin8 cosy P(r)/r.

The radial function P(r) is given by Wood and Pratt"
and agrees very well with that determined from neutron
diffraction form factor measurements. ' "

Choosing various pairs of these wave functions for 3
and B in (1), it is possible to construct 25 exchange
integrals, eleven of which are independent. The largest
overlap integral is given by choosing d, 2 for both A and

E'zG. 1. The geometry of
the problem.

We label the various terms of C(A, B) using a similar
notation; thus C&(A,B) is simply e'/E, Cs(A, B) is the
integral involving e'/r rsand Cs(A, B) is the sum of the
last two terms of (4) and given by

C, (A,B)= —2 t drr A'(rr)e'/r, e

g2 g2 g2 g2

X +
~1B ~2A-

A'(rr), (4)

' H. Kaplan, Phys. Rev. 85, 1038 (1952).
'OM. P. Sarnett and C. A. Coulson, Phil. Trans. Roy. Soc.

London A243, 221 (1951).

"J.H. Wood and G. W. Pratt, Jr., Phys. Rev. 107, 995 (1957).
~ R. Nathans, C. G. Shull, 6. Shirane, and A. Anderson, J.

Phys. Chem. Solids 10, 138 (1959)."R.J. gneiss and A. I. Freeman, J. Phys. Chem. of Solids 10,
147 I'j.959).
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8 and we may confidently expect the corresponding
exchange integral J (s',s') to be much larger than the
others; this is the integral we calculate in this paper.
The only other choices for A, 8 which give nonzero
overlap are ys, ys and sx, 2'x with equal exchange
integrals J(ys,ys) and J(sx,sx), respectively, but these
are certainly much smaller than J(s',s'). For all other
choices of the pair 2, 8 the overlap integral vanishes
and the corresponding exchange coupling (1) reduces to
J&(A,B) alone; this is certainly positive, for the second
term of (1) is positive definite, and therefore assists
ferromagnetism but the overlap between the wave
functions is negligibly small everywhere so we may
neglect all such contributions just as we neglect J(ys,ys)
and J(sx,sx). LTo be quite sure on this point, we have
evaluated J(s',sx) =Js(s', sx) at the observed spacing of
4.7+o and found it to be only 2/o of J(s',s').$

In calculating J(s's') it is easy to obtain $(s's')
P(s' s') and Cs(s' s') Cs(s' s') is only moderately diffi-
cult (details are given in Appendix 8) but Js(s', s') re-
duces to a dificult 6ve-dimensional integral which is
evaluated by the method described in Appendix A. The
results are shown in Figs. 2, 3, 4, and 5.

III. DISCUSSION

The first point to notice is that J(ss,s') and J'(s', s')
are positive for all R; thus Bethe's qualitative argu-
ments (a) and (b) are proved correct but his argument
(c) t which would lead to negative J(s',s') at small R)
is proved incorrect. The small local minimum which

appears in J(s',s') at 2=1.1a issa consequence of the
similar local minimum which appears in the overlap
integral. It occurs at a distance where the positive and
negative lobes of 3=d, 2 and 8=d, 2 overlap appreciably;
as R is increased the magnitude of this negative overlap
contribution falls very rapidly so that the total overlap
actually increases and thus gives rise to the local
minimum and maximum in S(s',s') and J(s',s'). This
minimum and maximum are of no practical signihcance
because they occur at such small R values. At the
observed interatomic spacing in Fe, 4.7ae, J(s',z') has
the value of 6.8&(10 ' ev. We have not repeated the
calculation for Ni or for Co but for these elements the
variation of J(s', s') with R must be qualitatively similar
to that for Fe and roughly the same J(z',s') value may
be assumed for them.

It is very important to recognize that this calculated
value for J(s', s') must not be compared directly to the
observed exchange coupling between atoms because we
have not yet taken proper account of the probability
that the two d, ~ orbitals are occupied simultaneously by
a single electron. For simplicity let us first consider Ni
metal: We assume a Van Vleck model for Ni where each
atom has either a (3d)' or (3d)" configuration. The
coupling between two nearest-neighbor (3d)' configura-
tions we describe by the usual spin Hamiltonian

II= —2JSi.Ss, (9)
where S~ and S2 are of magnitude 2 and represent the
spins on atoms 2 and 8, respectively $(9) should be



R. STUART AN D AV. MARSHALL

tO

fO

io

io

lO

Fro. 4. J& (z',z'), Jz(z', zz), and —J3(z',z ) in units of e'/uo.

clearly distinguished from (2); in the latter Sg and Sg
denote the spins associated with the particular orbitals

and 8, respectivelyf. Neutron diffraction experi-
ments" "show that there is essentially no preference for
the 3d "hole" to occupy any particular orbital of (8).
Assuming therefore that each 3d orbital has a equal
probability of 0.2 of being occupied by the hole, we
deduce that the probability of the two s' orbitals being
occupied simultaneously is 0.04. Hence

(10) is again applicable. The observed value of J for Fe
is 0.018 ev from spin wave measurements or 0.011 ev
from specific heat measurements, " and hence we con-
clude that direct exchange fails by a factor of order 70 to
explain the observed coupling in all these cases.

It is interesting to remark that this explicit calculation
justifies the somewhat intuitive arguments which have
been put forward for why direct exchange is unimpor-
tant; but this is not for the reason suggested Lthat J
should be negativej but because the calculated J is too
small. However, we must also point out that Zener' has
argued that J should be negative explicitly because
screening by the other 3d electrons of the atom is not
complete. We have not allowed for this effect in our
calculation and therefore cannot say if it would or would
not make J negative; indeed, for our immediate pur-
poses the question is uninteresting because we have
already concluded that direct exchange cannot be re-
sponsible for ferromagnetism even if the effect is ignored.

In view of these results we believe that the true origin
of ferromagnetism in these metals must be found in what
Van Vleck and Slater have called "intra-atomic" ex-
change. This may be thought of as the e6ects introduced
by departures from the strict Heitler-London model
that we have used in this paper.

It is worth noting that the individual exchange
integral J(z'z') is quite large Pone third of the observed

)f X
J=0.04J(s',z'). (10)

Using a value of 6.8)&10 ' ev for J(z' z') we get 2.72
&(10 ev for J. This is to be compared to the experi-
mental results of 0.020 ev from spin wave measurements
and 0.010 ev from specidc heat measurements. " We
therefore conclude that direct exchange fails by a factor
of about 70 to account for the observed coupling.

In Fe we again use the Hamiltonian (9) but this time
S~ and 52 have magnitude 1. Because experiment""
tells us the 3d orbitals are equally occupied, we assume
equal probabilities for all occupation assignments. On
each atom there are two holes which may be placed in
any of 10 distinct pairs; four of these pairs involve the
s' orbital so the probability of having a hole in s' is 0.4.
The probability of simultaneous occupation of the s' of
A and that of 8 is therefore 0.16 and for each such case
S~ is 0.5Sr and S~ is 0.5Sz, hence (10) is correct for Fe
also. A similar argument for Co, assumed to involve a
mixture of (3d)s and (3d)' configurations, shows that

'4 J. A. Hofmann, A. Paskin, K. J. Tauer, and R. J. Weiss, J.
Phys. Chem. of Solids 1, 45 (1956).
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Fro. 5 J(z',z') and J'(zz z') in units of e /ao.
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value) and it is only the small probability, 0.04, of the
holes appearing simultaneous1y in the s2 orbitals which
renders this direct-exchange mechanism unimportant in
this case. In salts the electrons may be in Axed orbitals
and then, for favorable cases, direct exchange may be of
importance,

X)
'ymsx

r«(3yia cos'81B ria—')

where

Xyia 'P(ria) (3r2A' cos'82A —y2A )r2A 'P(r2A)

X (3riA cos 81A riA )riA P(yiA)

X (3roa' cos'82B roa )rpa 'P(roa),

yiA2 —R2+ r2+ a2+ 2Rrs+ 2RaM+ 2yap

roa' =R'+ r'+ a' —2Rrs 2RaM+ —2rap,

yia'= R'+y'+a'+2Rrs —2RaM+2rap,

r2A =R +y2+a 2Rrs+—2RaM 2rap, —
riA cos81A=RM jrp+a,
r2B cos02B=~~—rp —+,

r,a cos8,B=RM+rp a, —
r2A cos82A RM yp+a

s= L(1-M') (1—p') 3:,
a= 2RA~,

p, =cose,

M = cosO',

r= r (r,8,y),
R= R(R, O,C).

The limits of integration E,„andr are determined
by the cutoff of the tabulated function P(r) at some
value r=Xo. Thus the value of R, is found from the
relation

or
(1—M' )R .'+(MR, +a)2=&o2,

R~,~= —aM+Pa M +2X2po —a2$&.

Similarly, r is the largest value of r such that r», r»,
r1p, or r2A equals Xo. We easily get

r, =smaner of (Ci, C. 2),

APPENDIX A

Using the coordinate transformation

r= 2 (rlA r2B RAB))

R= 2 (rlA+ r2B),

the integral J2(22,22) can be put in the following form:

~1 1 ~m pBI2LX

J2(s2,22) = I dp dM I dy R'dR

where

The integral
APPENDIX B

( 5a )2 )xp )1
C2(s',")= I

— —
~

E162y) "o "-1
2%' Xp 1

f\
21f

X t lE41A r2A dr2A ~ dp2Ad$2A.
"O ~O ~ 1 ~O

X (3piA' —1)'ylA 'P'(yiA)

X(3poa'-1)'yoa 'P'(roa) ~riA —r2A~
'

we evaluated in the following manner:
We make the expansion

(3p»' —1)r» 'P'(roa) =-', p (222+1)P„(p2A)F„(r2A),
n=o

where

F (y2A) = &poa P (p»)yia 'P'(ypa)(3poa' —-1).

The integrand is independent of piA and &2A except for
the term

~
riA —r2A

~

'. Consequently, that term can be
replaced in the integrand by pi=o" Pl(piA)Pl(p2A)
Xgl(ylA y2A) wllel'e

gl (yiA, y2A) = yiA 'y2A ' ' fOr r» «2A,
r2A r» fOr r2A + r1A

Integration over the four angular coordinates gives the
form of C2(s2 s') which was evaluated on the IBM 704:

~Xo )Xo
C2(s', s') = (5a'/2g) «iA P'(yiA) «2A y2A

0 ~o

XL Mgo(ylA r2A)FQ(r2A)+g2(rlA y2A)F2(r2A)

+go(riA, r2A)Fo(r2A)].

Ci= —
~
Rs+ap ~I+DRs+ap)' R—' a'—2a—RM+Xo')&

C2 = —I Rs ap—I +p(Rs ap—)' R'—a'+—2aRM+Xoof&.

The expression for J2(s', 22) was programmed for the
IBM 704. The integrations over the variables p, M, P,
arid E were performed by using the Gaussian quadrature
method; the trapezoidal rule was used to integrate over
r. For EA~=4ao the following number of integration
points was used; 4 points for p, 5 points for 3f, 4 points
for p, 10 points for R; and a Ar equal to 0.15 was used in
the trapezoidal integration of r. The accuracy of the
procedure was checked by making numerous runs with
various mesh dimensions, and the above-mentioned
mesh size was found to give an answer which was accu-
rate to better than 0.1'Po. For this case, a running time
of Ave minutes was required. More mesh points and a
longer running time (up to thirty-five minutes) were
needed for the smallest values of gA~.


