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If 0($&g, then, as is shown in Appendix C, when
SC~O it follows that s —+s &3 and 5K~0. Hence
d'fs(s)/ds'~ d2fs(s~)/ds'NO. Upon substitution into
(D.2) of the limits attained by s, OR, and d'fz(s)/dz' as
K —+ 0 we obtain (43). If g) zi, then from Appendix C
we find that as R —+ 0, s ~ 3 and OR' —+ (1—zi,/cl) )0.

Hence from (D.3), d'fz/ds'~ —$24.(s—3)&j '. Sub-
stitution of these limiting values of s, OR, and d'fs (s)/ds'
into (D.2) yields (44).

Equation (53) then follows upon substitution of

(41d) and (43) into (D.1), and (54) follows upon
substitution of (41c) and (44) into (D.1).
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An approximate analytic approach to the problem of deter-

mining diGerential scattering cross sections for classical central-

Geld repulsive forces is described. It is shown that the impact
parameter, b, can be approximated by b=R cos(8/2), where R
is approximately the distance of closest approach and 8 is the

scattering. angle in the center-of-mass system. A simple approxi-

mation gives the potential energy of interaction between two

atoms as V(R) =2E sin (8/2), where E is the energy in the center-

of-mass system. Simple analytic expressions for the differential

scattering cross section, 0-, are derived from the above two re-

lationships for three special cases of a two-parameter screened

Coulomb potential energy,

V(R)=ZzZzo'A exp( —pAR)L1 —exp( —AR)g ',

where Z;e is the charge on the ith atom, A is a screening radius,
and p is an adjustable parameter which is restricted to „1,and
2 in this paper.

A new and improved method for calculating 0 exactly is also
discussed and is used to compute the exact behavior of 0 for p=1.
A table is presented which allows one to compare the exact and
approximate n's for p=1 over a wide range of energy and scat-
tering angles. The agreement is particularly good for large energy
transfer.

I. INTRODUCTION

HE purpose of this paper is to present a method
for obtaining approximate analytic represen-

tations for classical differential scattering cross sections
suitable for studying slowing down processes in radi-

ation damage theory. Briefly, this approximation will

be shown to interpolate remarkably well between the

impulse and hard-sphere approximations valid, re-

spectively, for small and large angle scattering.
In Sec. II, the problem of determining an approximate

relationship between the impact parameter, b, and the

angle, 8, associated with an arbitrary central repulsive

force scattering of an incident atom by a target atom
will be discussed.

Approximate analytic expressions for the impact
parameter and differential scattering cross section will

be derived in Sec. III for three types of screened

Coulomb potential energy functions suggested by
Brinkman and Meechan. ' Exact solutions for the impact
parameter and diGerential scattering cross section have
been worked out for a special case of the aforemen-

tioned potential energy and a comparison between

*This work was supported by the U. S. Atomic Energy
Commission.

t Present address is Physics Department, University of
California, Los Angeles, California.

'For a recent review article concerning the status of slowing
down processes in radiation damage theory, see G. J. Dienes and
G. H. Vineyard, Radzatzorz Egects izz Solids (Interscience Pub-
lishers, New York, 1957),

s J. A. Brinkman and C. J. Meechan (to be published).

these results and those derived from the analytic
approximations will be given in Sec. IV.

II. DERIVATION OF APPROXIMATE
SCATTERING EQUATIONS

Figure 1 shows the path described by an incident
atom being scattered by a repulsive central force
through an angle, 0, by a fixed target atom. In this

figure, the impact parameter is denoted by 6 and the
coordinates (r,ztz) define the path of the incident atom
relative to the target atom as the origin. The diGerential

equation for the (r,@) trajectory is given by the well-

known expression'

(zt')'+st'= b '(1—E-'V),

where I= 1/r, V is the potential energy of interaction,
and E is the energy of the incident atom measured in

the center-of-mass system. The prime on I denotes
differentiation with respect to p. The exact relationship
between e and b is easily derived from Eq. (1) and is

well known to be'

(2)

where Np is the zero of the integrand and physically

' H. Goldstein, Classicu/ Mechanics (Addison-Wesley Pub-
lishing Company, Inc. , Reading, Massachusetts, 1950).
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equal to the reciprocal of the distance of closest
approach.

Equation (2) must be numerically integrated for
V's appropriate to radiation damage theory. For
example, Everhart, Stone, and Carbone, have solved
this equation for the case of the Bohr screened Coulomb
potential.

A. Integral Equation for Trajectory

Approximate relations between 8 and b for arbitrary
V can be obtained from Eq. (1) by converting this
equation into the following equivalent integral equation,
derived in Appendix A. TARGET

ATOM

where

u=b slnp-
Jo

dP' sin(P —qV) g(u (p') ),
FIG. 1. Trajectory of an incident atom colliding with a fixed

(3) target atom. In this 6gure, r denotes the distance between the
atoms.

g(u) = b s'E-'(8V-/Bu). (4)

sin(8/2) =b dy" cos(y"—s/2)g(u(s'/2 —y")). (5)

This expression is exact and can be evaluated after Eq.
(3) has been solved for u(p).

B. Approximate Relationship Between Scattering
Angle and Impact Parameter

A simple approximate relationship between 8 and b

can now be established by substituting u=b ' sing, the
straight line trajectory of the incident particle, into
Eq. (5). Using this approximation, one can transform
Eq. (5) into the following expression.

where

V(R)+ H(R) =2E,
[R'—b'7&

b d
a(R) =—, dr —V(r).

[r'—b'7& dr

(6)

The distance E appearing in these expressions is related.
to 8 by

R=b sec(8/2).

4K. Everhart, G. Stone, and R. G. Carbone, Phys. Rev. 99,
1287 (1955}.

The first term in Eq. (3) represents the initial straight
line trajectory of the incident particle. The second term
accounts for the deQection in the trajectory associated
with the repulsive potential energy, V.

Figure 1 shows that p defines the angle at which
the radial momentum or (du/dg) vanishes. This figure
also shows that the scattering angle, 8, is related to P
by 8=m —2P . Consequently, one readily finds by
differentiation of Eq. (3) with respect to P and subse-
quent appropriate change of variable of integration that

m'/2

Figure 1 shows that R is approximately equal to the
distance of closest approach.

For small angle scattering, R is nearly equal to b and
the second term in Eq. (6) dominates. One can also
show that Eq. (6) reduces to the impulse approxi-
mation for small 8 and behaves like a hard sphere
approximation for large scattering angles. Finally, one
should note that Eq. (6) is exact for Coulomb scattering,
i.e., for V(r) varying as 1/r, since g(u) in Eq. (5) is a
constant [see Eq. (4)7.

C. Approximate Evaluation of H for Arbitrary V

It has been possible to approximate H for arbitrary
V by a procedure described in Appendix B.It is shown
in this appendix that the simplest approximation which
appears physically significant leads to

H(R) = V(R) [sec(8/2) —tan(8/2)7.

When this expression is substituted into Eq. (6), one
finds that

sin(8/2) = V(R)/2E, (10)

with b=R cos(8/2), [see Eq. (8)7 forms the basis for
deriving analytic expressions for b in terms of 8. Again,
Eq. (10) is exact for the Coulomb potential.

We stress the fact that Eq. (10) is equivalent to Eq.
(6) for large angles, but is only an approximation for
small angles excepting, of course, the singular case of
the Coulomb potential. A more accurate expression for
P(R), given in Appendix 8, can be used for numerical
integration but leads to unwieldly analytic expressions
for b in terms of 8 and will not be used in this paper.

III. ANALYTIC APPROXIMATIONS FOR
DIFFERENTIAL SCATTERING

CROSS SECTIONS

Brinkman and Meechan' point out that the potential
energy given by

V(r) =ZiZsAe' exp( —Br)[1—exp( —Ar)7 ' (11)
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TABLE I. Analytic approximations for distance of closest ap-
proach, E„,impact parameter, b„,and differential scattering
cross section, 0„,for the Brinkman-Meechan potential,
U= exp( —pR)L1 —exp( —E)] '. In this table, t= (2'/2', )&,
Q= (1 t'—)&, F= (2Et) ' and L~=b~ 'Q'Ft~.

b~Q '=R„ (2' R„~/s-)p~

2 In{$1+(F/4)]&+(F/2)} 1+LE)1+(F/4)7 t

1 in(1+F) 1+L)L1+F] '
2 jnL1+ (1+4F)&7—in2 1+2Ipg1+4F+ (1+4F)&7 ~

is well-suited for studying the interaction between two
atoms of charge Z&e and Z2e. This potential energy
behaves like Z&Zse'/r for small r and has a Born-Mayer
or Huntington exponential character for large r. The
choice of A and 8 is discussed elsewhere since we
consider only three special cases B=A/2, A, and 2A
for arbitrary A. However, these three cases cover a
considerable range of interest and still allow us to
determine R in terms of E and sin(8/2) using Eq. (10).

The unit of length used in the remainder of this paper
will be 1/A while the unit of energy (measured in the
center-of-mass system) will be taken as Z~Z e'sA. With
these conventions, one notes that

IV. COMPARISON OF EXACT AND APPROXIMATE
RESULTS FOR P =1 SCATTERING

In order to test the validity of the analytic approxi-
mations presented in Table I, we have evaluated the
differential scattering cross section exactly for the
special case of the Brinkman-Meechan potential with

p = 1. Since V is a rapidly varying function of r or I, it
appeared undesirable to us to follow the usual procedure
of solving Eq. (2) numerically to obtain 8 as a function
of b. Furthermore, as Everhart, Stone, and Carbone4
have pointed out, the integrand of Eq. (2) has a singu-
larity which requires special attention.

A. Transformation of Scattering Integral
to a New Representation

Fortunately, our search for an improved method for
determining 0 as a function of b has been successful.
Our approach is new but is based upon the work of
Keller, Kay, and Shmoys' who have solved the inverse
problem of determining the potential energy function
from scattering data. It is shown in Appendix C that
Eq. (2) can be transformed into

d Y sin(Y)L((R(Rp ')' —(«sY)']-' (16)

V(R) =exp( —pR) $1—exp( —R)]—', (12)

where p=B/A.
The differential scattering cross section per unit

energy transferred to the struck atom, o (T), is given by

V((R) =EL1—(cos (w) secY)']

V (6tp) =EL1—(cosw)']

(T /2)p (T)=d(~b')/d(cos8), (13) de6ne the distances (R and (Rp in terms of the potential
energy, t/'. The impact parameter is now found to be

T= T [sin(8/2)]'. (14)

A. Approximate Differential Scattering Cross
Section for Brinkman-Meechan Potential

The Brinkman-Meechan potential energy, in the
units previously described, is characterized by a single

parameter, p=B/A. Consequently, b„and o„will be
used to denote the impact parameter and differential
scattering cross section appropriate to p=B/A.

When p= ~a, 1, or 2, one can obtain R in terms of 8
from Eqs. (10) and (12). The impact parameter, b„,is
now obtained from Eq. (8) and p-„is found by a dif-
ferentiation with respect to 8 Lsee Eq. (13)]. These
results are presented in Table I, where r has been
derived from an expression, equivalent to Eq. (13),
given by

(2T /pr)(r = —(db'/dt),

where t= (T/T )i=sin(8/2).

where T is the maximum possible energy transferred.
The energy transferred to the struck atom, T, is related
toHby

b= COSm (R0. (17)

dY sin(Y)(RL(5t(Rp ')' —(cos Y)'] V (18)
0

with

J= —F((R) sec'Y+6t(Rp 'P((Rp) (19)

I:(I)= Ld V((R)/d(R]-' (20)
~ J. S. Keller, I. Kay, and J. Shmoys, Phys. Rev, 102, 557

(~956).

The parameter w varies from 0 to pr/2 while 8 varies
from 0 to pr. The integrand of Eq. (16) is bounded and
varies slowly with I' in contrast to the previously
described behavior of the integrand of Eq. (2).

In order to determine the differential scattering cross
section, it is necessary to compute (db/d8)= (db/dw)
&((d8/dw) '. The derivative, (db/dw), can be obtained
analytically from Eq. (17) but (d8/dw) must be evalu-
ated from Eq. (16).A simple calculation shows that the
latter derivative can be obtained directly as

(d8/dw) =E sin(2w)No '
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A careful inspection of the integrand of Eq. (18) shows
that it is also slowly varying and bounded and enables
one to compute (d8/dw) directly.

B. Numerical Comparison of Exact and Approxi-
mate Impact Parameters and Differential

Scattering Cross Sections for P =1
Numerical results obtained from the analytic ap-

proximations for 0., given in Table I, have been com-
pared with the exact solutions for the case p=1 in
order to establish the usefulness of the analytic approxi-
mations. Equations (16) and (18) were evaluated
numerically for a set of E's and m's by using Gauss's
mechanical quadrature. ' Our numerical procedures
were checked out for V(51)=(R ' for which b and o are
known exactly. '

Table II shows exact and approximate results
obtained for p=1 scattering. It is to be recalled that
the units of length and energy are 1/A and ZrZse'A,
respectively. This table shows that the simple analytic
approximation for 0.~, which is given in Table I, com-

pares quite favorably with the exact differential scat-
tering cross section for p=1 scattering over the entire
range of energies involved. The agreement is very good
for large energy transfer.

V. SUMMARY AND DISCUSSION

An approach has been presented for obtaining
analytic approximations for the differential scattering
cross section for an arbitrary potential energy function,

V(R), which can be solved explicitly for R as a function
of t/". It was found that the impact parameter, b, is
related to the scattering angle, 8, by b=R cos(8/2),
where V(R)=28 sin(8/2) defines R which is the ap-
proximate distance of closest approach in terms of 8.
The differential scattering cross section per unit energy
transferred to the struck atom, 0-, is then given by
(T /2)a=)drab'/d(cos8)), where T is the maximum

energy transferred in a collision.
Analytic approximations for 0- were presented in

Table I for three special cases of the potential energy
function proposed by Brinkman and Meechan )see
Eq. (12)].

A new approach for computing 0 exactly was de-
scribed in Sec. IV by using a parametric representation
which eliminates the usual singularity in the integrand
of the scattering integral. Briefly, this new approach
allows one to compute 0 in terms of a slowly varying
function of a parameter m. A direct method of com-

puting (d8/dw) was also presented. The impact pa-
rameter was given by b = cosw S,s, where V((Rs)
=EL1—(cosw)'] defines the distance 04 in terms of w.
The energy dependence of 0- is primarily accounted for

by the variation of Ro with E which can be expressed
analytically for the Brinkman-Meechan potential
energy.

W. K. Milne, Numerical Calculus (Princeton University Press,
Princeton, New Jersey, 1949), p. 285.

TABLE II. Comparison of approximate and exact differential
scattering cross sections for p=1 as a function of incident atom
energy, E, and fractional energy transferred to struck atom,
T/T . Units of energy and length are defined in text.

T/T (T /4s. }or E=10 8=10 ' 8=10 ' 8=10 '

1 Exact 5,3X10 4

Approx. 6.0X10 4

10 ' Exact 5.9X10 '
Approx. 5.1X10 '

10 ' Exact 5.0
Approx. 3.4

10 ' Exact 2.5X10~
Approx. 1.5X10'

10 Exact 6.0X10'
Approx. 3.7 X10'

7.1X10 I

8.0X10-'
11.2
8,0
1.5X 102
1.0X10'
1.8X10'
1.3X 10'

.2.1X104
1.6X 104

8.3
9.7

43.7
30.2
3.3X10'
2.3X10'
2.9X10'
2.4X 103

3.2X 104
2.7X104

26.3
29.3
85.1
62.8
5.3X10'
3.7X10'
4.5X10'
3.6X10'
5.0X104
3.8X 104

A 'comparison of the exact and approximate differ-
ential scattering cross sections was made in Table II
for the p=1 potential energy, V(R) =Lexp(R) —1) '.
The agreement appears to be good and in fact shows
that the simple analytic approximations for 0- given in
Table I are suitable for characterizing collisions between
atoms in radiation damage calculations.

u"+u= —g, (A-1)

since d(u")/du= 2u" and g is defined by Eq. (4). This
differential equation is easily converted to an integral
equation by considering g to be a know function of p.
A particular solution, u„,of Eq. (A-1) is

since u„"+u„=—g(u). Similarly, the general solution
of the homogeneous equation, u"+u=0, is u=C cosp
+D sing. Hence, the general solution of Eq. (A-1) is
u= u„+Ccosp+D sing. Now, from Fig. 1, u ~ b ' sing
as &~0; however, u„tends to zero much faster than

g for potentials which fall off more rapidly than 1/r as
r~ ~. Consequently, C=O and D=b ' which proves
our assertion that Eq. (3) of the text is the proper
solution of Eq. (A-1).

APPENDIX B. EVALUATION OF H(R)
FOR ARBITRARY V(R)

The integral, H(R), of the text will be evaluated here
for arbitrary V(R). An integration of Eq. (7) by parts
yields

H(R) =R'V'(R) cot(8/2)

goo

+b ' «(1—(blr)')'Er'V'(r)1' (~-1)

APPENDIX A. DERIVATION OF INTEGRAL
EQUATION FOR TRAJECTORY

Equation (3) of the text was derived from Eq. (1)
by converting the latter to a second order differential
equation. If Eq. (1) is differentiated with respect to u
one obtains
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P(x.,8)=n.+x„-iP„,
f(x„+i,8)=n +x+i 'P,

(B-3)

where x~=1 and x~= ~ with S being the maximum
number of points used. With these conventions, one
can show that

&(R)=s«(8/2) 2 P (8)(V + V.),— (B-4)

where the prime denotes differentiation with respect
to r or E. as the case may be. It should be noted that
the integral in Eq. (B-1)must be evaluated numerically
for potential energies of interest in this paper. Note
that b=R cos(8/2) by Eq. (8) so that

&(x,8)= L1—(&/r)'O'= L1—cos'(8/2)x 'j', (B-2)

where x=r/R varies from unity to infinity. Our some-
what devious procedure is to approximate P(x,8) by
n +x 'P forx &~x~&x~i, wheren„andP„arefunctions
of 8 only. Our motivation comes from the fact that this
approximation allows us to evaluate Eq. (B-1) in closed
form. The parameters n„and P„arechosen so that

this approximation is in error by less than 10% for the
Brinkman-Meechan potential.

8=~—2 t dyh(y)gx —yj
—

&,

where x=b ' and

h(y) = (2y&) '+y&(dw/dy) (2s)-'. (C-2)

This formulation is satisfactory for monotonically
decreasing potential energies. In these equations,

v=1—Z-'V((R). y=S, 'v ' (C-3)

An inspection of Eqs. (C-1) and (C-2) shows that the
integration associated with the first term of Eq. (C-2)
can be carried out so that

APPENDIX C. DERIVATION OF TRANSFORMED
SCATTERING INTEGRAL

Equation (16) of the text will be derived in this
appendix. Our starting point is Eq. (5) of Keller, Kay,
and Shmoys' who show that

where

and

x +x„+i
G +G„+i

s dp
dy p

—lgxy
—1 1j—~

J, dy.
(C-4)

(B-5)
Now, introduce v as the new variable of integration;
the limits of integration are fixed by

P„=G„—x„n„,m=1, 2, ~ ~ N 1. —(B-6) for y=0, (C-5)

Here, G„={x '—Leos(8/2)7') & V„=V(Rx„), and

The simplest approximation to H(R) is obtained by
choosing X=2, i.e., @~=1 and @2=~. For this case,
only Pi ——Gi—1 or sin(8/2) —1 is needed to evaluate
H(R) approximately. Since Vi ——V(R), one finds that
Eq. (9) of the text represents the simplest possible
approximation to H(R).

We have also investigated a more exact approxi-
mation by taking x& ——1, x2——1.1, x3——2, and x4= .
The p 's derived for this case have been approximated
analytically and it is found that

H (R)= /sec(8/2) —tan (8/2) )((4.58V,—3.48V,
—0.83V3)+t(5.24V2 —4.58Vi —0.39Vg)$, (B-7)

where t= sin(8/2), Vi ——V(R), V2 ——V(1.1R), and
V3 ——V(2R). Preliminary investigations indicate that

and

s=io ——1—E 'V($0) for y=x=(RO 'i '. (C-6)

Hence, using Eqs. (C-3), (C-5), and (C-6), one finds
that Eq. (C-4) becomes

1

8= ~ dv i—&no'*P(R(R0
—')' —(vo/v)$

—l. (C-7)

Equation (16) of the text follows by introducing the
new variables 7' and m given by n=io(sec Y)',
no= (cosw)2 and making the appropriate trans-
formations.
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