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The low-energy K= interaction is studied on the basis of the double dispersion representation. Exact
dispersion relations for partial wave amplitudes are derived for K scattering and for the process 7+ — K
+K. These relations are reduced to manageable form and effective-range formulas are derived under the
assumption that the K interaction proceeds principally through a contact “potential.” For the process
747 — K+K, the initial-state interaction is taken into account; for the p wave of K= scattering, the two-
pion exchange mechanism is considered. Other types of solutions are briefly discussed.

I. INTRODUCTION

ECENTLY, Chew and Mandelstam! have formu-
lated the theory of the low-energy pion-pion
interaction based on the analytic properties of the
transition amplitudes as proposed previously by Man-
delstam.? The role of the pion-pion interaction in the
pion-nucleon system has attracted a considerable atten-
tion in recent times.3 It is clear that in elementary
phenomena where K mesons participate significantly,
the K= interaction should play a role similar to that of
the pion-pion interaction.*=® In particular the low-
energy behavior of KN scattering is in a large measure
determined by the two-pion exchange between the
nucleon and the K meson, and the hyperon (A,Z) ex-
change. The mechanism suggested by Barshay,® in
which the two-pion exchange takes place through the
boson-boson interaction term in the Hamiltonian of the

form
Hg,=4m\kr (Kf -K)¢2, 1)

and the K—A (K—ZX) relative parity relative to the
nucleon is assumed to be odd (even), appears to be
entirely adequate to explain the small charge exchange
in K*n scattering at extremely low energies, and the
rise in the charge-exchange to non-charge-exchange
ratio at the same time as the p wave in the isotopic spin
zero state makes its appearance. A quantitative analysis
is being made of the KV scattering based on the double
dispersion relation.” In this paper we address ourselves
to the effective-range analysis of the K= interaction.
Our analysis will be based on the double dispersion
representation. This work is motivated as preliminary
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to quantitative understanding of the K-meson nucleon
interaction.

Dispersion relations for partial wave amplitudes will
be deduced from the double dispersion representation.
A procedure of calculating the scattering amplitudes by
means of the partial wave dispersion equation has been
proposed by Chew and Mandelstam.! The initial steps
of the procedure, the effective-range approximation,
applied to the pion-kaon scattering will be carried out in
this paper. The dispersion equation for the s-wave
amplitude will include an inhomogeneous term reflecting
the fact that in the conventional (renormalizable)
Lagrangian field theory, an independent coupling con-
stant appears in the K7 interaction. Complete neglect of
the unphysical branch cuts associated with the crossed
processes then affords a simple approximation for the
low-energy s-wave amplitude. We shall subsequently
investigate the process w+r— K-+K. Our main in-
terest in this process is its relevance to the kaon-nucleon
scattering. Hence, we shall mainly concentrate on the
energy region below the physical threshold. The Pauli
principle gives a rather stringent selection rule for this
process which simplifies our consideration to some
extent.

For the p-wave amplitude, we must take into account
the unphysical branch cuts, since the ‘“coupling con-
stant” does not appear explicitly in the dispersion
equation for the p wave. We shall make an approxima-
tion in which we only consider the singularities associ-
ated with the low-energy =+ — K-+K process. Here
the phase shift of the pion-pion scattering in the T'=0,
J=0 state plays an important role, and at the moment
even a qualitative estimate of the p-wave amplitude
seems to have little meaning.

The solutions presented here will be an analog of the
s-wave dominant solutions of Chew et al.'8 Other types
of solutions®!® will be discussed and physical implica-
tions in the present approximate reduction of the
dispersion relations are clarified in the last section.
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II. KINEMATICS

We commence with the kinematical characterization
of the pion-kaon scattering and the crossed processes.
Let (pne) and (—ps,8) be the pion momenta and
isotopic spin indices of the incoming and outgoing pions,
respectively, and ps, — p4 be the incoming and outgoing
kaon momenta. The convenient invariant variables for
the double dispersion representation are the squares of
the total center-of-mass energies for the three reactions

L T(Plya)+K(P2)—)7r("ﬁ3: B)+K(—P4))
IL. T(psB)+K(p2) = 7(—pr, ) +K(—ps),  (2)
IOI  w(pra)+7(ps,6) — K(—p2)+K(—pa).

We define
5= (pr1+p2)*= (pstpa)%,
u= (ps+p2)*= (pr+24)%, 3)
1= (p1tpa)*= (patpa)?,
where s, %, and ¢ are not all independent, but
stut-t=2M*+42u2,

M, p being the masses of the kaon and the pion,
respectively.

In reaction I, s and ¢ are related to k, the magnitude
of the three-momentum, and 6, the scattering angle in
the barycentric system, by

5= M2+ 28+ 20 (B4 M02) (B +12) T2,
t=—2k2(1—cosf).

(4,0

(CAY)

In reaction III, s and ¢ are given by
s=—p*+2pq cose—¢,
(=AM =4 (i),

where p and g are the magnitudes of the three-momenta
of the kaon and the pion and ¢ is the scattering angle in
the barycentric system.

In the isotopic spin space of the kaon, the transition
amplitude has the form®

Aﬂﬂt:A(+)6ﬂa+A(—%[Tﬁy7'a]- (6)

(4,111)
(5,111)

In reaction (I), there are two independent isotopic spin
states, T'=4 and 7'=$. The relations between the eigen-
amplitudes of the total isotopic spin A®, 4P and 4@
are

AD= AP 424),

AP =4 — 4, (7,1)

For reaction (II)

AD =YD 24,

AD=4B 44O, (7,10)
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For reaction (III)®
BO=64®,

BO=240), (7,111)

where B® BW are the eigenamplitudes of total isotopic
spin T=0, and 1, respectively.

We define the partial wave amplitudes for reaction I
by

1
AD(s) =-21~f d cosf Py(cosf) AP s,t(cosh) ]
—1

s
=—— exp (16,P) sind;?, 8,0)
k

where 7 can be either 3 or . The last equality in fact
defines the normalization of 4¢P while the kinematical
factor s*/k follows from the Lorentz invariance of the
S matrix. For reaction III, we define

1 1
B® (l)r—%———~f d cose Pi(cosp) AP [s(cosp),t],
(P9
(8,IIT)

where B;®(f) are related to B,*?(f) through Eq.
(7,11I).

III. ANALYTICITY OF THE AMPLITUDES

According to the Mandelstam representation, the
amplitudes 4@ are analytic functions of s and ¢ ex-
cept for singularities associated with the possible inter-
mediate states of the reactions (I) to (III). Therefore,
we have branch lines for s> (M+w)? (> (2u)? and
u2> (Mu)? Togive a valid meaning to the Mandelstam
representation, some subtractions will be necessary. It
is unfortunate, but true, that we must infer the nature
of subtractions needed from perturbation theory.

If one takes the view that the primary K= interaction
should be charge independent, and parity conserving,
then the only choice is the Hamiltonian of the form of
Eq. (1). From the viewpoint of the conventional
renormalizable Lagrangian theory, the (K-K)#? inter-
action term is required as an infinite counterterm to
cancel the infinities associated with the baryon loops in
the K= scattering. In the past, proposals have been
made for the Yukawa coupling of two K mesons and a
pion.*® There seems, however, no compelling reason,
within the present experimental knowledge, to assume
the violation of charge independence, or the parity
doubling of the K multiplet, or the odd relative parity
between K* and K°.

The postulation of the Hamiltonian, Eq. (1), then
leads to the conclusion that one needs to add an over-all
subtraction constant and single dispersion integrals in

1BW. R. Fraser and J. Fulco, Phys. Rev. 117, 1603 (1960),
hereafter referred to as FF.
1S, Mandelstam, Phys. Rev, 115, 1741 (1959).
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s, t, and # in the double dispersion representation'® for
A while one need not for 4.

The analytic properties of the partial wave ampli-
tudes, Eq. (8,I), have been investigated by McDowell,*¢
by Oehme,® and by Frazer and Fulco,'” for meson-
nucleon scattering. The partial wave amplitude 4 P is
analytic in the complex s plane except for (a) the
physical branch cut extending from s= (M +pu)? to 4o,
(b) the branch cut along the circle |s| = M?—y? associ-
ated with the intermediate states of reaction (III), and
(c) the branch cut s=— to (M —pu)? associated with
the intermediate states of reactions (IT) and (III).

The analytic properties of the amplitudes B;(f) have
been discussed by Fraser and Fulco® for the process
m+m — N+ N. The quantity B;(f) is analytic in ¢ except
for the physical branch cut from ¢= (2u)? to 4, and
the unphysical branch cut from — « to 0 along the real
axis.

As we mentioned earlier, we need a subtraction for the
amplitude 4 (s,f). The subtraction point is in principle
arbitrary, but for convenience we impose the following
conditions to be fulfilled by the subtraction point:
First, it must be symmetric in s and #; secondly, it
should not overlap with the singularities of the partial
wave amplitudes. A convenient point, satisfying the
above criteria, is

So= M0=M2, to= 2/.1,2,
So+totto= 202242, 9)

We shall henceforth adhere to this convention.!8

IV. EFFECTIVE-RANGE APPROXIMATION.
ADIABATIC APPROACH

We can now derive a set of integral equations for the
low-energy amplitudes, knowing their analytic proper-
ties as discussed in the last section. A procedure for
solving the integral equations by iteration has been well
set forth by Chew and Mandelstam. A ‘“complete”
solution, however, must depend on the gigantic brain of
the modern electronic computer. Nothing so elaborate
will be attempted here, but the initial stages of the
iterative procedure, which yield what are commonly
known as the effective-range approximations, will be
carried out in this paper, with an estimate of the
coupling constant.

A. S Wave in the K= Scattering

Our point of view that an over-all subtraction con-
stant is necessary to validate the double dispersion

15 We have in mind Eq. (2.13) of reference 14.
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S

Se(k2+ie)

L -<s_(kZ-ie)

F16. 1. The singularities of 4;® (s) and the contours of integra-
tion. The branch cuts are indicated by wavy lines: the dotted
lines are the contours of integration for the partial wave dispersion
relation.

representation for A indicates that one subtraction is
necessary for the dispersion equation for 4 ‘P. Applying
Cauchy’s theorem to Ao? in the usual way (see
Fig. 1),

— 2 ©

s—M
f ds’
™ (M+4-p)?

s—M?

ImA oD (s")
(s"—=s8)('—M?»
ImA D (s")
ds'———
(5=5) (=1
FoD () + R (5¥),

where I=3% or 3, aP=A4¢P(M?); the subtraction is
made in accordance with the renormalization conven-
tion discussed previously, and

s—M? p#
[“a
™ M2

Ao D (s)=aD+

(M—p)?

+

™ —0

(10)

251 (M)
s ()= M2—pu2—2\
1
X
L5+ ) —s1ls+ ) — M)
XM D (s0)F DM (s0)]1;
54 (N) = 2N M2 2+ 280 (M2=0) (—A—p2) ],

with §D=2 —1 for I=3%, 3, respectively, and M ;&
defined as in Oe [Eq. (9)]. The imaginary part of 4,&
is given by Egs. (8) and (9) of Oe.

It is a priori expected, and can be verified a posteriori
as in CM for the “adiabatic” solution, that

aBg B — N g = AD (s0,u0). (12)

[Note that 4 (so,u0) =0, since A (s,u) = — A (u,5) ;

FoD(s)=—

(11)
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uo=s0.8] The effective-range approach in this case con-
sists of neglecting the unphysical cut completely, as-
suming that the effects of the unphysical branch cuts are
approximately represented by the subtraction constants
aP. The resulting dispersion equation can be solved
easily, for example by the N/D technique of CM, with
the unitarity condition:

1 k [(s—=M2—pu2)2—4M2u2]E

Im =——=—
AD(s) \/'s 2s

along the physical branch cut. In this approximation,
A®P=4,P and we may suppress the isotopic spin
superscripts. There results

)

k —1 1 ((—4M22)E o+ (?—4M2u2)}
—_— cot60=——+—[ In
Vs e 27l oMyl 2Mpu
M—ps o—2Mu M
- ( )ln—], (13)
MA+p\w+M*4-p? 178 B
with w=s—M?*—u? and
1([M2—p2 MP—u2y M
e L[ e
2r M2 M2-u? n
(M2 —pt) (AMur—pt)t
+ tan™? ]
M2 2
1 1
——~0.19—-. (14)
o o

The requirement that there be no “ghost” pole along
the negative real axis within |s| <Z in our solution, with
L~5(M+u)?, say, puts a lower bound (for detailed
discussions, see CM), —1.025a<0. For « positive the
physical requirement that there be no bound state of the
K system places the upper limit

MZ___”2 MZ_H2 M
a<l —7rl [ ] In—
2(M+-p)?  2M? ©
(4M2ﬂ2"ﬂ4 3 (4M2'u2_p,4)% —1
— tan™! } ~5.,08.
M2 u?

Therefore, the above considerations, together with Eq.
(20), gives crude limits on the coupling constant:
—5.08 <Ak~ $1.02,
—1.025a<5.08. (135)
The value Ag,~(47)~* used by Barshay® is within these
limits.
Equation (13) has been derived by Okubo!® from
perturbation theory. We note that the condition, Eq.

19°S. Okubo, Phys. Rev. 118, 357 (1960).
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(15), implies that there is no resonance in the region

(M~4-up)<ss L.

B. Process n+x — K+K

The Pauli principle admits only the symmetric states
for this process. For T=0 (1), the two pions in the
initial channel must be in an even (odd) angular mo-
mentum state, and the G parity of the kaon system in
the final channel must be even. Therefore, for 7=0, the
s state is the most important one, while for =1, the
main contributions to the amplitude 4 come from the
P state.

We write down the dispersion relations for the s wave
with one subtraction and for the p wave with no
subtraction:

1—2u2) ImBy (¢
By (D =6+ ( a ) f dt’___g__o__(_L
T Yawr (=)0 -2)

(=22) (0 TmBeH ()
+ f At ———, (16)
r e (=0 —2)
1 p* ImB,O )
B9 ()=~ f At —
T~ (2p)? Iy
1 00 ImB©OF)
+- f r—— an
T Vg y—t

where 3= B (2u?), and ImB;® () for <0 is given by

ImB,® (1)

f M2p242p—g—02 g
(M 2(p_g )t

25’ —2M*—2p? ¢
e (Lot
4p_q_

xilvowo+( " Jvown] a9

where p_= (M?—1/4)}, g_= (u2—1/4)} and ND are the
absorptive parts of the amplitudes 4 (.

From the unitarity, it follows? that the phases of the
amplitudes B;® () for (2u)2<¢< (4u)? are given by the
phase shifts of the pion-pion scattering in the corre-
sponding states. Equations (16), (17) can be solved as
in FF once N are known. Since N®=N® in the
present approximation as will be shown a posteriori,
BO®)=0 for (2u)?<t<16u2. A crude estimate of
B¢*® (f) may be obtained by neglecting the left-hand
branch cut, assuming the subtraction constant =«

2 S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).
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represents approximately its effects:
(—2u2 ars()
B (H)~a exp{ f )
Y (=0 —2p)
for 4u2515162,

(19)

where 8(2) is the phase shift of pion-pion scattering in the
T=0, J=0 state, and in actual evaluation, the scat-
tering length approximation:

f—4u2\? 1
( ) cotd () =—
¢

N0

may be used. To expedite the integration in Eq. (19),
we further make the nonrelativistic approximation:

8(¢) =tan™[no(t—4u?)?/2u],
and obtain
2u/m0—V2u

By ()~ )
(2u/m0) — (4u2—1)}

for 4p?<t16p® (20)

C. P Wave in the K= Scattering

In writing down the dispersion relations for higher
angular momentum amplitudes, we take advantage of
the fact that, as s — (M +u)?, A:(s) approaches zero as
[s— (M+w)¥]Y, to suppress very high energies under the
dispersion integrals. We write

[s— (M+p)?]

AP (s)=
™
® ImA (D (s")
X f ds’
orrw? [ — (M) ] (s"—s)
s— (M +w)T
R
™
(M—p)? Tmd D (s’
% f s’ £ (s")
—n [s'— (M~+w)?*] (s"—s)
+F /D (S)‘f‘Fz(I)f(S*); (21)
where
™
=8 25 WM P s W) ]+ EP M5 (M) ]}
X ax
—_M?

ES+O\)—M“'—M2—2>\2][S+O\)-(M+u%;]2"

Again in the spirit of effective-range approach, we
shall only consider the nearest singularities: the branch
cut along the circle |s| =M2—y2 For the p wave we
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write [s— (M +p)2 141D (s)=n, D (5)/d1D (5), where

—(M 2] ) 1(1) 1

dl(r)(s-)=1_wf M, (23)
T o4 25 (s'—s)

and

1D (s)= fiD () + f1D* (s%);

-1 —u? 23+()\)
D)= [ i
HE) T »[Mﬂ [s+ ) —M2—p2—2X7] (24)

% di(sy) M P+EDMO
[ O =51 L5+ () — (M +)?]

Equations (23), (24) can be solved in principle by the
method outlined in CM. We shall be content here with
the scattering length approximation:

k-’)‘
= cotsyP= lim k[4,P ()T
) s—>(M+-p)?
e LR, 25)
(MAwy " WA

In the present approximation, M1 =0, and there will
be no isotopic splitting of the phase shift. M9 can be
calculated from Eq. (20) by Egs. (8) and (9) of Oe. It is

M P[5 (M) ]
2u\ 1
. B,
(2# 770)(‘9\)2

4u?
— ( — 2N —4u—
N0

e Camn M e

The facts that we have used the nonrelativistic scat-

tering-length approximation for the phase shift of the

pion-pion scattering and, as pointed out by Frazer

and Fulco,” that the partial wave decomposition of

M[s;(N\)] is valid only in a certain region (in our

case, A2 —6u2) do not affect our estimate significantly,

since it turns out that the main contribution to the

integral in Eq. (24) comes from A= —p2.
Approximating di[s;+ ()] by 1, we obtain

k3

— cotd;

Vs

{1 ar—soy

[2(—4>\—4u2)*

= i {—E Refm dv i)
M+ppl 7 Jpe [sp(—v)—MP—p+2v]
My Py (=2)] ] ™ Mp

[s4(—»)— (M+-w)2 ] =E ";[_g("lo).

e
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The quantity g(no) is a rather sensitive function of 7,.
An estimate shows that g(n0)=0.28, 5.16 for no=+1
and —1, respectively.

V. CONCLUDING REMARKS

Implicit in our treatment is the assumption that (P
in the s-wave dispersion relation, Eq. (10), is large com-
pared to the contributions from the left-hand branch
cuts for not too high energies. This corresponds, physi-
cally, to the assumption that the Kr interaction can
be approximately described by a contact interaction
between two bosons. Such an interaction produces an
s-wave dominant scattering. In the effective-range
formula for the process 7+ — K+K, Eq. (20), the
initial-state interaction was taken into consideration.
The p-wave scattering parameter was obtained by con-
sidering two-pion exchange between the pion and the
K meson. On the other hand, if we assumed o to be
small, the contributions from the unphysical branch
lines should have been taken into account seriously.
If, moreover, it turns out that Im4 ;% (s) for s < (M —p)?
is large, then the possibility of the p-wave resonance
appears in the kaon-pion scattering also.! It is unlikely,
however, in view of the corresponding situation in the
pion-pion problem,® that the ‘“adiabatic’ solution
whose starting point we outlined here will actually de-
velop a resonance in the p wave, even if the left-hand
branch cuts are considered seriously.

The adiabatic solution we described here corresponds
to the Hamiltonian of Eq. (1) in the conventional
Lagrangian theory.!® The equivalence of the phase
shifts for the =% or T=$ states is true independent of
the approximation as long as the Hamiltonian of Eq. (1)
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alone is considered. The adiabatic solution starting with
a®=a® will preserve this equivalence, and, what is
equivalent, B; =0, even if the left-hand branch cuts
are taken into account. It must be emphasized that
A (s,t)=01s a formal solution to the present problem,
satisfying the crossing relations on the unphysical
branch cuts, although physically, mechanisms other
than that of Eq. (1), such as the baryon-antibaryon
intermediate states, will likely destroy the isotopic-spin
degeneracy of the K system.

If, in the future, experimental developments confirm
the isotopic-spin splitting of the phase shifts, we may
introduce two phenomenological, independent param-
eters a® and a®, both of which satisfy Eq. (15). Or,
alternatively, self-consistent solutions sustained by a
bootstrap mechanism? may be looked for.

An interesting possibility is to assume the coupling of
an unstable vector boson' of isotopic spin one to the
conserved isotopic vector current of the strongly inter-
acting particles, as has been suggested by Sakurai.?? In
this case, the amplitude B, (f) may be computed by
the resonance approximation!® and inserted into the
left-hand branch cuts to generate 4, (s). Such a solu-
tion, with the resonance parameters to fit the electro-
magnetic structure of the nucleon, will give rise to a
large isotopic splitting in the low-energy KV scattering.
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