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Gravitational-Electromagnetic Coupling and the Classical Self-Energy Problem
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The gravitational eAect on the classical Coulomb self-energy of a point charge is calculated rigorously.
It is shown that the total mass then becomes finite (although still quite large), and that it depends only on
the charge and not on the bare mechanical mass. Thus, a particle acquires mass only when it has non-
gravitational interactions with fields of nonzero range. In order to treat this problem, it is necessary to
extend the canonical formalism, previously obtained for the free gravitational field, to include coupling with
the Maxwell field and the point charge system. It is shown that the canonical variables of the gravitational
field are unaltered while those of the matter system are natural generalizations of their Oat space forms.
The determination of the total energy of a state can still be made from knowledge of the spatial metric at a
given time. The self-mass of a particle is then the total energy of a pure one-particle state, i.e., a state con-
taining no excitations of the canonical variables of the Maxwell or Einstein fields. Solutions corresponding
to pure particle states of two like charges are also obtained, and their energy is shown consistent with the
one-particle results.

tationally and not just the bare mass. Thus, as the
interaction energy grows more negative, were a point
reached where the total energy vanished, there could be
no further interaction energy. Consequently, there can
be no negative total energy, in contrast to the negative
innnite self-energy of Newtonian theory. General
relativity effectively replaces mo by m in the inter-
action term: m=me —sym'/e. Solving for m yields
m= y '$—e+ (e'+2ymee) Ij.This relation is the rigorous
one obtained' in IV for a neutral point particle and
shows that m —+0 as e —&0 in this case.

More interesting is the fact that the gravitational
interactions produce a natural cutoG for the Coulomb
self-energy of a point charge. Here the self-mass resides
in the Coulomb field, 2J'(e/4rrr')2d'r By the gen.eral
argument above, on gravitational compensation, one
expects that the Coulomb energy near the origin
(which is, in fact, "denser" than the neutral particle's
8-function distribution) will have a very strong gravi-
tational self-interaction, resulting in a vanishing to/aL

contribution to the self-mass. Thus, the integral
eGectively extends down only to some radius u, yielding
mzsr ',J;"(e/4rrr')'d'r= ——(e—'/4s)/2a. We can deter-
rnine this effective Rat-space cutoG a by the same
equivalence principle argument. without the gravi-
tational contribution, the mass is me+-,'(e'/4s. e), so
the total clothed mass is determined by the equation

l. INTRODUCTION

HAT gravitational coupling may be of relevance
in the self-energy problem has recently been

suggested by a number of authors. ' Ke shall here
investigate the effect of gravitation on classical self-
energies of static point charges.

The aim of classical point electron theory, since its
inception, has been to obtain a 6nite, model-independent
electromagnetic self-energy, and if possible, to dispense
with mechanical mass altogether. Thus the total mass
of the particle would arise from its coupling to the field.
Such a program, however, was not feasible, since the
self-energy diverged linearly, with no realistic com-
pensation possible. In terms of renormalization theory,
this implied an infinite "bare ' mechanical mass. Since
gravitational interaction energy is negative on the
Newtonian level, this 6eld may be expected to provide
compensation. Indeed, a simple argument yields a
limit on the self-energy due to just such a compensation.
Consider a bare mass mo distributed in a sphere of
radius e. In the Newtonian limit, the total energy (i.e.,
the clothed mass) m is given by m=me ——',mme'/e. For
sufIiciently small e, m becomes zero and then negative.
In general relativity, the principle of equivalence
states that it is the total energy that interacts gravi-
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m=mp+-, 'e'/4rre ——,'yms/». This yields

m=y 'f —e+fe'+2mpey+(e'/4m)y)&). (1.1)

%e will see in Sec. 3 that this formula is a rigorous
consequence of the Geld equations. In the limit e —+0
we have m= (e'/4~) &y '. The bare mechanical mass mp

again does not contribute to the clothed mass. Our
result is then equivalent to a cutoff a= ra(e'/4~)&y& on
the Qat space Coulomb integral. The solution of the
field equations for the case of two like charges will also
be given in Sec. 3 and seen to be consistent with the
conclusions of the one-particle case.

In order to derive the above, it is necessary Grst to
have a canonical formalism for the coupled fields in
question. This is required to ascertain that the various
one- and two-particle solutions are truly pure particle
states and involve no independent gravitational or
electromagnetic excitations (waves). Only then is the
total energy of the system the particle's mass. In
previous work (III, IV), the general theory of relativity
has been put into Hamiltonian form in terms of two
independent canonical degrees of freedom. In Sec. 2,
we begin with the extension of these results to include
the situation in which the electromagnetic Geld and
point charges are coupled to the gravitational Geld. %e
shall see that this generalization leaves unaltered many
of the formal and physical characteristics of the system.
Thus, the gravitational canonical variables and the
coordinate conditions (choice of intrinsic coordinates)
remain unchanged. The canonical variables for the
Maxwell and matter systems are found to be simple
generalizations of the familiar Qat space ones. Also, the
expression for total energy is formally identical to that
given in III and IV for the free Geld and expressible
entirely in terms of the metric at spatial inGnity.

The renormalization treated in Sec. 3 (which relates
the clothed mass to the bare parameters) did not involve
any divergent manipulations, unlike the usual pro-
cedures of Lorentz covariant 6eld theory. In Sec. 4,
we shall apply the renormalization techniques used in
divergent problems to the Gnite results obtained in
Sec. 3 to see if a consistent reinstatement of mechanical
mass can thereby be made. The gravitational coupling
constant must then also be renormalized (with infinite
renormalization constant) in order to obtain the correct
Newtonian limit at large interparticle separation.
However, the higher order terms still diverge, requiring
an in6nite number of counter terms, as in a non-

renormalizable field theory. Thus, such a renormali-

zation procedure is actually inconsistent and does not
provide an acceptable alternative.

2. CANONICAL REDUCTION OF THE
COUPLED SYSTEMS

In this section we analyze the coupled gravitational-
electromagnetic point charge system in order to obtain
the canonical form, and hence the independent degrees

of freedom that characterize the diferent parts of the
system. As in III and IV, we will make use of the Grst-
order form of the Lagrangian throughout. In order to
illustrate the methods involved, we Grst carry out the
reduction for the Maxwell-point charge theory in Rat
space. The extension to the full theory then follows in a
straightforward fashion.

The Lagrangian density in Qat space may be taken
to be'

Zsr=2gsr+Zr+gr= —A„S&"„

+4 SI'"F&rt„rt
p+

~ds(rr„dx"/ds

--:1'()5 . '""+ "j)~'(*-*())

+ "d (d*/d)A (*)n -*()). (2.»

Here A„and Pt"" are the vector potential and the contra-
variant electromagnetic GeM strength density respec-
tively, while ri„„is the Lorentz metric (—1, 1, 1, 1).The
variable x&(s) is the trajectory of the particle in terms
of an arbitrary parameter4 s; pr" (s) is essentially the four
velocity and X'(s) is a Lagrange multiplier whose
variation gives the energy law for the particle,
n.„pr"+mp' ——0. In the action, A„and 8&" are to be varied
independently, as are m.„(s) and x&(s). Variation of A„
and 5&" gives rise to the usual Maxwell equations in
first order form; variation of ~„(s) and x&(s) similarly
yields the particle's first-order equations of motion
with the Lorentz force, provided one chooses X'ds

=dr/mp where dr is the conventional proper time. One
may next perform the integration over the parameter s
to obtain:

2p+ Zr ——(a, (dx'/dt)+ m p
—-', X (rr„7r„rt""+mp')

+e(dx"/dt)A„)P(r —r(t)), (2.2)

where X—:X'Lds/dxo(s)], et, & ~. The total Lagrangian,
written in "3+1dimensional" form, becomes

z =388'—Ax'
—A QLS', ;—eh'(r —r(t) )]+L(a.;+eA ~) (dx'/dt)

+pro —(X/2) (a,~'+mo' —s'o') $b'(r —r(t) )
—-'(8'8 +-'e't8 ), (2.3)

where h'—=5". In this structure, it is easy to pick out

' Notation and units are as in III:1~:=16xyc '=1, c= 1, where y
is the Newtonian gravitational constant. Latin indices run from
1 to 3, Greek from 0 to 3, and x'=t. All tensors and covariant
operations are three-dimensional unless specified, g'&' being the
matrix inverse to g;; and "~" indicating covariant differentiation
with respect to g;; (not 4g„,). The sign convention on curvature
tensors is determined by

~~=~.'b, .—~ ',b+~.'8' "b—~:8'."b.

The totally antisymmetric symbols e;;&=e'~~=0, ~1 are three-
tensor densities of weight —1 and +1, respectively.

4Equation (2.1) is covariant against any reparameterization
s = 8 (s) with X' transforming as a "vector": X'=X'ds/ds
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the constraint variables by looking at the differential
constraint equations. These equations arise from
varying the Lagrange multipliers Ap and X. (The
algebraic constraints of course arise from varying
5'&', and merely tell one to replace F;; by 3;,,—3;,;
in ZM. ) In terms of the orthogonal decomposition of a
vector f; into its transverse and longitudinal parts

(f =f ~+f ~ f ~ =0, curlf~=0), the Maxwell con-
straint equation reads:

h'z, ;=ep(r —r(t)), (2.4)

allowing one to eliminate g~ in terms of the
particle variables r(t). Similarly, one has that
4rp= —(7rpr'+trip')i In . terms of the notation p;

rr;+e—A;~(r(t), t) and S'=e"'Ai, ~,;, the reduced La-
grangian, with all constraints eliminated, reads (to
within divergences and total time derivatives):

Sir ——(—8'~)8iA;r+ p;(dx'/dt)P(r r(t))—
—{,'( h' h, +-(fi'(a~)+L(p; —eA, r)(p' —eA'r)

+mpe)'*8'(r —r (t) )) . (2.5)

In Eq. (2.5), h'~ is understood to be the solution of

Eq. (2.4) and thus Sir depends only on A4r, h'r, g'(t)
and p;(t). Note that A;~ has disappeared from Sir due
to the particle's equation of continuity (which is an
identity here). The Lagrangian is now in the desired
canonical Prt H(P, q) for—m with AP, —BP being the
Maxwell canonical variables and x'(t), p;(t) being those
for the particle. The total Hamiltonian density is, of
course, the usual one for this system.

The inclusion of gravitation is achieved simply by
adding the term' Zg= (—4g)'*'R to 24r in Eq. (2.1),
replacing p„, there by the metric g„„, and inserting a
factor (—'g)

' in the P term. The canonical reduction
of the free gravitational Geld was performed in detail in
III.We merely record here the form of ZG after algebraic
constraints have been eliminated. Using the notation

&3 &3 &t3 34& ) (2.11)

Zpr ——(—h'~) i),A;~+p; (dX'/dt) P(r r—(t))
—N{kC 'tg' (&*@'+&'&')I

+Dp; —eA ~) (p eA—p)g"+mppf&b'(r r(—t)))
+N'{e,,p8&SP+(P, eA—,r)8'(r —r(t))). (2.9)

The equation determining h'z is again Eq. (2.4) and
the orthogonal decomposition of 8' and A; is formally
defined as in Qat space. One can see from this form of
Z~ that the same matter variables are canonical as in
Rat space. It should be stressed that this would not be
the case had one introduced, for example, b;=—g;,& as
the primary variables. Under these circumstances, one
would have lost the simple pj —H form of Zjr. As will
be seen below, it is equally important in order to reach
a canonical form, that the Lagrangian be linear in. S
and N;. The fact that h'= P", A;, p;(t), and x'(t) are
the appropriate variables can also be seen from geo-
metrical considerations in that these variables can be
deGned on an initial t= const surface independently of
how the coordinates continue o8 the surface. Thus,
both the requirement of canonical form and that of
having appropriate Cauchy data single out the same set.

The total 2, which is obtained by adding Eqs. (2.7)
and (2.9), now has the form:

2=7r"r) g +(—tg'~")8 A ~+p;(t)P(r —r(t))dx'(t)/dt
NRP N;8—', (2—.10)

where R& depend only on w", g;, , h'r, A;~, p;(t), and
x'(t) The rem. aining step consists in reducing the
gravitational variables to canonical form. This can be
carried out in a manner identical to the free gravi-
tational Geld procedure of III. Thus, one must eliminate
the gravitational constraint variables by solving
B&=0, and impose coordinate conditions. Again we
make the orthogonal decomposition of g;; and m'3'

according to

N= (—4g") &, N;=4gp;.

Zg becomes

Z,g=—x' a,g —ER'—E Z'
)

where

(2.6b)

(2 7)

where each of the quantities on the right-hand side can
be uniquely expressed as a linear functional of f;,
Here f;P ~ are the two transverse traceless components
of f (f r~ =0"f"ran=0); f;P "is transverse and is
uniquely determined by its trace fr,

—R'=—g'* 'R+g &( 'rr' s."vr; )-—
E. = 2x' ~j

(2.8a)

(2.8b)

The quantities E and S; are the four Lagrange multi-
pliers of the gravitational Geld. The covariantly
generalized Lagrangian Zir of Eq. (2.1) can also be
expressed in terms of this notation. Thus, using 4g'&

=g"—(N'N&/N') where N'=—g"N, , and the definitions
8'—=P'—= ( 'g)tF" and S'=e'&'"—Ap . one finds after a
straightforward calculation'

' The four-dimensional 5-function is defined according to
f54(x—c)f(x)de= f(u) for any scalar function f(x). It thus
transforms as a scalar density under coordinate transformations,

which is also the trace of the transverse part of f;, ; and

f;,,+f, ,; contain the longitudinal parts of f;; In the.
above, 1/P is the inverse of the flat space Laplacian
operator (with appropriate boundary conditions).

The constraint equations R&=0 read

—R'=-,'g iLtg'h;+e'5i, j
+L(P;—eA;~) (P'—eA' )+4rip']&8'(r —r(t))) (2.12a)

R'= (equi h'g3~+ (pp eA pr)8'(r r—(t)))g" —(2.12b).
but is not a functional of the metric. The three-dimensional 8-
function is defined similarly with respect to three-space and in any
coordinate frame one has the identity t'(x) e'(r)B(t).
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These differ from the free field constraints only in
having the matter's energy and momentum densities
on the right-hand sides of Eqs. (2.12a) and (2.12b)
respectively. Thus, Eqs. (2.12) can again be solved for
—V'g~ and —2m'~', ; in an iteration series. The same
coordinate conditions as used in the free field case,

——,'(1/V')~'= x',

go= &'p

(2.13a)

(2.13b)

r
G=~ d x ~'~' Sg +(—8* )SA'+pox'S'(r —r(~))

-(-Vg )~r—:(»V)-~+(-2-' )~g' (2»)
Upon insertion of the coordinate condition (2.13) and
the solutions of the constraint equations V'g~= V'0,
—2m'&, ;= V"0;, the generator becomes:

6= ~ d'xt7r'&rrbgI"rr+( h'r)5A;~—

+P,lx'(3)o'(r r(t)) (——Zoo)8xo—+ g o 8x,j. (2.16)

We see that P'= J'd'x( Too) generate—s time trans-
lations, while E'=

J'd'xylo;

is to be interpreted as the
total field momentum since it generates spatial trans-
lations. It is shown in IIIa that the V' „derived directly
from the canonical Lagrangian (2.14) agree with the
V'o„of Eq. (2.16) to within at most a spatial divergence
of the canonical variables.

The E„' are, of course, functionals of the metric and
matter variables. In the Rat space limit, one can im-
mediately recover the I.orentz covariant expressions
for the matter V'„. This follows from the fact that in
this limit, the left-hand sides of Eqs. (2.12) are just
—V'g~ and —2m'2';, respectively, and the right-hand
sides the correct energy-momentum densities. The
V'„obtained by solving Eqs. (2.12) rigorously for
—V'g~ and —2m'&, ; are the energy-momentum densities
of the coupled gravitational and matter systems (and
are highly nonlinear in the two parts of the system).
If one is interested in the numerical values of P& for a
particular solution of the coupled equations, however,
one need not express 0'„ in terms of the canonical

put the full coupled theory into canonical form with the
Lagrangian of Eq. (2.10) reduced to

g —&ijTTg g, TT+ ( gi T)g g .T

+p dx*/dt~'(r —r(~))—Se, (2.14)

where K= —E'$g" r7r" A h' x'(t) P, (&)j is the
solution of the constraint equations for —V'g~ and is
the Hamiltonian density of the total system. Again, BC

does not depend explicitly on the chosen coordinates x&.

Associated with the Lagrangian of Eq. (2.10) is the
generator arising from the endpoint variations of the
action. The It'I" terms do not contribute here either,
since they vanish by virtue of the constraints. One has

variables. Here I'I' can be obtained directly from the
metric quantities g~ and m'. This is no diGerent from
the fact that the electromagnetic variable g~ determines
the total charge.

One need not have used the coordinate conditions
(2.13) to reduce the theory to canonical form. Indeed,
any coordinate conditions consistent with asymp-
totically Qat boundary conditions could be employed
to obtain a canonical form (in terms, of course, of
different canonical variables). That the numerical values
of I'I', as well as other physical quantities, are un-
changed by such a procedure will be shown in a forth-
coming paper (IVa). For the applications of this paper,
we shall find it useful to consider the coordinate
conditions

x'= —-,'(1/V2) (n r+ Voor ~), (2.17a)
*'=g

—-'(1/V') g' (2.17b)

In Eq. (2.17a) we have introduced the notation
m'=or'r+-, '~~, ;, which is the decomposition of the
vector vr' Larising in the orthogonal breakup (2.11)j
into its transverse and longitudinal parts. By a simple
rearrangement of the generator of Eq. (2.15) we obtain

G= "dox ~'~»Sg;p&+ ( h'&)SA '+—pg'(r r(i))Sx'(~)—

—(—V'g')~L —-'(1/V')( '+V' ')1
+L-2V'(-"+-' )3~Lg'-l(1/V')g"3 (2»)

Since —V'gr and —2Vo(or'r+or~;) —=—2or" can be
chosen as the four quantities to be solved for in the
constraint equations (2.12) and are the coeKcients of
bx& in 6, they may be taken to be —V'o and V"'; respec-
tively, Note that, though the gravitational canonical
variables are still g"~~ and m'&~~ these are diGerent
quantities from the ones previously considered since
they are transverse-traceless with respect to a diGerent
coordinate frame. Similarly, V" „are diferent functionals
of the new canonical variables.

This coordinate system is of interest since the metric
g;; takes on the form

g' =g"'+(1+og')~', (2.19)

with the boundary conditions g~ —+ 0 as r —+ ~. When
the canonical variables g, ;~~ vanish, the metric is
therefore isotropic.

3. COULOMB SELF-ENERGIES OF POINT CHARGES

The formalism of the preceding section allows us to
treat the problem of static self-energies of charged
particles. As we have seen, the energy, E, of a system is
given by the numerical value of the Harniltonian:

E= —~d'x 9"o=—
~

d'x V2gr

(3 1)

dP. gF .
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h'~= (—e/47rr) (3.3)

A formal solution of Eq. (3.2) may be found by
setting 2f'=i@—y'. One finds

Sx.~'x =8—(v ~'v k~V)—
+8(P'—q') '(q vP PV—q )' (3—.2b)

=mob'(r)+-,'(P—y') '(8 )'.

If one then makes the assumption

&'=4(v &0—H'v), (3 4)

with rp=e/(16 rs) and /=1+ m/(32 sr), Eq. (3.4)
correctly reproduces Eq. (3.3). Equation (3.2b) then
determines the total mass m to be

m= lim 1&n (—e+(e'+ (e/Ss. )'+mac/Ss ]&}. (3.5)

In Eq. (3.5) the parameter e has been introduced by
setting 3s(r)/r to 3s(r)/e, and is thus essentially the
"radius" of the 3-function. LThis interpretation of the
8-function corresponds to viewing 3 (r) a,s the limit of a
shell distribution, 3(r—e)/4s-r', of radius e. In the
Appendix, it is shown that the results of this section are
independent of the model chosen for P(r) in the point
limit. )The result (3.5) is that m= 2e, or in conventional
units, m= (e'/4s-)'y '*. Hence, the total mass is finite

' Professor L. N. Cooper has pointed out to us that Eq. (3.2a)
with e =0 L

—8xV2x =ps(r), where po is any bare mass distribution)
can be obtained by simple equivalence principle arguments
starting from Newtonian theory. The Poisson equation V'P
=4nypp= happ, for the gravitational potential @, must be corrected
to include the particle's gravitational self-energy, $p@, as part of
the source, i.e., V'p=+4p =—4(pp+~pqb). Eliminating p, one obtains
V p= ~pa(1 —-',d) '. In terms of x=—1——,'p, this is just Eq. (3.2a)
in the neutral case. For the point electric charge, the same argu-
ment with pp replaced by pp+~p, p, leads to an equation for @
which yields the correct total energy.

where d5; is the two-dimensional surface element at
spatial infinity. Thus, the energy is given by the
coefficient of 1/(4sr) in the asymptotic expansion of
g~, since this term is the monopole part of (1/P) 1's.

A one-particle state is one that contains no in-
dependent excitations of the gravitational or electro-
magnetic fields in the rest frame. This requires that,
for this state, g;;rr =7r'&'r=h;~= 8'"=P;=0 on what-
ever (=const surface the energy is being computed.
With the coordinate conditions of Eq. (2.17), we are
therefore dealing with the time symmetric situation,
s"=0. According to Eq. (2.19), then, the metric is

isotropic; it is convenient to write it as g;;=x (r)3;;
From the discussion of Eq. (3.1), the energy is the
coefficient of 1/(32s.r) in the asymptotic form of x(r).
The field equation determining g~ and hence x is Eq.
(2.12a). One has'

gi sE= Sx&'—x=mshs(r)+-, 'x '8'~8"~ (3.2a)

with the electric field, 8~, determined by Eq. (2.4) to be

and independent of the bare mechanical mass. ' The
gravitationally renormalized electrostatic self-energy is
now 6nite. The analysis also points out that mass only
arises if a particle has nongravitational interaction
with a field of finite range. For example, an electrically
neutral particle coupled to a Yukawa field would still
acquire a mass by virtue of this coupling.

A solution may also be obtained for the case of two
particles of like charge. For simplicity, we consider a
system of equal charges and equal bare masses. The
field equations (3.2) and (3.3) are now

—Sxz'x=m L3'(r )+S'(r )]+-'x-'h"h*'
and

8'= th'~= L
—e/(4s ri) —e/(4s. rs)];,

(3.6)

(3 7)

7 It is interesting to note that, even though m =0 for the neutral
particle, this does not imply that space is everywhere Rat. The
metric is indeed Qat for r)e, but rises steeply in the interior.
Using, for example, the model leading to Eq. (A.3), one 6nds that

J'0'(~g)&d'x=—J p'xsdax= (7I/6)(327I ) ~mp3 in the limit s=0. In
general, x~(esp/e)& for small e in the interior and so this integral
is always fInite when one limits to the point particle. Also,J p 'R('g)&d'x= mp, which shows, in a model independent way,
that space is curved at the origin.

A. Papapetrou, Proc. Roy. Irish Acad. 51A, 191 (1947).

where r~ 2=—r—a~, ~ with a~, ~, the positions of the charges.
Again, y'=if' —y', where y=(e/16s)(1/ri+1/rs) and
if = 1+(E/64~) (1/ri+1/rs). As in the one-particle
case, Eq. (3.4) holds. The parameter L~' is the total
energy of the two-particle state since again the canonical
variables of the fields and the momenta of the particles
are zero. One finds

E= lim 32s.(—e+$e'+ (e/Ss.)'(1+x)'
C~

+ (moe/Ss) (1+x)]')(1+x) ', (3.8)

where x=—e/ris=e/~ai —as~. In the limit e=0, one
obtains E=4

~

e
~

=2m. No interaction energy (r»-
dependent term) survives. This may be understood by
examining the Newtonian limit of large r~2. One would
expect to find there that Z—2m= (e'/47r —ym')/ris.
However, as was seen, m= (e'/4s. y)&, and so the right-
hand side vanishes. The fact that E=2m generally,
indicates that the electric and gravitational forces
cancel in all orders of 1/ris which further implies that
the initial metric g;, =+48;; x'&'=0 actually determines a
static solution of the Einstein equations. This is indeed
the case. 8

The solution (3.8) correctly reduces to twice the m
of Eq. (3.5) (even for finite e) as ris —+ oo. One can
recover all the usual Newtonian results (including
interaction energies) by taking ms and e small and r;
large before passing to the limit e —+0. This may be
viewed as the "dilute" limit since the extension of the
particle is large compared to its bare mass and charge.
Alternately, it corresponds to a perturbation expansion
in powers of y. One easily sees that

E 2ms+2(e'/4n —yms')/2e+ (e'/4s- —ymss)/ris

+0(1/e', 1/(ris)', 1/er, s). (3.9)
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The higher terms include the gravitational interactions
among the lower order structures. Since m0 and e are
unrelated, there is no longer any cancellation in the
second and third terms. Equation (3.9) contains the
usual Coulomb and Newtonian infinite results as well
as a whole series of more divergent terms. From the
rigorous formula (3.8), it is clear that these actually
sum to a finite answer, showing the inapplicability of
the perturbation approach to the self-energy problem.

The cancellation of the interaction term in Eq. (3.8)
can be traced to the fact that the two particles have
the same sign of charge. In the case of two opposite
charges, one would expect for large r~2 that E—2m
= —(ym'+e'/4n. )/r», and hence a nonvanishing inter-
action energy. We have not been able to obtain a
solution in this case for a pure two-particle state. While
changing the relative sign in p, i.e., writing q
= b(1/ri —1/r2) does lead to a solution of the Einstein
equations, the electric field calculated according to the
right-hand side of Eq. (3.4) is no longer purely longi-
tudinal. Thus 8~ is nonzero and E is no longer the
energy of the two-particle system, but includes ex-
traneous electromagnetic waves. To obtain a longi-
tudinal 8, one must also change the relative sign in it.
However, such a solution makes the metric singular
on a two-dimensional surface and is therefore un-
acceptable. We have not been able to solve Eq. (3.2)
with 8 =( e/47r—)V(1/ri 1/r2)—.

The solutions derived here for the neutral and charged
one particle states diGer from the conventional
Schwarzschild and Reissner™Nordstrom metrics. The
matter source in the latter cases is not expressed in
terms of the bare mass parameter. Thus no relation
between m, es0, and e is obtained. A detailed discussion
of this point is given in Va. It is also shown there that
the complete solution (using our initial conditions and
coordinate frame) is eorisingllar and, in the point
limit, static. Knowledge of the complete solution then
allows one to calculate the total spatial self-stresses,
which vanish everywhere in the point limit.

4. RENORMALIZATION METHODS

The results obtained in Sec. 3 show that the total
renormalized mass is finite in general relativity. with
Petite bare parameters in all the cases considered. For
the neutral point particle, the clothed mass is zero,
independent of the bare mass, while the charged
particle's mass arises entirely from its electromagnetic
coupling. Although it is no longer logically necessary to
do so, one may attempt to reinstate mechanical masses
for point particles by utilizing the "divergent" re-
normalization techniques employed in Lorentz co-
variant field theory. In order that this renormalization
be consistent, one must obtain, in the two neutral
particle system, the Newtonian interaction energy
between the two renormalized masses for large inter-
particle separation, ri2. As will be seen below, this

requirement will involve a further infinite renormali-
zation, that of the coupling constant y of the gravi-
tational field. The further requirement on the two-
charge system, that for large separation one have the
Coulomb interaction energy as well, requires an infinite
renormalization of the charge e. Under these circum-
stances, the interaction energy is correctly given to
order 1/r» since this is precisely the renormalization
imposed. However, the (1/r»)' and higher terms still
remain divergent, showing that further renormalization
of an infinite number of observables must be performed.

The neutral one-particle mass can be obtained from
Eq. (3.5) by setting e to zero. We will call this the
renormalized mechanical mass m~.

mii =p '{—«+$«'+2m««yj'). (4.1)

In Eq. (4.1), y is the unrenormalized gravitational
constant. The two-particle neutral energy (obtained
from Eq. (3.8) with «'=0) may be expressed now 1n
terms of this renormalized mass. One finds here

(1/ri2) fdE/d(1/ri2) j„,=„=—y„mph/r„, (4.3)

where 7„ is the renormalized gravitational constant.
One finds

(4.4a)

(4.4b)

This renormalization exhibits the characteristic "ghost"
structure, since as e —+ 0, y changes sign. Expressing E
in terms of y„, we obtain

L'"= (2/y„) (1+x) '{(y„m~—«)

+L«'+x(2m~y, « —m~'y„')]~). (4.5)

One must now investigate whether the higher terms in
1/ri2 have been rendered Quite by the above renormali-
zations. The next term in the expansion gives

1 dE
Vr

2ri2' d(1/ri2)

( p„m~'/2 «) ( y—,

mph'/r»)—

(4 6)

This (and each higher term) is still divergent and a new
renormalization is required in each term. The in-
adequacy of the renormalizations of Eqs. (4.1) and
(4.4) is further indicated by the fact that the rigorous

&(1/r») = (2/v) (1+x) '{—«+E«'+ (1+*)
X (p'mii"+2ymiii«) )'*), (4.2)

where x=«/ri2. For infinite r&2, E(0) correctly equals
2'~. One determines the p renormalization by requiring
that for large r», the 1/r» term have just the Newtonian
form. This is analogous to the definition of charge
renormalization in electrodynamics by means of the
asymptotic Coulomb energy. Thus,



6 RA V I TAT I 0 N AL —EL E CT Ro M A 6 N ET I C COU P L I N G 3i9

formula (4.5) for L'" in terms of the renormalized
parameters approaches 2'~ as ~ goes to zero. Hence,
the Newtonian interaction is rigorously absent in spite
of the fact that the y renormalization was carried out
explicitly to obtain it.

Similar difhculties occur in the charged particle case.
One finds from the 1/rts part of E that y is to be
renormalized as before. In order to obtain the Coulomb
energy, e' must be renormalized in such a fashion that
e'/y is unchanged. Again, however, the (1/ris)' and.

higher terms are still divergent.

5. CONCLUSIONS

In this paper, we have analyzed the effects of general
relativity on the classical self-energy problem. That
gravitational interaction can effect a realistic com-
pensation of positive self-energies follows from its
intrinsically attractive nature and the fact that it is the
total energy that interacts gravitationally. The gravi-
tational coupling is then of such a type as to damp out
large positive energies arising from the other interactions
which the particle may have. This was seen rigorously
in the case of the static Coulomb self-energy. In
general, the total static energy remains positive
dehnite if the matter energy density —T'0 is positive. '
This follows from the general equation

which can be integrated to yield

E= —8 y, d5;= ' d'xx' —T'0 y &0. 5.2
f

Equation (5.1) also gives an upper limit on E. If one
integrates by parts, ' on the left side, one obtains

finite. As was derived in Sec. 3, y(r) r 1 near the
origin. Thus, the first term vanishes (showing again
that the bare mass does not contribute to the total
mass), and the behavior of x is also sufficient to con-
verge the integraI in Eq. (5.4)."The compensation of
the Coulomb in6nity is further brought out by the
relation (with ms set to zero)

E=-'~t b'h'dsx —24Jt v'(~v)'dss; (5.5)

obtained by multiplying Eq. (5.1) by x'. The first term
on the right is infinite, its divergence being compensated
by the last term.

That the function x(r) is everywhere greater than
unity follows from the condition

(5.6)

The minimum principle for the Laplacian then
guarantees that y takes on its least value (unity) at
in6nity.

The numerical value obtained above for the mass of
a classical point particle with electronic charge,
m= e/(4ay)' 10ism„ is much too large. Of course, one
would not expect classical theory to give correct
numerical values for masses. Any realistic discussion of
self-masses must be based on quantum theory. How-
ever, if the effective flat-space cutoff a Le/(4s. )'*]y''

obtained in this paper were to hold also in quantum
theory, " the numerical values for the mass and charge
would be quite different. For example, using such a
cutoG in Landau's estimate' for the renormalized
charge, one finds e,s/4s. =10 ' (independent of the bare
charge) as has been previously noticed by Landau.
Thus, Landau obtains

IE= dsx g'( —P's(x)) —8)~dsx(~x)s. (5.3)

e,'= e'[1+ (2/3a. )v(es/4s. ) in{(h/mc)/a) ] '
= ((v/12s. s) ln( (fs/mc)/a} ]-', (5.7)

&( )= / (0)+-' d' @'@'/ '. (5.4)

Since, as we will see shortly, x(r) ~&1, one has E(x)
(E(x=1). This formula makes clear that E(y) is

9 More precisely, —P'0 in Eq, (5.1) stands for the invariant
expression n„n"T&„where e„ is the unit normal vector to the
space-like surface. This corresponds to the fact that the left-hand
side is 2g&n~n"(4E&„—8&„4E). For the case of a I=const surface
with go; =0, n„m'Tl'„= —Do.

"Here we have made use of the fact that gx"x, ; dS;=gx, & d5;
for the surface at infinity since g" may rigorously be replaced by
its Qat space value unity.

Thus E is bounded by the matter energy computed in
the gravitational Geld y. For the coupling discussed in
this paper, the further limitation that E is less than
its Qat space value can be established, showing that
compensation indeed takes place. Here, Eq. (5.2) takes
the form

where v 10 is essentially the number of charged fields.
Equation (5.7) was obtained by summing the dominant
terms in each self-energy diagram. With an effective
cutoff of physical origin, the usual objections to making
an estimate of what otherwise is a divergent series need
no longer hold. The methods of Landau also yield a
formula for the renormalized mass in terms of the bare
mass and the charge. " In the classical theory, we saw
that the bare mass did not enter. To what extent this is
maintained in the quantum theory (i.e., to what extent

»It might be mentioned that even if the Qat space theory
were quadratically divergent, corresponding to O'P~r ' near the
origin, one still expects the general relativistic result to be finite.
From Eq. (3.2a), one would then expect, on dimensional grounds,
that y r-~. Thus the integral in Eq. (5.4}would still converge.

~ An effective quantum gravitational cutoff might be ~(pic ')&

on dimensional grounds. This only divers from the classical e by
o.&=—(e'/4mkc)& and would not affect the discussion in text.

"This formula, m=ms(e'/e„'l'"" does not make clear wath
relation between m, m0, and e„might be expected, since the
estimate of Eq. (5.7) fails to determine e sufIIciently.
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the bare mass distribution remains a 8-function) is not
clear. Finally, it should be emphasized that we have
assumed in the above discussion the simplest possibility
that the gravitational eGects on the quantum theory
can be summarized in terms of a cuto6 of the type
considered by Landau.

m=-', (—»+ L»'+2mp»]*), (A.2)

precisely the result of Sec. 3. Note that only the
exterior solution was used in obtaining Eq. (A.2),
suggesting that in the limit e —+ 0 the result is model

independent. The inner solution is a constant y(«) = y(»).
It is the jump discontinuity in the derivative of x(«) at
r= e that reproduces the shell distribution. For small e

one finds

x («) =x(») 1+(1/32m-) (mp/2») 1, «~&». (A.3)

The above result, that m=0 in the point limit, is

indeed independent of the particular model one uses

for the mass distribution. The generalization of Eq.
(5.4) (with e=0) for the case of an extended source

mpp («) with Jd'«p (r) = 1 is

E=—zzz=mp d'«p(«)/x(«).

If e represents the radius of the matter distribution, the
integral extends only between 0 and e. As was discussed
in Sec. 5, x(«) takes its minimum value at the boundary
r= e and so

m&~ I mp/x(»)] ~~ d'«p(«) =mp/L1+m/32zr»]. (A.5)
Jp

APPENDEX

In this Appendix, we will show that the results of
Sec. 3 are independent of the model one uses for the

P(r) source functions. In order to see the general
structure of the solutions, we will first examine the
model of a shell distribution, 8(«—»)/4zr«'. For
simplicity, we consider the neutral case in detail, where

—SV'x =m ph («—»)/(4z««zy («))
= Pmp/x(»)]8(« —»)/4zr»'. (A.1)

The exterior solution (for «~&») of course has the form

y(«) = 1+ gamp/y(»)](1/32zr«) with the total mass
z«z= mp/x (») determined by solving y(») = 1+mp/

(32zr»x(»)) for y(»). One obtains

In the last member of Eq. (A.5), we have used the
general form of x(«) which holds outside any source.
Equation (A.5) states that m is less than or equal to the
value of Eq. (A.2) and hence m=0 when»=0.

For the charged particle, a similar analysis holds.
Again m=2e in the point limit, independent of the
shape of the mass and charge distributions. This may
again be shown from the generalized version of Eq. (5.4)

m=m, d'«z/x+ pz d'«Lp (1/Vz)z-]&&-z (A 6)
p aJ

with the mass density p and charge density p both
normalized to unity. The second term on the right-hand
side may be rewritten as

~00

dz«C:&(1/|7')z]'x '+ ' (p/4 «)'

z(»)
J

dz«LQ (1/P )p]z (A P)
0

where xz(») = (1+m/32zr»)' —(e/16zr»)'. The right-hand
side integral goes as 1/» provided one considers distri-
butions such that p&~A/» . (This restriction is required
to avoid models where ~ is not a reasonable measure of
the radius of the distribution. ) Thus,

d'«t:& (1/~')z ]zx '& ~'&/»xz(»),
dp

(A.9)

where 8 is independent of e. The inequality arising
from Eq. (A.6), when Eqs. (A.9) and (A.7) are inserted,
reads

I (m' —4ez)+32zr»(m+16mp)]

X L (m' —4»')+ (32zr)'»'+ 64zrm»]

~& 16(32zr) ezra»'. (A.10)

In the limit &=0, we obtain the result of Sec. 3, i,e.,
m= 2e.

X$(1+m/32m «)' —(e/16zr«)'] &dz«. (A.7)

In the second term of Eq. (A.7), we have inserted the
general exterior solution for 8 and x; this integral may
be trivially evaluated. For the 6rst term one has


