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Recent observations of angular distributions of ~ mesons in
p-p annihilation indicate a deviation from the predictions of the
usual Fermi statistical model. In order to shed light on these
phenomena, a modification of the statistical model is studied.
We retain the assumption that the transition rate into a given
final state is proportional to the probability of 6nding X free ~
mesons in the reaction volume, but express this probability in
terms of wave functions symmetrized with respect to particles
of like charge. The justification of this assumption is discussed.
The model reproduces the experimental results qualitatively,
provided the radius of the interaction volume is between one-half
and three-fourths of the pion Compton wavelength; the depend-

ence of angular correlation effects on the value of the radius is
rather sensitive. Quantitatively, there seems to remain some
discrepancy, but we cannot say whether this is due to experimental
uncertainties or to some other dynamic effects. In the absence of
information on m-m- interactions and of a fu]ly satisfactory explana-
tion of the mean pion multiplicity for annihilation, we wish to
emphasize the preliminary nature of our results. We consider
them, however, as an indication that the symmetrization e6'ects
discussed here may well play a major role in the analysis of
angular distributions. It is pointed out that in this respect the
energy dependence of the angular correlations may provide
valuable clues for the validity of our model.

I. INTRODUCTION

ECEXTLY a study has been made' in a propane
bubble chamber of "hydrogenlike" annihilations

of antiprotons of 1.05-Bev/c laboratory-system momen-

tum, corresponding to an energy release of 2.1 Bev in
the center-of-mass system. A hydrogenlike event is
defined as one in which equal numbers of z+ and x
mesons are produced and in which no visible evapora-
tion prongs appear. ' The experiment indicates' that
the distribution of the angle between pairs of pions
(in the c.m. -system of p-P) deviates from the prediction
of the conventional statistical model. In particular it
was found that there is a clear difference between the
angular distribution for pion pairs of like charge and
that for pairs of unlike charge. In the statistical model
in its usual sense, there is no room for distinctions of
this kind.

It is the purpose of this paper to indicate a simple
refinement of the statistical model which could possibly
explain the bulk of the effect, and which consists of
taking into account the inhuence of the Bose-Einstein

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

t Permanent address: Institute for Advanced Study, Princeton,
New Jersey.

'G. Goldhaber, W. B. Fowler, S. Goldhaber, T. F. Hoang,
T. E. Kalogeropoulos, and W. M. Powell, Phys. Rev. Letters 3,
181 (1959).

2 All center-of-mass transformations were made on the assump-
tion that the struck proton is at rest. From the known annihilation
cross sections in carbon and hydrogen and from the x-multiplicity
distribution, it was deduced that about 85% of the hydrogenlike
events correspond to annihilations on hydrogen.

(BE) statistics for pions of like charge. As we show in
what follows, such an interpretation appears to
reproduce the experimental results qualitatively—
provided, however, that the radius of the volume of
strong interactions is about —„' times the z Compton
wavelength, which is a physically reasonable order of
magnitude. The dependence of the angular effects on
the interaction radius appears to be a sensitive one.
Hence, it would seem that such effects may provide
valuable information on the annihilation mechanism.

It should be stressed from the outset, however, that
results of this study should not be construed to imply
that detailed dynamical effects (such as, for example,
w-rr interactions) are definitely negligible in the dis-
cussion of the kind of phenomena considered here.
The present stage of both our experimental and our
theoretical knowledge of the annihilation process seems
to us to be far too early to make such categorical
statements. In the concluding remarks (Sec. IV), we

briefly discuss the dependence of the BE effect on the
available energy for annihilation. This gives one
instance of how further experimental study may reveal
whether or not the present considerations provide
substantially the correct approach to the problem. It
may directly be noted, however, that the symmetriza-
tion effects which we shall now outline are relevant
regardless of whether &-& interactions are large or small.

For the statement of our ideas, it is helpful to recall

first what the assumptions of the usual statistical
model (SM) are. For definiteness, consider the system
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where

P!v(Q) =
~o

(
exp~iPy r.

p'ives 4 m=i )

(2)

(3)

Thus, according to the SM, the total rate E~ of
annihilation is given by

RN= C!vs (Q)I'!v(W).

Here P!v(W) is the Lorentz-invariant phase space
introduced by Srivastava and Sudarshan. 4

ar y ( iv y (3)

) (a t )

where 8' is the available annihilation energy and p, is
the + mass. These authors noted that this invariant
form lends itself conveniently to the derivation of
relations recursive in E. This circumstance was also
employed by Kalogeropoulos, ' and is likewise used in
what follows.

The factor C!v in Eq. (4) does not depend on W, and
is usually taken to be

C~= const&&rz(E)/X!, (6)

where n(N) is the total number of I=O, 1 states of the
&Vw system. Hence the SM assumptions are a constant
transition rate into a given Sx configuration, and
equal weight for all allowed I-spin states.

Thus the SM takes only incompletely into account
the various conservation laws and asymmetries to
which the system is subjected. In particular, angular-
momentum conservation is neglected in this version

For a further discussion of this interpretation, see R. H.
Milburn, Revs. Modern Phys. 27, I (1955).It does not aGect any
subsequent argument if one takes I'z(O) = (0/VP ', as is some-
times done.

4 P. P. Srivastava and G. Sudarshan, Phys. Rev. 110, 765 {1958).
ST. Kalogeropoulos, thesis, Lawrence Radiation Laboratory

Report UCRL-8677, March 6, 1959 {unpublished).

enclosed in a large box with volume V and with periodic
boundary conditions. A first assumption of the SM is
that the rate of annihilation into any given F+ state
is proportional to P!v(Q), given by

Pzz(Q) = (Q/ V)N.

Here 0 is the "reaction volume" in which the statistical
mixture of states is supposed to be produced. For what
follows, ' it is helpful to interpret Pzr(Q) as the prob-
ability to find E free pions in the reaction volume:

of the SM. Furthermore, BE statistics is rather
cursorily taken care of by the factor (¹!)' in Eq. (5).
It is this last aspect of the SM that we refine here.
We again assume proportionality of R!v to P!v(Q) given

by Eq. (2), but employ suitable symmetrized wave
functions instead of @N given by Eq. (3).

Rigorously, R& is the incoherent sum of transitions
into the various I=O, 1 states. For given I, these
states can be characterized by distinct spatial sym-
metries. ' For a specific charge partition of the final
products, such as, for example, for iV=4:

@+p~ 2~++2~-,

the rate R4(2+,2 ) is, of course, distinct from R4, the
latter being the sum over all charge channels for /=4.
To get R4(2+, 2 ) we must first project out that part
of each I state which refers to the given charge partition
and then sum the corresponding charge-partition
probability over the I states.

All of these projections have in common the property
of symmetry between particles of like charge. They
are distinguished (always for a given charge partition)
by additional properties of symmetry and (or) anti-
symmetry between particles of unlike charge. ~ The
problem that we study is characterized as follows. Ke
again take free-particle states for the given charge
partition and we assume that the summing over the
isotopic spin states tends to cancel the additional
symmetry or antisymmetry properties just mentioned.
Hence we approximately describe P&(Q) by introducing
in Eq. (2) an expression for p&, which is symmetrized
with respect to the sets of particles of like charge only.
This paper is devoted to a discussion of four charged-
pion stars from this point of view. Here the simplest
contributions come from reaction (7); it is assumed
that in addition only the channels (2+,2,1 ) and
(2+,2,2') contribute (see, further, Sec. III).

Once the free-particle assumption is introduced, it
becomes, of course, a decidable proposition to find out
actually how good is the assumption of a SM with BE
symmetrization between like particles. I.et us first note
that this last assumption is certainly not rigorously
satisfied. This can be seen as follows. Suppose we

ignore isotopic spin conservation altogether and then

give all possible final isotopic spin states (I=O, 1, , 1V)

equal weight. The number of projections for the charge
partition i7= zz++zz + pitszthen

n'(zz+, zz, zzs) = lV!/zz+! zz ! zz, !.

Now it is physically obvious that if all these states have
equal weight, the net result will be just the BE-
symmetrization effect between like particles and nothing

'For an attempt to incorporate this, see LeRoy F. Cook,
thesis, Lawrence Radiation Laboratory Report UCRL-8841,
July 31, 1959 (unpublished).' See A. Pais, Ann. Phys. (to be published).
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else. ' But if we adhere to isotopic spin conservation
and only consider equal weights for I=0,1 states, the
number of projections of the charge partition
(e+,n, ns) is in general smaller than n', and therefore
some symmetries other than that of like-particle kind
may remain.

Even so, the approximation is perhaps not too bad.
In Appendix I we discuss this in a little more detail;
there it is shown that for S=4 the assumption of equal
weight for the projections of the charge partition (7)
into the various isotopic spin states happens to give
exactly the BE effect between like particles only. It is
then shown, again for E=4, that the SM assumption
of equal weight for the isotopic spin states /rather than
for the projection (7)] leads to a small deviation from
the pure like-particle-only eRect. For the case of
/=5, 6, no such detailed studies have been performed,
but it is made plausible that there also the present
picture may be a reasonable approximation.

Thus it would appear that, as a first orientation at
least, the present assumption of BK symmetrization
is not much less well-founded than any other aspect of
statistical considerations in this domain. %e repeat,
however, that we consider this work as an orienting
approach rather than as a definitive answer and wish
to give one more reason for this reservation. Of course,
an adequate model should at the same time give a
reasonable account of all combined aspects of the
annihilation process, especially also of the mean
multiplicity. The usual SM needs a radius of 2.5
A/pc to account for multiplicities. ' Such a large radius
is devoid of direct physical meaning. As we argue in
Sec. IV, the inclusion of the BK eGect tends to decrease
this value of the radius, but at least in the way we

proceed here, we cannot hope to fit the multiplicities
with a value 0.75 A/pe for the radius, which was

quoted above in connection with the angular-correlation
effect. Until this problem is resolved, our results must
be considered as tentative. Possibly improved angular-
momentum considerations may here bridge the gap,
or, perhaps the presence of a ~-x interaction is making
itself felt. ."
II. STATISTICAL MODEL WITH BE-CORRELATIONS

A. The Correlation Function

As an orientation, consider first the case of X=2
with two identical particles, having momenta y&, y2.
The corresponding Ps(Q) plays an important role in

Proof: if all states have equal weight, we can as well choose
a set of base states that have the following properties: (a) they
have the desired BE symmetry to begin with; (b} they are
orthogonal; (c) their number is just equal to n'. For an example
of such a set of states for %=4, see Appendix I.

9 See for example O. Chamberlain, G. Goldhaber, L. Jauneau,
T. Kalogeropoulos, E. Segre, and R, Silberberg, Phys. Rev. 113,
1615 (1959).

'OE. Eberle, Nuovo cimento 8, 619 (1958); T. Geto, Nuovo
cimento 8, 625 (1958); and F. Cerulus, Nuovo cimento 14, 827
(1959).

what follows and is denoted by lt(12). Thus we can
write

P (12)=
~

I
I Ps(1,2)

I
'drtdrs, (9)

Evidently $(12) as defined by Eqs. (9) and (10) no

longer depends only on the size of the interaction
volume 0 but also on its shape. It is premature to
discuss this shape dependence in any detail, but one

point is of some computational interest, namely that
lt (12) for a spherical model, given by Eq. (11), differs

very little from P(12) for a Gaussian-shaped volume:

f(12)= ~
~ P (1,2) ~' exPL —(rts+rss)/2X]drtdrs

= 1+exp(—s') s=
~ yt —ys ~

X&, (Gaussian), (12)

where we integrate twice over all space. This well-

known property of the Fourier transform of a sphere
relative to that of a Gaussian is shown in Fig. 1 where

the two curves refer to a ratio of p to X' given by

p = 2.15K&. (13)

The Gaussian model simplifies some computations to
follow and therefore we shall adopt it from here on.
However, we shall continue to refer to the "radius"

p of the interaction volume —by which we mean the
quantity related to X by Eq. (13).

In one further respect we have used an argument of
convenience to simplify the calculations as much as
possible before reverting to numerical evaluation
techniques. Instead of Eq. (12) we have actually used

its relativistic counterpart,

where
P(12)= 1+e "*»

*rs= (yr —y2) (~r as)

(14a)

(14b)

This is indeed convenient because we have to deal

with integrals of the type (5) but with a number of lt

functions —the "correlation functions" —entering into
the integrand. Thus the relativistic scalar form of P(x)
makes it possible to make simplifying Lorentz trans-
formations on the integrand. Of course, it must be
asked how much dijference it makes to use Eq. (14) as

"From here on we use the symbol = to denote equality apart
from such constant factors that do not aHect the angular cor-
relations under consideration.

where we integrate twice over a sphere Q=4s p'/3, and

qP(1,2) = (1/2'*U) (expLi(yt rt+ys rs) j
+expLi(y, .r,+y, .rs)1). (10)

Thus, on integration we obtain"

t'cost sint ~
'

lt (12)=1+9~ — (, t= ~yr
—ys)p, (sphere). (11)

]2 ]3



ANTI PROTON —P ROTON AN N I H I LAT ION P ROC ESS 303

2.0

I.5

I.O

I.008-

|.006
(b)

I 5 20

(a)

BE effects will be confined more and more to such
configurations where two participating momenta are
more and more equal to each other, Hence, the weight
of the configurations aGected by the BE effect gets
smaller and smaller and can be ignored in the limit
considered, so that also for p

—+ ~ we reach the SM
values. Hence an optimum finite p exists for which the
BE e6ects are most marked. This is shown quantita-
tively below.

We use CN'(y) and CN"(y) to denote the distribution
in y=cos8 of pion pairs of like and unlike charge,
respectively (0 is the pair angle in the pp c.m. frame).
For p —+ 0, both these functions approach the common
limit of the SM distribution denoted by Csm(y). The
ratio of pairs emitted in the backward hemisphere to
those in the forward is denoted by p. Specifically, p',
y", and y~M denotes this ratio for the cases of likepairs,
unlike pairs, and the statistical model without cor-
relation functions, respectively. In the following
discussion P means the relativistic expression {14)
except in Eq. (29).

I'IG. 1. Evaluation of the correlation functions as a function of
the argument. Here P,ph(') and Pg,„„(')correspond to the spherical
and Gaussian models, respectively. As can be seen from the
figure, the curves corresponding to the two models differ by about
2% at most. Note that the insert LFig. 1(b)) is enlarged by a
factor of 100 vertically and is reduced by a factor of 5 horizontally.

B. Calculation of the Correlation Effects

@+p~ 22r++22r

We have

Jgy ' &$4
R4 (2+,2-) = 4 (12)4 (34)

COl
' ' '604

compared to Eq. (12). In two regions —IplI, IP2I«p
and

I pl I I ps I

—the difference is small. As the momen-
tum distribution in annihilation is fairly sharply peaked
(certainly for X=5, 6), it follows that the replacement
of Eq. (12) by Eq. (14) cannot change the results
drastically. We have made a numerical check of this,
which is mentioned below.

Instead of Eq. (4), for RN we now have

To find C4' we integrate only over ps& p4, IplI
The integration over the 3, 4 variables is simplified by
going to the system where ps+P4 ——0 and using in-
variance arguments. The result is

R ~ ~ t

4

f dP1'''dpN
IN(Py Pl' 'PN)

0)y' ' MN

X&(IV—Z ')~(Z ') (15)

C 4'(y) = pipit (12)dloldols

X~2(lV12)tt'(lV12 412'), (1»)

For the case of reaction (7), we must symmetrize
separately with respect to two pairs of particles, and
hence I'4 is a product of two correlation functions P.
The same is true for the channel (2+,2-, 1'), while for
(2+,2,2'), Ps is the product of' three correlation
functions.

Thus we see immediately that the deviations in
angular correlations due to the expression (15) as
compared to the usual SM must vanish in two limiting
cases. First, tt approaches a constant for p —+0 Lsee
Eqs. (13) and (14)j and we are back to the SM result-
for small interaction volume, the BE correlations have
no opportunity to develop, Second, for p-+ ~ (or
rather if 0 tends to V), it follows from Eq. (2) that the

Here
lV12 (IV oil nl2) (pl+p2) ~

F2(W) = 22rL1 —4ps/W2$'

(17b)

To find C4" we integrate in Eq. (16) over all variables
except the angle between particles 1 and 3. The result
ls sas)'~] 1

2!K -"~
C'4 (y) plp2droldro2 +2 (IV12)+(pl)lp2)lk) y (20)

is the two-body phase space. The (&vl,F02) integration is

bounded by

~g&p) cv2&p) Wi2'&4y'.
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where
g
—2k Ag

Proceeding in a similar way with 45", one gets

Z(pi, y2, $) = 1+ sinh(2X
l B, l $)+

2xlB, lg 2xlB, lg

g
—2X (A 1+A2)

4'5 —
)

t t pip2dMidM2 P5dM5

X»nh(»IB2I p)+
»IB1+B2I( where

xsinh(B l Bi+B2l $). (21)

XF2(W5(W12)}Z(P1 p2 f), (2&)

W5 (W12) W12 +It4 2W12M5.

Here we have
4= L4W»' —~'j',

2A 4
= WM, ' —

(M1M2 —pi ' P2) 314, —

The bounds in the (1,2,5) integrations are again as
(22) given in Eqs. (25) and (26), Z is as defined in Eq. (21),

(23 )
and we have

(28)
p' (p+p)

B,= 5,P,+5;(pi+p2) +
(p+p)'

(W—Mi —M2xl-
W12

(23b)

Z. p+P ~ 22r++22r +2r'

We start from

I' dpi' ' 'dp5
R5(2+,2 15) = i 1P(12)$(34)J

Coy
' 605

and 2= 1, 2, 51= —1, and 52=+1.The integration limits
are again given by Eq. (19).

We next give an expression for 45' where the non-
relativistic form (12) of the correlation function is used
which we shall here label QNR. The starting point is
again Eq. (24), with 1P replaced by 1PNR. Thus we have

f' dyidp2
c'5'NR(y) =

i g'NR(12)G(W12),
GO]G02

where

lVg2'& 9P,'.
Here G has the form (in the 3, 4 rest system):

l' dy5 t' dP5 dy4
G(W») =j . ~(P2'+P4')

M5 ~ Gl3 C04

X&(W»5 —
M2

—
M4 )O'NR(~),

Xsl W—P, lsl Py, l. (24)
( 5 ) ( 5 where

1 ) Ei

To find 45', integrate over all variables except the
angle between y~ and p2. The integration over the
(3,4,5) variables is best performed in the (3,4,5) rest
system, and one 6nds

W125 (W Ml M2 M5) (pl+p2+p5)

lt NR(/) = 1+exp (—Xt2),

I2=4P'22 1+
1—V2

where

C5'(y) =
~

Pip2dMidM2 4 (12)F2+1(W»), (25)J„~„
Pi+P2+P5

W—(Mi+M2+M5)

t' dpidp2 t'+
c'5'NR(y)= ~'

~
WNR(12) ~' d& P5d 5

GO]C02 —1t. dy2dy4dy5
F2+1(W) ' 1p(34)Bl W —Q M; lbl Q y,

C03C04C05 2 ) (2 ) XF2(W»5)4(q),
where

gl 2)9~2 and s is the cosine of the angle between p3' and
(pi+P2+p5). After some further transformations, we

Here F2+1 W12 is the three-particle phase space for
two like plus one distinct particle. We have

which can be reduced further by integrating in the
(3,4) rest system. This yields

+1

1P (q) =
)
t dsL1+ exp (—Xrp) $,
—1

F2+1(W) = P5CM5 F2(W5)p(W52 —4@2),

P, &M5& (W' —3P2)/2W,

(26)

t V2

2P=4q2 1+ s'
1—V2

q2 =-,'%~252—P,2,

(29)

W52= W2+P2 —2WM5. and 2: is the cosine of the angle between p5 and p, +P2.
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3. P+P -+ 23r++23r +2s'
In this case, the starting point is

P
Es (2+ 2- 23)I

dP~ o ~ o dy6
4 (12)lt (34)lt (56)

COy' ' 'M6

( 6 ) ( 6

Xb( W—&~'il~j &&' ~
(3o)

It will be obvious that

with

43'(y) = p&psdM&dc33 F3~3(W&3)p(12), (31)J„J„
lV '&16@,'

where F,+3(W) is the four-particle phase space for two
pairs of like particles. Thus we have

+1

F3+3(W) = Jt dy 4»'(y, W),
—1

(32)

where C»' is given by Eq. (17). For 43"(y) one finds,
after some transformations,

t

43"(y) =
I J prp2&ldM2

J J p3p»dtesd~» J
l4 —1

&&4 (34)F3(W»')Z(13r, vs, k") (33)
with

X= COS034)

(W»')'= W&3'+2u'+2(~3(04 psp»x)—2Wrs((u3+co»), (34)
and

5"= L» (W»')' —
I

'j*'

In Eq. (33) the respective integration domains are
further bounded by

and
Wrs'& 2f», fOr (~3,u»),

Wrs) 41», for (cot,a)3).

III. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENT

To compare the effect of the BE correlation functions
with experiment, we have to evaluate the contribution

The bounds of the (&os,x) domain are given by

W»3 —3l»3—2(us(W —(vt —a)3) —2ps
~
pt+ps

~

x+ 0)

while the limits on the (&ur, &us) domain are again as
indicated in Eq. (25).

In the next section we shall discuss the relation
between Eqs. (25) and (29) from a numerical point of
view. Here we only note the considerable advantage
that the use of an invariant correlation function brings
with it in simplifying the integrals.

of each charge channel to the sample under consider-
ation. Four-prong events of the type (2+,2,rP) consist
(at the energy of the experiment under discussion) of
four charge channels, namely (2+,2 ), (2+,2,1'),
(2+,2,2'), and (2+,2,3'). As ',, has been shown in
Sec. II, the complexity of the integration involved in
evaluating the distribution functions of the pion-pair
angles, 4(y), increases with the number of particles
participating. For seven pions, a new type of correlation
enters the problem, namely, that between three
identical bosons. The experimental indication is that
the contribution of seven pions to the (2+,2,33')

sample is no more than 7&5%%uo. We have thus restricted
our calculations to the first three charge channels only.
For each of the three channels we evaluated the
functions 4'(y) and 4 "(y). To investigate the behavior
of 4(y) as a function of the radius of interaction, p, we
evaluated C for six values of p, i.e., p= 0, 0.3, 0.5, 0.75,
1, and 2 (in units of A/pc).

A. Numerical Evaluation

The distribution functions of the pion-pair angles
were numerically integrated either by the Simpson-rule
technique or the Monte Carlo method, depending on
the complexity of the problem.

Wherever possible, the symmetry properties of the
integrand were used. Each function 4 (y) was evaluated
at equally spaced intervals of y=cos9 for each of the
above-mentioned p values. The functions C4', C4", C~')

C~ and C6' were evaluated on an IBM-650 computer
by the Simpson-rule technique. " The more involved
integrations of the functions, C6" and C5'N~ were per-
formed by the Monte Carlo method on the IBM 704
(see Appendix II).

B. The Pion-Pair Angle-Distribution
Functions, e (y)

Here we will illustrate the deviation of the functions
C' and C which include BE correlation effects, from
the one obtained from the conventional statistical
model C M In Fig. 2 we show C' C, and C M for one
particular radius, p=0.75. As can be seen from a
comparison of Figs. 2(a), 2(b), and 2(c) corresponding
to 4, 5, and 6 pions, respectively, the variation of CSM

towards greater isotropy with increasing / is very
marked. The BE correlation effects become somewhat
less pronounced as X increases.

In Fig. 3 we display the ratios 4~'/CNsM, and
4~"/4~aM. These ratios indicate, perhaps even more

~ The C4', 44" functions were calculated to 2%, the C 5' to 3%,
and the Cp to 5% accuracy. Several individual y values for C5"
were evaluated to a 2% accuracy as a check on the calculations.
For the function 43' pEqs. (31)] the calculation was carried out
in two steps. First the function F3+3(W) [Eq. (32)g was computed
by the 2% Simpson rule and fitted with an expansion. Second,
Cf," was computed by using the above expansion with the 2%
Simpson rule. As a cross check, several values of 4~6' were also
computed by the Monte Carlo method (see Appendix II).
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Fzc. 2. The distribution func-
tions of pion-pair angles. The
functions CsN' (cos9) and Cs~" (cos8)
referring to the distributions of
angles between pion pairs are
plotted for like and unlike pions,
respectively. We illustrate the
behavior of the functions for
p =0.75 A/pc. Also shown, for
comparison, is 48, the distribu-
tion without correlation functions.
All curves are normalized to the
same area with arbitrary units
for C . Figures 2 (a), 2 (b), and 2 (c)
refer to %=4, X=5, and E=6,
respectively.
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clearly than the distribution functions themselves, the
e6ect of the BE correlation functions on the statistical
model. It is interesting to note that these ratios for

g =4, 5, and 6 fall rather close together. The BE
correlation functions for like pions have the effect of
raising the distribution for small pair angles and

lowering it for large pair angles. For the unlike pions,
the converse is true.

The experimental observations with which we wish

to compare our results have been expressed by a
quantity, p. The ratio p is de6ned as the ratio of the
number of pion-pair angles greater than 90 deg to the
number of pion pair angles less than 90 deg. Thus we
obtain

1.8
YN' = " @Ã'(y)dy 4»~ (y)dy,

~ 0

S M

1.2

j.O

where J corresponds to l, u, and SM, respectively.
The ratio p gives a convenient quantitative measure
of the modi6cations occurring in the SM by the intro-
duction of the BE correlation functions as a function
of p. In Fig. 4, we present y for S=4, 5, and 6 for both
the like and unlike correlation functions. It is evident
that; the maximum e6ect of the correlation function
occurs for values of p between ~s and s A/ilc.

C. Comparison betwe en Invariant and
Nonirivariant Correlation Functions

Q8-

( b)

QSM

N

0.8-

+1.0
cos 8

FIG. 3. The ratios 4N/4&™for like and nniike pions.

1.2
Unlike

. 5

o~
~+~a~ +~+~ ~O ~g glgH~ ~ ~ ~ ~~ gsssaa e ~\~l~y~

~ OMPO+ ~

The relativistic scalar form of the correlation
function f(x) LEq. (14)j facilitates the calculations of
rather involved integrations. In order to test the
validity of this approximation, we performed the
calculation also in the nonrelativistic form for two
selected cases, i.e., C 4' and C ~'. The result for 6ve
pions Lsee Eq. (29) for 4»'Na) is illustrated in Fig. 5
in which we show both ys' (relativistic) and ys'Na.
As can be seen, the qualitative features of the distribu-
tions are similar. Results of the two calculations di8er
by 10/q from each other at p= 0.75 with the relativistic
form deviating more from the statistical model. The
corresponding calculations performed for four pions
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(not given in this paper) give essentially the same
results as for 6ve pions.

D. Comparison with Experiment

To enable us to compare the calculated distribution
functions with the experimental data, we need to know
the relative weights of the contributing charge channels.
The latter were obtained from the experimental data
by determining both the average number of neutral
pions produced in 2~+2m stars and the distribution
of the energy not accounted for by the charged pions
(Z;„).A detailed discussion of the method is given
below.

2.0-

1.5

I.O—

0

y$M
5

LO

I

1.5 2.0 2.5

2.5-

2.0

ke
——-SM
--—unlike

2.0-

l.5 (c)

I.O-

0
I

2,0

FIG. 4. The ratio y for like and unlike pions as a function of
radius p. Here p is given in unit of A/pc. All calculations cor-
respond to four charged pions (2m+ and 2m ) with zero, one, or
two H rnesons (i.e., %=4, 5, and 6, respectively).

(a) The average missing energy per event (E;„)
was determined for the sample (2+,2-,n').

(b) The average neutral-pion energy (E 0) was
estimated from the experimental-average charged-pion
energy. Here we assume that for stars of a given multi-
plicity the charged and neutral pions have the same
energy spectrum. A small correction which lowers

(E 0) has been applied. This correction arises from the
fact that (E ~) was obtained from stars with four, Ave,
six, and seven pions, while (8 o) comes from stars with
6ve, six, and seven pions.

(c) The average number of neutral pions is thus
(rP) =(E;„)/(E.D). The experimental result is (I')

FIG. 5. A comparison of the )r distributions calculated with the
relativistic and nonrelativistic correlation functions, respectively.
Here y5'NR refers to the distribution obtained from the non-
relativistic correlation function, whereas p5' refers to the
relativistic one.

=1.15~0.1. This value is in excellent agreement with
the one obtained from a direct count of electron pairs
produced from the conversion of the x'-decay p rays,
viz. , (ns) = 1.1&0.1."

(d) The experimental distribution of E;„cor-
responds to a folded distribution of the energy in
neutral pions. If one could unfold this distribution
completely, it would determine the weights of the
corresponding charge channels uniquely. The experi-
mental errors in the momentum determination and the
fluctuation in neutral-pion energies do not permit such
a complete unfolding. It is possible, however, to set
narrow limits for the two end points of the distribution.
From these we obtain the corresponding weights
54=0.15+0.05 and 57=0.07&0.05 for E=4 and Ã= 7,
respectively.

(e) To solve for the weights Ss and Ss, we used the
two equations:

Q S~——1 and Ss+25s+357 ——(e').
Ã 4

In these equations we allow S4, 57, and (e') to vary
within their quoted uncertainty, imposing the constraint
that only one maximum can occur in the multiplicity
distribution.

Finally, as these calculations for C have not been
extended to seven pions, we have added the seven-pion
contribution to that from six pions. The ratios of the
resulting weights are S4.5s..(Ss+Sr) =0.15:0.60:0.25,
with limiting values of 0.10:0.70:0.20 and 0.20:0.50:
0 30, respectively. Fortunately 4, , given by C,
=S444+SsCs+(Ss+5&)Cs, is very insensitive to which
of the above sets is chosen. In Fig. 6, the experimental
distribution is compared with that calculated for
p=0.75. The dashed curve gives the result of the SM.

"Rein Silberberg, thesis, University of California Radiation
Laboratory Report UCRL-9183, May, 1960 (unpublished).
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FIG. 6. The functions C, (cos8) computed at p =0.75 are
compared with the experimental distribution of angles between
pion pairs. Figures 6(a) and 6(b) give the distributions for like
and unlike pions respectively. Also shown in each is the curve
for C, sM(cos9), the statistical distribution, without the effect of
correlation functions. Here C, represents an average of 44, C~,
and 46, weighted according to the individual charge channels.
The experimental data comes from reference 1 (see also Table I,
footnote a).

It is clear from this figure that the fit to the experi-
mental data is improved for both like and unlike
pions by the introduction of BE correlation functions.

In Tables I and II we give the experimentally
determined values for y together with a series of y
values calculated for various radii of interaction. An
inspection of Table I, which lists also y, shows
again that the bulk of the experimentally observed
deviations from the SM can be accounted for by our
calculations with a reasonable choice of p (i.e., p
between —,

' to s of h/pc). "It cannot be concluded now
whether the remaining discrepancy between experi-
mental results and the SM including BE correlation
effects, as evaluated here, is due to experimental
uncertainty or to inadequacies of our model.

IV. CONCLUDING REMARKS

AVe have seen that the BE symmetrization leads to
a fairly satisfactory possible interpretation of the
observed angular distributions. VVe believe that this
conclusion is of importance for the assessment of
evidence for the existence of the strength of possible
x-z interactions. The least the present results indicate
is that if one wishes to extract information about such
interactions from annihilation phenomena, such kine-
matic symmetry effects as here discussed must always
be taken into account.

It may be asked whether further information can
lead to arguments for or against the model here em-
ployed. Several possibilities exist for getting such
information. In the first place one may study six- and

'4It should be noted that the p distribution, calculated by
using the noninvariant form of the correlation function |i|(x),
will probably give a poorer fit to the experimental data than the
invariant form. This is illustrated in E'ig. 5.

TABLE I. Comparison between the experimental values for
y' and y" and the corresponding values derived by use of the BE
correlation functions for p =0.5 and 0.75. Also shown is the value
for the usual Fermi SM. All the theoretical values have been
averaged over the four-, five-, and six-pion distributions as
discussed in the text.

p =0.5 p =0.75

Like
Unlike

1.23a0.10a
2.18~0.12

1.41
1.95

1.38
1.91 1.80

a The experimental data quoted in this paper is essentially the same as
given in reference 1. A small improvement in the available data has,
however, been incorporated involving (1) some additional events, namely
a total of 752 like and 1504 unlike pion pairs coming from (2+,2,no) stars
have been used, and (2) a complete recalculation of all the center-of-mass
momentum and angle values making use of the known incident beam
momentum P-„=1.05 Bevt'c rather than the measured value for each
individual annihilation event.

TAnLE II. List of computed (y'), and (p"), values. The values
for p =0.5 and 0.75 are repeated here for clarity.

P
(A/pc)

0.3
0.5
0,75
1.0
2.0

1.57
1.41
1.38
1.44
1.66

1.91
1.95
1.91
1.87
1.79

higher-prong stars by the same method. Secondly, if
the BE symmetrization is the major source for the
deviations from the usual SM, this implies a specific
dependence of quantities like p", p' on the available
annihilation energy, O'. For the case Ã= 4, this
dependence is shown in Fig. 7. Here we have computed
y4' as a function of p for various values of g, the
available energy in the center-of-mass system. W' e
have chosen for 8' the energies 1.88, 2.5, and 4.4 Bev
corresponding to p laboratory momenta of 0, 2.25, and
6 Bev/c, respectively. It can be seen from Fig. 7 that
the correlation eGects occur at smaller values of the
radius as the energy increases. If a radius of interaction
is a meaningful quantity for the annihilation and does
not depend critically on the incident antiproton
energy, it might be expected that the correlation effects
due to BE statistics will decrease at higher bombarding
energy. Studies of correlation effects as a function of
5" may thus be a test for the ideas discussed in this
paper. Of course, with increasing 5', the relative
fraction of four-pion annihilations will decrease. It is
therefore indicated that if one wishes to pursue the
annihilation process in more detail, an unambiguous
separation into the various individual multiplicities
will become quite imperative. Only if this is done will
curves like those of Fig. 7 and similar ones for other
given S be of any use.

Finally, a comment may be made about the question
of the mean pion multiplicity. It has been suggested
by various people that the high p value obtained from
the SM may be reduced by taking into account the
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2.5—

l.88
4A

2.0
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o

p 0.5
3

I.p l.5

FIG. 7. The distribution of y4' as a function of p for various
incident p energies. The energies in the center-of-mass system
are W=1.88, 2.5, and 4.4 Bev and the curves are labeled with W.
These correspond to p-p collisions at laboratory momenta 0, 2.2S,
and 6 Bev/c, respectively. The dotted curves refer to j 4s

existence of m isobars. These isobars are often thought
of as pseudoparticles compounded of two (or more)
w mesons and with prescribed spin and angular momen-
tum. It is clear on qualitative grounds that the existence
of such structures would reduce the p value for given
average multiplicity. Again on qualitative grounds it
follows that under the same conditions the present
model also will lead to a reduction in the p value. This
is because correlated pairs are somewhere between
pseudo two-body systems and totally free pairs.
Preliminary estimates indicate, however, that the BE
eGect seems to be insufFicient by itself to lead to the
right multiplicity for p 0.75 A/pc. It must be added,
however, that several points are at present not quite
clear to us. In particular, it may be asked whether the
use of the factor (E!) ' occurring in Eq. (6) is indeed
a proper way to deal with the question of indistinguish-
ability. This particular X dependence plays a sizable
role, of course, in the theoretical determination of
average multiplicities. Thus a further study of the
eGect of BE symmetries is needed in conjunction with

improved considerations on angular momentum and on
the possible role of strong zm forces.
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APPENDICES

I. Derivation of the BE Correlation
Functions for %=4

%e shall here give a rather detailed discussion for
the case N=4 of the validity of the use of wave
functions symmetrized with respect to like particles
only. For the case X=5, 6, we shall content ourselves
with some qualitative remarks.

Thus we consider the charge partition (2+,2 ).
First note that if we would ignore isotopic spin (as
described in the Introduction), we would have, by
Eq. (8), six independent and orthogonal (2+,2 ) states
for a given momentum configuration. Their spatial
wave functions can be chosen as follows. Define Lijkl] by

Lijkl]= expLi(p, 'x,+p; x,+p„x,+p, x4)]. (A1)

Next define a symbol of the Lijkl] type, with a bar
over two letters to mean symmetrization with respect
to the two momenta marked by a bar and symmetriza-
tion with respect to the two remaining momenta. For
example,

P142]= L3142]+L4132]+53241]+[4231] (A2)

The six functions,

$i =$1234], f4= L3124],

$3= C1342] 4= L3142] (A3)

(3= L13Z4], ts= @412],

form a complete orthogonal set of spatial functions
spanning the configuration (pi, ,p4). (We referred
to this set earlier in footnote 8.) Note that we have

dxidxsdx3ifx4 P (12)P(34), 3=1,

where P(12) is given by Eq. (11). Thus, as already
stated for general E in the Introduction, "it is trivially
correct that equal weight for all six states just means
like particle symmetry and nothing else.

Next consider the I=O, 1 states for X=4. By the
methods described in reference 7, we may label these
states by their correlation numbers and divide them
in the classes: (4), (31), (22), (211). The number of
states pertaining to these classes is 1, 3, 2, and 3,
respectively. ' This totality of 9 states may be chosen
as an orthogonal set. We must now project out the
(2+,2 ) parts of these nine states. Observe that the
three states of class (211) have projection null. This
is easily seen from the Young tableaux corresponding
to these states, which imply antisymmetry between
the coordinates of three of the four particles, a condition
that leads to identically vanishing wave functions for
the charge partition in hand. Thus, the number of
orthogonal isotopic spin projections for I=0, 1 is

"See also footnote 8.
16 See reference 7, Kq. (10}.
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equal to 9—3=6. Hence these six projections must
be related to the functions $1, ,b of Eq. (A3) by a
unitary transformation. Thus equal weight for these
projections again gives us the BE effect between like
particles only, a result mentioned in the Introduction.

%e verify this explicitly by constructing the various
isotopic spin projections of (2+,2 ), a procedure that is
also helpful for the rest of the argument. To do this,

we construct first the following operators. Let p(8)
denote the 2r field (an isotopic vector) at the point
x "Put

~'51=(4(2) N(j))(4(&) 4(~)),

B;, =(P() P(j))(P(k)X&(&)),

and consider the nine operators:

0 (}—
0 (22}

0 (22}

0 (31)—

P (31)—

03(»)=
0 (211)—

P (211)—

0 (211)—

+1234+ +1324+ + 1423)

2~1234 ~1324 ~1423'

~ 1324 ~ 1423

—2B1234+ B1324+3B1423+ B„,4 +3B2413~

B1324+ BJ423 B2314 B2413 2B3412)

B1234+ B1324 + B23141

—2B,234+ B„,4—B,4,8+ B23,4 —B2413)

—3B1324+ B1423 +3B2314 B2413 —
34121

B1423 B2413 + B3412.

(A6)

These 0 operators have just the isotopic spin and

symmetry properties required by the classes that label
them by superscript; the subscript distinguishes the

isotopic spin states within each class. The construction
of this set of operators was first given by Halpern"
and was also recently discussed elsewhere. " It is a
simple matter to derive from these 0 operators the
wave functions for the (2+,2 ) system. One imagines

the P(i) to be Fourier-expanded and picks off in all

possible ways the contributions to the momentum
configurations pi, ,p4 for the charge channel (2+,2 ).

Evidently this procedure guarantees the combined BE
symmetry with regard to charge and space coordinates.
Proceeding in this way, one finds that the operators
0;("') for i= 1, 2, and 3, give the zero result mentioned
earlier. The nonzero functions are written generally
as %(1234), where the arguments shall refer to the
momentum labels now. It is convenient to write

0'(1234) =A(1234)+A(1324)+A.(1432). (A7)

One 6nds20

A, (') (1234)=

A, (22) (1234)=
A2(22) (1234)=

A
i(")(1234)=

A (81)(1234)—
A3""(1234)=

[h+4+$3+b+ 4+b]X 1/24*,

(2ri+Ã2+%. 3 2r4 +%.1 2r2 2r3+%-4+) X [2(l—b—b—t4 —$5+2b]xl/4Sj
[—b+b—b+ $5]X1/16'*,

[2$,+b—b—b+$5 2/6]X 1/4—Sl,

(2ri+m. +3r3 2l4 2li 2r2 2C3+ir4+) X [b+b $4 b]X1/16',
[$1 b+ b+b b b]X 1/24' ~

(AS)

Here ~,+ denotes the amplitude for a w+ meson with

momentum p, . The space wave functions $; are as

defined in Eq. (A3). Now if the projections %(1234)
into (2+,2 ) [given by Eqs. (A7) and (AS)] all have

equal weight, the total rate of transition into a given
momentum configuration is equal to

I
+(1234) I'-,

six states 555

(A9)

where the summation is taken over the six states of

» Explicit time dependence is not needed for what follows.
' I'". Halpern, Ann. Phys. 7, 146 {1959);see Appendix.
» See reference '7, Appendix.
"This is apart from a common normalization factor 6 &.

diGerent symmetry, and the integral means summation
over charge and integration over space coordinates.
Performing all these operations, one sees that all cross
terms of the type $;*$, cancel. Hence, using also Eq.
(A4), we have verified the property of pure BE sym-
metry between like particles only, which was proved
previously on general grounds.

Let us next see what happens if we give equal
weight to the various isotopic spin states, rather than
to their (2,2 ) projections, as is required in the SM.
This means that we must weigh each of the six terms
in Eq. (A9) with the branching ratio (or correlation
coefficient) that gives the relative weight of the (2+,2 )
part in the mixture of (4'), (1+,1,2'), (2+,2 ) out of
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which the isotopic spin states are built up. These
relative weights, which can be read off from Table IV,
X=4 of reference 7, are 8/15 for class (4), 4/5 for
class (31), and 1/3 for class (22). Hence it follows that
now the over-all rate of transition into a given rnomen-

tum configuration becomes, in the SM,

1 r

-) b*6+—Re 6*(3b+fi+354+5ks 1&—b)

The first integral just corresponds to pure BE sym-
metry between like particles. The second term
constitutes a correction to this. To evaluate the
magnitude of this correction term, we have computed
C4'(y) for the case p=0.75 at three selected y values.
The integrations, in which 80 individual integrals were
involved, were performed on the IBM-704 computer.
The results show that for y=+1, 0, and —1, the
correction terms are all positive and amount to a 2%,
2.7%, and 2.1% change in C4', respectively. Since the
corrections are all positive, the e8ect on y is even
smaller.

For E greater than four, we have not made such a
detailed analysis, but merely note the following.
Evidently something special happens for X=4 in that
the number of (2+,2 ) states is equal to the actual
number of projections of the orthogonal I=O, 1 states
into this charge channel regardless of isotopic spin
restriction to I=O, 1. This accounts to a large extent
for the fact that the BE assumption is particularly
good in this case. For S=5, 6, this equality is no longer
true. Equation (8) tells us that the total number of
(2+,2,1'), (2+,2,2') states is equal to 30 and 90,
respectively, wheras the number of orthogonal pro-
jections from I=O and 1 is equal to 21 and 51, respec-
tively. " As the latter numbers are of the same order
as the former ones, it is at least plausible that most of
the additional symmetries between unlike particles
will cancel out, so that also here the assumption of
like particle symmetry only may be a reasonable
approximation.

II. The Monte Carlo Method Used for Multiple
Integrals in Phase Space

For the evaluation of the e-fold integrals with m&4
occurring in the various expressions in many-particle
phase space, we have used a Monte Carlo method
(MCM) of integration. These calculations were coded
in FORTRAN by Marjory Simmons and were evaluated
with the IBM-704 computer of the University of
California Computer Center in Berkeley.

An n-fold integral corresponds to a volume in n.+1
dimensional space. This volume can be expressed as
the average height of the function multiplied by the
"area" of the domain of integration. Here the domain

2'These last two numbers follow from reference 7, Table I.
There are no nu11 projections in these instances.

extends over e dimensions and contains all the permis-
sible values of the variables. The MCM used here
consists of generating m random numbers which, after
suitable normalizations, correspond to a point in g,-
dimensional space. The essence of the method is just
to ascertain whether this "point" lies inside (= success)
or outside (= failure) of the domain of integration.
For each "success" point, we then compute the value
of the integrand. The sum over the values of the
integrand divided by the number of "tries, " X, for a
sufficiently large iV converges to a number proportional
to the desired integral.

To be more specific, let us consider an e-fold integral
and write

c (,~)= I

~ Domain D (x„~ ~ ~,gz. a)

Xdxi Cx„. (A10)

Here the integrations are to be carried out over an
n-dimensional domain D(xi, ,x„;n), where we have
f(x.. .x„;n,P) &0. The n variables, xi„are limited by
known upper and lower bounds: xj, '"&@~&x~ ', for
4=1, ,n(xi, ' and xi '" are constants). The domain
D(xi, .,x„;n) over which the integration is carried
out is an m-dimensional volume which is thus contained
in, but is in general smaller than, D ', where

Dmsx —g(x max x min)
k=1

We will designate the e variables in an e-dimensional
point by x(=—xi, ,x„).

Our procedure can be best understood if we now
consider a specific example —say the function C6"(y)
j Eqs. (33), (34), (35)]. This function is given by a
five-fold integral. The parameters n and p are now
y(=cos8) and p, respectively, as defined in the text.
To obtain a distribution in y, we need to evaluate the
integral for several values of the parameter y. %e
chose seven distinct values for y, and thus need seven
five-fold integrals. In addition, we need a distribution
in p. We chose six values of p, giving us 42 five-fold
integrals in all. Fortunately we were able to evaluate
all 42 integrals at the same time, because of the follow-
ing two circumstances. First, the domains are independ-
ent of the parameter, p. Second, we can order the
domains as a function of the parameter y in such a
fashion that each domain contains all the subsequent
domains)

D(x; yi) QD(x; y2) g . gD (x; y„).

Thus, when a given "point" x lies outside the jth
domain D(x; y;), we know it will also lie outside all
the subsequent domains, i+ i, ,m.

%e will proceed in describing the MCM by giving a
sequence of steps that correspond crudely to the logic
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TABLE III. Details on the evaluation of the function 46" by the
Monte Carlo method, for a total number of "tries" 1K=67000
corresponding to 4.5 hr on the IBM 704. Errors are given for sL~
of the 42 integrals perforraed.

f~ is set equal to zero. The value of the function is
given by

~'6" (y' p )
Successful

tries

8188
6019
4833

Percent error
for p=0

1.4
1.3
1.7

Percent error
for p=0.75

1.2
1.5
1.8

=Lim D(y;)f(y, ,p,)

&.(y') &

Zf. (x; y;,p;)
iV ) .1V, (y,) i=i

Let iV, (y,) be the number of successful t.ries for y=y;.
Then

f(y" pi) = 2 fn (x i y '
pj )

y=l
X, (y;) (A13)

is the average value of the integrand, where we use the
convention that whenever x is not inside the domain,

followed during the computations, This sequence was
repeated a large number of times (iV=10'), where
each repetition represents another "try."The steps are:

(a) Generate rt random numbers r i, ,r„with the
property 0&r,&1.

(b) Compute a set of random variables xi with
these random numbers according to

*a=~~ '"+bi "—~a *'")~i„k=1, ,e. (A12)

This (ordered) set represents an I-dimensional point
x chosen at random in the domain D defined in
Eq. (A11).

(c) Test whether the point x is contained in D (x; yi).
If it is, this try is counted as a "success" for the domain
D(x; yi); proceed to step (d). If it is not, this try is
considered as a "failure" for D(x;y, ) and for all
subsequent domains D(x; y,)i=2, ,m. Start at step
(a) again.

(d) Test, whether the point x is contained in D(x; y„)
for i=/ —1. This try is counted a "success" for the
domains D(x; y,)i=2, , / —1 and a "failure" from
i = l, , m, where D(x; y&) is the first domain that does
not contain the point x. (Here l—1=m means that
the point is contained in all domains. ) Proceed to
step (e).

(e) Compute f(x; y;, p,), the integrand at the point
x for the values of the parameters i =1, , l—1 and
p. for j=1 . v. Cumulate the integrands in an array
of rgi numbers. Repeat at step (a).

N
=Lim D~'x P f~(x; y;,p,) iV.

+~oo
'L

(A14)

The practical question is: After how many tries, E,
has the above expression converged sufficiently close
to its limiting value?

To answer this question, we have evaluated the
variance. In terms of the variance, the statistical
errors in the MCM have well-defined meanings. " I et
us define C„NO as the pth approximate solution obtained
after a consecutive set of Ã0 tries given by:

1 aNO

g&No — Q f
+() p=(p—1)Xp+1

The variance of E tries is obtained in the following
manner. 1A'e choose Eo large enough that the set
C „No, p = 1, , X can be considered to have a Gaussian
distribution and yet each C„NO is not expected to be a
good approximation to C. The variance of E() tries is
obtained by plotting 4 0 p= 1 ~ &. The variance oN
of S tries is then obtained from the variance of Eo
tries by the expression o.~'= Lo (iVO)]'/P, .

To give a qualitative feeling for the time on the
IBM 704 involved in such calculations, we quote some
examples herewith. The 42 integrals for the function
C& (y,p) were evaluated in 4.5 hours for a total number
of tries, A =67 000. Here we chose NO=1000 thus giving
us A. =67 points for the evaluation of the variance. The
resulting number of successful tries and errors are
given in Table III.

22 See, for example, F. Cerulus and R. Hagedorn, Nuovo
cimento 9, 659 (1958).

where iVo=iV/X. Then the solution after E tries, CN, is
given by

'A

@N— Q f — Q @ No

E x=1 X s-1


