
INTERACTION BETWEEN PAIR OF X+ MESONS 269

tion in the analysis of the correlation between the
planes of the Dalitz pairs in +0 decay. '

III. CONCLUSIONS

Under the conditions (a) and (b) enumerated above,
the observation of a nonvanishing term proportional
to sin2q in the distribution in the angle between the
plane of the pair and the plane dined by its normal,
tlXk, would indicate a nonvanishing interaction be-
tween a pair of E+ mesons. Under condition (b) alone
(which is perhaps the more likely of the two conditions
to be fulllled in reality), the absence of any correlation
proportional to sin2y would imply that all meson-
meson interactions vere of negligible inQuence. "This
follows from the fact that time-reversal invariance re-
quires Recr*P=O in the event that the low-energy

+—p elastic scattering is largely a di8raction effect
(i.e., vanishing of the real part of the phase shifts) and
that there are negligible meson-meson interactions in a
system of pions and E mesons. This conclusion would
not hold in the unlikely circumstance that only a
single partial wave were produced in the two-E+ sys-

' R. Piano et a/, Phys. Rev. Letters 5, 525 (1959).
7' Under a similar condition, this statement could also be made

with reference to a study of the reactions p+p —+2m+y and
p+p ~X+K+y.

tern, for all values of
~
tl ~, or in the circumstance that

many partial waves conspired to give an accidental
cancellation in the interference between the amplitudes
a and P in Eq. (4), again for all values of

~ q ~.

Finally, we note that reaction (3) involves four
positively charged particles, two with magnetic mo-

ments, and the possibility of the emission of a very
energetic photon. All of these may contribute to an
increased probability for this radiative process.
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The radiative corrections to the electron-electron scattering to order e' are calculated for (1) the colliding
beam experiment and (2) the experiment in which the target electron is at rest initially. The contributions
from high-energy real photons are included. The two-photon exchange diagrams are found to give only
negligible contributions to the cross sections after infrared cancellation. The effect due to the possible
breakdown of quantum electrodynamics is discussed. A preliminary study on the electron-positron colliding
beam experiment involving various interactions is made. The vacuum polarizations involving heavier
particles than an electron pair in the closed loop are investigated.

I. INTRODUCTION
'
ANY experiments' have been suggested to test

-- whether the electron has any finite size or if
quantum electrodynamics (QED) is valid at small
distances, say at 10 '4 cm. Among them the interactions
e +e —+ e +e, e++e —+ e++e, and y+e —+ y+e
are pure quantum electrodynamical2 or, in other words,
they do not involve the structures of other particles
whose effects are often dificult to distinguish from the

*Supported in part by the U. S. Air Force through the Air
Force Once of Scienti6c Research.

~ S. D. Drell, Ann. Phys. 4, 75 (1958).
~ Vacuum polarizations due to heavier particles than electrons

are discussed in the Appendix. Their contributions to the cross
sections are found to be negligible.

effect due to the breakdown of QED at small distances.
ln this paper we are primarily concerned with the
evaluation of cross sections for two speci6c experiments
on electron-electron scattering by using the standard
technique of QED to order n'. Any significant deviation
of the observed. cross sections from the present calcula-
tion must be attributed to the breakdown of QED at
small distances. The effect due to possible breakdown
of QED at small distances is discussed in Sec. IV. The
two experiments which we will proceed to discuss are
as follows:

Experiment I. Electron-electron colliding beam
experiment with two intersecting 500-Mev electron
beams. The detectors for the scattered electrons are
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FIG. 1. Geometry for the electron-electron
colliding beam experiment.

Cerenkov counters facing each other with equal
circular apertures subtending the same solid angle and
arranged for coincidence (see Fig. 1). Angular distribu-
tions (but not the absolute cross sections) from 35 to
90 degrees are taken.

Experiment II. Electron-electron scattering with the
target electron at rest and the incident electron having
energy E&=500 Mev (we use a bar to denote the
quantities in the laboratory system for Exp. II). One
of the outgoing electrons is undetected and the other
electron is selected by a rectangular entrance slit and
then entered into a spectrometer which selects the
energies (see Fig. 6).

The erst experiment is in progress at Stanford and is
conducted by O' Neill, Barber, Gittelman, Panofsky,
and Richter. It is designed to test the validity of QED
at small distances down to =0.5&(10 "cm. The second
experiment is also being carried out at Stanford, by
Edgar B. Dally. The eGect due to the breakdown of
QED (if any) should not be observed in Exp. II due
to the smallness of momentum transfer involved in the
experiment. This calculation was originally started in
order to calculate the cross section for Exp. I. However
it was realized that the previous calculations on
electron-electron scattering made by Redhead' and
Polovin' do not apply to Exp. II; thus the calculation
on Exp. II was included in this paper.

Redhead and Polovin calculated the radiative
corrections to e—e scattering with the target electron
at rest in the laboratory system with the assumption
that the maximum energy of the photon X,„(we use
units in which A=t, =1) which can be emitted is the
same for all directions (hereafter we use the word
"isotropic" in this sense) and is much less than m.

However, in Exp. II the photon can steal almost all
the energy from I s' (see Fig. 6) which is undetected;
hence in the direction of P2' the maximum energy of

sM. L. G. Redhead, Proc. Roy. Soc. (London) A220, 219
(1953).

4R. V. Polovin, J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 449
(1956) (translation: Soviet Phys. —JETP 4, 385 (1957)7.

the photon E, is equal to (Es'),t„~;„whereas in the
backward direction it can be shown that E, =mh8/
8,&„t,;, (see Fig. 6). Thus K,„ is neither isotropic nor
«m.

In contrast to electron-nucleus scattering, the
inelastic part of the radiative corrections to e—e

scattering (the same can be said about the Compton
scattering) depends very critically upon the geometry
of the experiment. (This is why we have specifiedthe
experimental conditions in such a detailed manner at the
beginning of this section. ) Recall that in the usual
calculations of the radiative corrections to electron-
nucleus scattering the following three conditions are
assumed implicitly:

1. Due to the heavy mass of the nucleus, the real
photons emitted by the nuclear current are negligible.

2. The energies of the elastically scattered electrons
are not sharply dependent upon the scattering angles.

3. The momenta of recoil nuclei are not measured.

From these three conditions one can deduce the
condition that the maximum energy of photons emitted
is approximately isotropic irrespective of the shape
and the size (if it is small) of the entrance slit and is

equal to the energy resolution of the detecting system
DE. (AE=E,~,.~;, E;„,where —E; is the threshold
of the detecting system. ) The three conditions are
not satisfied in electron-electron scattering, either in
Exp. I or Exp. II. In Exp. I the detecting system does
not have any energy resolution since Cerenkov counters
cannot distinguish between electrons with energies, say,
=10 Mev and 500 Mev. Thus very hard photons
(=500 Mev) can be emitted along the directions of
anal electrons. The maximum energy of photons which
can be emitted in other directions is a very complicated
function of the geometry of the experiment and will be
discussed in detail in Sec. III. The final expression for
the cross section depends upon the half-angle of the
detecting system 68 (see Fig. 1). In Exp. II the energy
resolution of the spectrometer ~&' is very small and
it will be shown later that the radiative corrections
for this experiment depend upon the quantity rM (see
Fig. 6) rather than the energy resolution of the spec-
trometer DEj'.

Similar to Brown and Feynman's' result on the
radiative corrections to Compton scattering, Redhead
and Polovin's results contain terms like rr ln'( —q'/I')
(compared with unity), which one does not 6nd in the
radiative corrections to electron-nucleus scattering' or
large-angle pair production. This kind of term is

very undesirable because it is of order unity at high
energies. If this kind of term really exists then it is
indeed very serious since it implies that the power series
expansion of the cross section in terms of n is no longer

' L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).
6 H. Suura, Phys. Rev. 99, 1020 (1955).
7 J. D. Bjorken, S. D. Drell, and S. C. Frautschi, Phys. Rev.

112, 1409 (1958).
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valid even at ener'gies with which we are concerned
here. Fortunately we found that the existence of terms
like n ln'( —q'/m') in references 3, 4, and 5 is due to
those authors' special assumptions on X,„. In fact
under the experimental conditions of Exp. I and Exp. II
it will be shown later that these terms are associated
with the infrared contribution and that they cancel out
completely after addition of elastic and inelastic cross
sections.

The notations used in this paper are similar to those
used by Schweber et a/. ' The units 0=c= 1 and e'/4 ri=n
are used. The relativistic notation used is such that
a„(ao,A), a„y"=a, (a b)=aobo —A B, y„y„+y„y„=2g„„,

g00 g11 g22 — g38 —i and all other g;
)s

are zero. pi and p, refer to 4-momenta associated with
incoming electrons and pi' and p2' those with outgoing
electrons.

The calculation of the cross sections can be separated
into two parts: elastic and inelastic. Elastic parts refer
to those diagrams which have two 6nal electrons but
no final photons. Inelastic parts refer to those diagrams
which emit a photon in addition to the two outgoing
electrons. Elastic and inelastic parts do not interfere
with each other because they have different 6nal
states. The observable cross section is obtained by
adding the elastic and inelastic cross sections.

We assume that a photon has a small mass X whenever
we deal with the processes which involve the emission
of very soft (real or virtual) photons. This is just a
device to avoid the so-called infrared divergence, In
our calculation this method of infrared cutoff has many
advantages over the alternative method which uses a
noncovariant energy cuto8 E;„.If E;„is used as an
infrared cutoG, the calculation for the inelastic parts for
Exp. I can be slightly simplified, but the calculation
for the elastic parts becomes extremely cumbersome.
Moreover since E;„is noncovariant it is very incon-
venient for performing a coordinate transformation.
For example, had we used E;„instead of P, we would
have to calculate the elastic cross sections for Exp. I
and Exp. II separately instead of obtaining one from
the other by just a simple substitution.

When the fictitious photon mass A, is used as an
infrared cutoff, the quantity X always appears in the
form ln(m/X) in the self-energy diagrams (iiI16) and in
the forms p2(q'), p2(q"), p2( —s') in other elastic infrared
diagrams, where the function p2(q') is defined as

p' dy 1nLm9.—'—y(1 —y)q'X ']
p2(q') =

m' y(1 y) q' —ie— —
—2 ( —q) t'm) 1 (—q)

»I I »I —I+- ln'I
g m2) I, ),2) 2 g m2)

(for —q'&&m').

' S. S. Schweber, H. A. Bethe, and I'. de HoGmann, 3fesoes
and Fields (Row, Peterson and Company, Evanston, Illinois,
1955), Vol. l.

In the inelastic cross section one always 6nds similar
terms but with a different sign. LIn fact in our case
the quantity X appears in the direct two-photon
exchange diagrams M2 and 3II2 as p2(s') rather than
p2( —s'), but this does not affect our argument since
the imaginary part does not contribute to the cross
section and we have neglected the nonlogarithmic terms
in the calculation of two-photon exchange diagrams
anyway. $ Thus these terms cancel each other when
elastic and inelastic terms are added together. Hence
we shall call terms like 1n(m/X), p2(q'), p~(qi2), and
p2( —s') infrared terms.

In Sec. VI a preliminary study was made on the
electron-positron colliding beam experiment. In the
Appendix the vacuum polarizations involving heavier
particles than an electron pair in the closed loop are
investigated.

II. ELASTIC SCATTERING

I.et us define q= (p,—pi'), q'= (p,—pg'), and
s= (pi+p~), where pi' and p2' refer to 4 momenta of
outgoing electrons in the "elastic scattering. "

q and q'

are space-like vectors and s is a time-like vector. For
Exp. I we have

q'= —4(E'—m') sin'(8/2) = 4E' sin'(8—/2),
q"= —4(E'—m') cos'(0/2) = 4E' cos'(e/2)—
s2= 482 )

where Z=Eg=E2=Eg'=82'. For Exp. II we have
(denoting the laboratory quantities by a bar)

E2 m)

q'= 2m' —2mE2' = —2m (Ei—Ei'),
q"= 2m' —2mE»'= —2mE~',

s'= 2m'+2mEi= 2mEi.

The following relations are useful:

q'q = q's —q 's —0)

q'+ q"+s'= 4m'= 0

q'Pi= q'P2 = q'P2= q'Pi =
q /2—

q 'Pi= q 'Pi =
q 'P2 = O'P2= q '/2~—

s'pi= s'P9 s'pi s'P9' ——s'/2.

It should be noted that all the formulas given above
hoM only for elastic scattering, since in inelastic
scattering pi' and p~' depend upon the photon 4-
momentum k.

In either Exp. I or Exp. II we ha, ve s', —q', —q"))m'.
Thus in our calculation we neglect terms of order
m2/s', m'/q', and m'/q" compared with 1. For simplicity
we refer to them as O(m'/q'). We shall call this kind
of approximation the high-energy approximation.
With the high-energy approximation the calculation
can be simpli6ed enormously. For example, the projec-
tion operator (P+m)/2m can be replaced by P/2m
and pl(p) =mu(p) =0.
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P2 P2 Pi

FzG. 2. Diagrams for
Mgller scattering.

A, =dQ, ' "P,'dE, ', "fl(p,'+p, '—s)28(E ')

X8(P2 2 —m2) d4P2'

P2 P( P
PV

M(

Pg'
=dQ1'J 2P1'b((s p—l')' m—')dE1'= dQ1'=dQ1'/2.

2E

The Feynman diagrams for the lowest order elastic
electron-electron scattering (Mf lier scattering) are
shown in Fig. 2, and those for the next order (elastic
radiative corrections) are shown in Fig. 3. Self-energy
diagrams M6 do not have to be calculated explicitly
since, for example, after mass renormalization M&(p, )
+M2(P1') cancels' out with M2 taken at q'=0. Thus
we shall assume the vertex diagrams such as M5 to
be renormalized and forget about the self-energy
diagrams such as M6. We may write the elastic cross
section as follows":

For Exp. II the elastic cross section depends upon the
energy resolution DE&' of the spectrometer rather than
the width of the entrance slit; thus we have

All =Pl'~1'J dQ1' 25(s' —2pl'. s)

f 8
'J D

X25(s2—2mE1' —2E1E1'+2P1P1' cose)

~...„;.= (2~)'
((Pl P2)' —~')' &

X
~

~(pl+p2 pl p2)d pld p2

X p L(M1&M1—MltM1+exchange)
spin

+ P 2 Re(MltM; —MltM, +exchange)
1=2

+4 Re(MltM2 —MltM2+exchange) j, (1)

where by "exchange" we mean the terms obtained by
an interchange Pl'~P2' or q2~ q". The factor 4 is
associated with the vertex matrix element because, as
will be shown later, in the high-energy approximation
M'=M'' and &~=M''. We want to use Eq. (1) to
calculate the elastic cross sections for both Exp. I and
Exp. II. We notice that the factor

(MltM; —MltM, +exchange), (i = 1 5)
spin

)~ ~1 s&nonelastic

Pi P2
k-q

P, -k Pk

k

P, M2 P

P2 Pi

I

Pi
I

P2
k-q

+ k Pi-k p -k
k

P, M5P

P2 P',

Pi

P, Mq P~

P'2 Pi

where D is the distance between the scattering region
and the entrance slit and a is the width of the entrance
slit measured perpendicular to the 0 direction (see
Fig. 6). Thus the expression for the elastic cross section
of Exp. II can be obtained from that of Exp. I by a
simple substitution of the factor Aq ~Aqq.

The terms MltM1 —MltM, +exchange in Eq. (1)
represent the Mpller scattering. The matrix element for
the M) lier scattering is

Ml Ml ~31)q "(pl )VPN(pl)~(P2 )7 "(P2)
—q' '"(p ')v."(pl)~(pl')v""(P2)l, (2)

where c,"=imr 'm'(E1E1 E2E2') **. After averaging over
the initial states and summing over the hnal states,

is an invariant function times a factor (E1E2E1'E2') '.
t-See for example Eq. (2).] Thus the factors E1E2 in
Eq. (1) cancel out and we have the remaining final-state
integration,

Pi M2 P2 Pi M5 P2

P2 PiP', P',—)

Pi M~ P2

P2 Pi

dpi dp2
JI ~(Pl +P2 Pl P2)

jV,

p 5 p

P, P2

I

Pi
5

P2

P2

Pi
5

P2 P 5 P
I I

P)a

whose range of integration is subject to the experimental
conditions. For Exp. I this integration reduces to

' R. P. Feynman, Phys. Rev. 76, 769 (1949).
'0 For the expression of cross sections in the invariant form, see

J. M. Jauch and F. Rohrlich, Theory of Ihotons arid Electrons
(Addison-Wesley Publishing Company, Inc. , Reading, Massachu-
setts, 1955), Eq. (8—49).

I Me(i, )

P2 P,

",(P,) )

P2 Pi

"B(PI)
P P

I

Pi'

MI(P2)
P P

)e (e )
Pi
''

P2

F1G. 3. Diagrams for elastic radiative corrections.
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the cross section for the Mgller scattering for Exp. I
in the high-energy approximation is

re' m' s4+q" 2s4 s'+q'
d& Mdller = d01 =+ +, (3)

~~4

where ro ——n/m 2.82X10 " cm is the classical radius
of an electron. Similarly the Mgller cross section for
Exp. II is

fp m
Mpller =II

El I S&nonelastic

s4+q" 2s4 s4+q4
X + + . (4)

g
4 q2q~2 q~4

The vacuum polarization and the vertex diagrams are
calculated using the method of Feynman. ' After charge
renormalization, the matrix element for the vacuum
polarization diagram M4 can be written as

n —5 1 ( —q'l
M4 ——— y-ln)

) M, .&~)
The vacuum polarizations due to heavier particles than
an electron pair in the closed loop are discussed in the
Appendix.

The matrix element for the vertex diagram 3EI5 aiter
renormalization can be written as

contribution of the vertex diagram as before the
renormalization and ln(m'/X') in Eq. (6) comes from
the infrared contribution of the self energy diagrams
Me(p~)+M6(p~'). Both of these infrared terms cancel
out with the corresponding infrared terms from the
bremsstrahlung. Thus after infrared cancellation M5
can be written as

n 3 t' —q)
Mg —+ ——2——ln) )

Mg.
2~ 2 Em')

The two-photon exchange diagrams M2 and M3 are
the most difficult to calculate of all the diagrams. We
notice in both diagrams that when k —+ 0 or 0—

g ~ 0
we have infrared divergence. The evaluation of the
noncrisscross two-photon exchange diagram M2 is
slightly more complicated than the crisscross two-
photon exchange diagram M3, because in 3II2 the inter-
mediate state can become real; thus we have to cross a
pole in the path of integration with respect to k. The
path of integration around the pole is taken care of by
assuming that m and X have small negative imaginary
parts, m~m —ie, X —+X—ic'. The matrix element for
3f2 can be written as

e4

M2 ——
, L4(pi P~)(v, xv")b

(2~) ' (EgE2Eg'E2') &

+2{ (~„~.p, x~ ) —(~„x~ & p,)».
(v.~.v, x~—~v)b..j, (9)n q t'ts

& ym)

3 f —
q ) n—in) ) y2 M,+ M„(6)—

& m2) (1;k. ; k.k,)d'k

where (AXB) —=u(p~')Au(p~)u(P2')Bn(P2), and

(b; b. ; b.,)

where

C~ 8Z (' —g
I~(p ') (qv, —v,q)

2 q4 (nP)
XN (pi) ~(p2') v "~(p2),

(k' —2P] k) (k'+ 2k p2) (k' —X'){(k—
q)

'—lI.'l
(«)

The matrix element for M3 can be written as

e4

2 ~ (—q'y t'm')
p, (q') = ——ln) ) ln) —

)

E X~)

(7) M, = L4(pip2') (y„xy")c
(2m) ' (EgE2Eg'E2') *'

—2{(y„y'P2' Xv")+ (v„,xP~y'7") l c,
1 (—q')+- ln')
2 &m') 6

M~ is the anomalous magnetic moment term and as
can be readily seen this term is negligible, namely of
order O(nz'/q'). The matrix element for M5' can be
obtained from Mt; by the interchange pq+-+ p2, p&' ~ p2'
and q~ —q. Since the anomalous magnetic moment
term is negligible and the rest of the matrix element is
invariant under this interchange, we have M5=M5'.
Thus Mq+M5'= 2M'. This explains the factor 4
associated with Mz in Eq. (1). p, (q) is the infrared

where

(Cr C&i C«)

+(v.v &,xv"~v)c.,$, (»)

(1;k„k k,)d'k

(k' —2p, k)(k' —2k p, ')(k' —X'){(k—q)' —X'l

(12)

From Eqs. (10) and (12) we see that (b; b; b„)
can be obtained from (c; c„.c„) by an interchange of
P2'+-+ —p2. The interchange of p2' ~ —p, is equivalent
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1 (—
q

»(q')+ p~(q ')+—ln'I—2s'l q' 4 m' )
(q"—q'

2$

7j Z

W= X+
S2

—q"X s'i —q' t' q")+ ~i(q')+
I

2+—Ivi(q")
q's' 2q' s-' ( s' )2m'x ( —q'~ f' —q

'
~c= inI, —

I 1nI
qy2 (y~) t m2)'

—»(P)+
s~qm E m')c.=X(pg+ p2').+1'q,

in'I,
( p )

4s' I —q'&
where

'i 1-(—q') 1 (—P )
I+—»'I

2q" q' & m') s' ( —q'I. dy —2 (
~i(q') = n

m' —(1—y)yq' —ie q' & m' )

to s'&+ q". Equation (12) is easier to calculate than Eq. c.,=(p,+p, '),(p&+p, '),&+(p,—p, '), (p,—P2')„j
(10) since there is no real intermediate state in M ~, hence
no poles in the region of integration in Eq. (12). We +Dp~+P2'). q +q (P~+P2').%+q'.q.~+g-2'
have calculated Eqs. (10) and (12) independently and
the results verify the above observation. In applying
the above substitution we notice the following. Suppose
in Eq. (12) we obtain a quantity like ln( —q'2/mP).

After the substitution P2'~ —p2 we get ln( —s'/m')
=in(s'/m') &vrf. . The sign of the imaginary part cannot
be determined unless we actually carry out the integra-
tion of Eq. (10).However, the imaginary part does not
contribute to the cross section due to Eq. (1), hence
the ambiguity in the sign of the imaginary part does
not give any trouble. Due to the complexity involved in
the integrations of Eqs. (10) and (12) we neglect 1 (—

q )
nonlogarithmic terms in the calculation. Using the , u~(q')+ui(q")+ —,»'I
method similar to the one used in reference 3, we can

2s' q' 4 m'

evaluate (c; c„.c„)and the results are as follows:

gr'f t'
'—q" ) ~'1'

ln'I —
I
— 1,(q"),

2q2, 2 ( q2 ) 2q~
Substituting the values of c, c„and c„in Eq. (11), we
can simplify the expression for 3/I~ as follows:

2$4

e' m vr'i 2q" q" (q
—2s ) ( —q") 2(s2 —q'2) t' —q")

(v.&v"), u2(q")+»'I I+
(2~)' (g E Eq'Eq')'* i q' E —

q ) q s ( —q')

4 1 (—q'~ 2 (—q'q 1 1 (—q2) 1 f q')—
+(p.'~p)——»'I

I

—»I —
I +(v.p.'v. &&v p.v")— »'I —I+—» —

Is' s' & -q'& q' I -q') s'. 2s' &-q') q'2 & -q'~

1 (' —q—(v„v.v.Xv"v v") — ln'I
I

. (13)
4s' k —q')

The fact that M3 can be decomposed into a linear combination of only 4 spinor matrix elements" greatly simpli6es
the calculation. For example, in the calculation of spin sum of MtM3 —MPM3 in Eq. (1), one has to take only 8
traces instead of 42 traces. Similarly, the matrix element 3f2 can be written as

m27r2i
3f2=-

(2~) ' (EgE2Eg'E2') & 2g 2

2s' s'(q~ —2q") )—s'q 2 (q" s') (—s)—
»(s')+ ln'I I+

gf
2 & —q') 4 —q'j

4 1 f —s'y 2 ( —s'i 1 1, t' —s2) 1 I' —s2)-
+(P~&&p~)—, —,»'I

I

—»I I +(v.p2v. &v"Pn")—-- »'I I+—»I
q' q'2 I, —q J q (—q'J q'~" 2q' (—

q ) s' (—q'~

"This vras pointed out to the author by Professor D. R. Yennie.

1 )—s'~~
+(v.v.v&&v"v v") =, 1 'I I . (14)i-q) I
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The resemblance between Eqs. (13) and (14) should be noted. In tact all the coefficients of the spinor matrix
elements in the two expressions are related by the simple substitution p, ' &-+ —

pm or q" +-+ s'.
After taking the spin sum we obtain the following expressions:

2' S
g 2 Re(M,tM, —MtM, ) =—P PrPM, —M, M,j—~,(—s')

spin spin 2

n ' 3s'+q'4 s4

2s'EgE2Eg'E2'I 2q' q'q".

2Q gg 2 Re(M/MS —MPM3) =—Q LMFMi —2VIi M xj—p2(q")
spin spin 2

(s') q" (s')
q2) q2 i q2)

3q"+s' s'+q" t' —q"
~

s' (—q" ~+ ln'/ — f+ ln(
f

. (16)
2q'q" E —q') q'q" & —q')2~'EgE2Eg'E2' 2q'

where

)3 4+ '4 g'
q p s

~
q" ( s' q (3q'+s' s'+q'~ (—q') s' (—q')

f(x)= —
I +, I»'I I+—»I I+I —+, I

»'I I+
2q4 q2q12) ( q2) q2 ( q2) $ 2q4 2q2q~2 ) q q2 ) q2q~2 ( q2 )

p~( —g2) and y2(q ) are associated with infrared and it will be shown later that they cancel out with the similar
terms in the soft real photon cross section. Substituting Eqs. (5), (6) (with Mz neglected), (15), and (16) into
Fq. (1), and using (3), we can write the expression for the elastic cross section for Exp. I as follows:

ro2m2 ~s'+q' s'
q 4u ~23 11 (—q'q i Q

+ I
1—

I

——»I ) I +exchange+ Lf(x-)+j(1 *)3—
q4 q"q') ~ &1g 12 E m' ) ) 7r

n (m)
+d~'M~a- 4»—

~

—~+~'~2( —~')+q'~2(q')+q"v2(q"), (17)

p3+(1—x)'

2x2

= sin'(0/2).

1 i (1't 1—x t'1
t

/»'I —I+
*(1—*)) &x)

(3(1—x)'+1 1+(1—x)') ((1—x) ) 1 ((1—x) )+ I
»'f I+

2x' 2x(1—x) ) ( x ) x(1—x) E x )

f(x)+f(1—x) is the contribution from the two-photon
exchange diagrams after infrared cancellation. It is
very important to notice that its contribution to the
cross section is negligible, namely 0.1, 0.03 and 0
percent, respectively, at 0=90', 35', and O'. It is also
interesting to notice that from Eq. (15) and Eq. (16)
the noncrisscross and crisscross two-photon exchange
terms do not go to zero separately in the forward or
backward direction. However their sum, aside from the
infrared terms p2 which cancel out eventually, does have
this desirable feature. In fact M2 or M3 alone is not
gauge invariant but their sum is. The property of
gauge invariance can be demonstrated easily by
replacing p„ in 3f2 and M3 by k'p„. Thus one wouM not
expect the noncrisscross or the crisscross two-photon
exchange terms separately to have any physical meaning
but one should expect their sum to be meaningful.
The terms in the last bracket of Eq. (17) represent the

infrared terms which cancel out with the infrared terins
of the soft real photon cross section )see Eq. (22)].

The elastic cross section do",i„&,, for Exp. II can be
obtained from Eqs. (3), (4), and (17); and we have

ro' m ahEg' (s'+q" s' )
2 Ey D slngeiasg;0 E q q q )

4n )23 11 t
—q'y y

X 1——
I

——inl-
~ (18 12 ( m2))

+exchange+ —Pf (x)+f(1—x)j
n (m)

+&&rrMys~ 4 in~ ~+s2p2( s2)

+&2(q')+q"»(q") . (»)
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Here again f(x)+f(1 x) c—an be neglected and it
will be shown in Sec. V that the terms in the last
bracket in Eq. (18) represent the infrared contribution
and cancel out with the infrared contribution of the
inelastic cross section Lsee Eq. (52)$.

III. INELASTIC SCATTERING FOR EXP. I

A. Soft Photon Cross Section

The diagrams associated with inelastic e—e scattering
are shown in Fig. 4. The matrix elements for these
processes can be written as M~ —Mb where

Sf'=
(22r)' (240E1E2E1'E2') &

(C"(Pi Pi)X'rs) (y XC"(P2 P2))+ — , (»)
(Pi—Pi')'(P2' —P2)'

(Pi' ~ & Pi ~ c'i 1 ( e&7s vs&e&
c (p, ',p,) =

I

—— Iv„+-I +—I (20)
&pi~ u pi. pJ 2&p, ' u p 7~

e is the polarization vector of the photon emitted. 3f~
is obtained from M& by the interchange of Pi'4-+ P2'.
The inelastic cross section can be written as:

~&ine1astic

+1~2= (22r)'
L(P1 P )'—~'j'4

X
J ~(P1 +P2 +k P1 P2)d P1 d P2 d k

X Q (M2tMr, MitM2 M—22Mb+M—AM&), (21)
spin

where g,,; is the summation over electron spins and
photon polarizations. Equations (19), (20), and (21)
are true either for Exp. I or Exp. II. However the
integration with respect to the 6nal states is different
for diferent experimental conditions. In this section we
treat Exp. I. The inelastic cross section for Exp. I
can be calculated most conveniently by separating the
photons into soft and hard photons, depending upon
the photon energy. From the denominators of Eq. (20)
it can be readily seen that most photons are emitted in
the directions along either Pi, P2, Pi', or P,'. From the

8 function in Eq. (21) and the condition of coincidence of
Pi' and P2', it can be shown that the maximum energy of
photon E,„which can be emitted along the directions
of either pi or p2 is AE—=2ELB/(sing+LB), where 68 is
the half-angle of the Cerenkov counter. Similarly along
Pi' or P2' directions, the maximum energy of photonE, is approximately equal to the incident energy of
the electron E, since we have assumed that the Cerenkov
counters do not have any energy resolution. Thus for
convenience we de6ne those photons having energy
smaller than AE as soft photons and others as hard
photons. The photon four-momentum k in the 8 function
of Eq. (21) and in the numerator of Eq. (20) can be
neglected for soft photons. The neglect of k in the 5
function implies two things; 6rstly the energy-momen-
tum conservation for the elastic scattering, pi+p2=Pi'+P2', holds approximately, and secondly the
maximum energy of photons which can be emitted is
isotropic (the same for all directions) for each value of
the electron scattering angle 8 and is defined to be equal
to DE= 2Elg/(sinH+LN). The infrared divergence
which occurs in the soft photon cross section is avoided
by assuming that a photon has a small mass A, . Designat-
ing the cross section associated with the emission of
soft photons as do.,i&, we obtain from Eq. (21)

k'dk
d& song= do' Miler

42r2 ~ 0 (02+1~2)'

4(p p.)
X 'dnz +

(pi k)2 (pi k)(p2 k)

4(P1 Pi') 4(P1 P2')

(P &)(P' &) (P &)(P' I)
442 fEq '(q2q 2 )= —d 'M22i„— lnI I

lnI I
—1

i~a) &s2m23

1 (m$+- 4»
I

—I+s'~2( —s')+&2(q')

+q"»(q") (22)

From Eqs. (17) and (22), neglecting f(2:)jf(1—2:),
we have

da' eiassie+do sois
l . I

r22 2222 (S4+q" S'
P

=an, '——
I

8 E2 E q4 q"q2)

4n 23 11 t' —q2~
X 1 lnI

18 12 & 2122 )

+lnI ——
II »I

(E) ( (q'q'l &
t

&~Z) «s~&) ).I

+ terms obtained by interchange q-'4-+ q". (23)
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Thus we have achieved the infrared cancellation
between elastic and inelastic cross sections. For 8&~90',
Eq. (23) can be written approximately as

(~& eisstic+~& soft)8&90

4u 23 11 (—g2)
='& Msiier 1 ln

~ 1g 12 EI2)

+»i ll in' I
—1I, (24)

("m27 )
where DE= 2E50/(sin8+LN).

The cross section given by Eq. (24) is about 0 and
0.17'Po smaller than that given by Eq. (23) at 8 equal
to 90' and 35', respectively. It is interesting to notice
the resemblance between Eq. (24) and the Schwinger
radiative corrections" to potential scattering. In fact
if we replace ln(q2P/s2m2) in Eq. (24) by ln( —q2/m2),
the radiative correction terms in Eq. (24) are exactly
the same as Schwinger's formula with the contributions
from bremsstrahlung and vertex parts doubled but the
vacuum polarization term undoubled. This is because
in Schwinger's corrections the radiative corrections to
the proton current are neglected, whereas in electron-
electron scattering the radiative corrections to either
of the electrons are equally important. This argument is
valid because we have proved that the two-photon
exchange diagrams contribute negligibly to the cross
section after the infrared cancellation.

B. Hard-Photon Cross Section

photon cross section is extremely complicated for two
reasons. First, since k in the numerator of Eq. (20)
can no longer be neglected, one has to take more than
100 traces of the p matrices with each trace yielding
half a dozen terms or more; secondly, k in the 8 function
of Eq. (21) is also no longer negligible, thus the max-
imum energy of the photons which can be emitted is
no longer isotropic but depends very critically upon the
direction in which they are emitted, and the magnitudes
and directions of the 4 momenta of outgoing electrons
Pi' and P2' also depend upon the magnitude and the
direction of k. However, if we neglect terms which are
small compared with a 1n(E'/m2) and n ln(E/'E) we
can simplify the calculation enormously. %e shall call
terms small compared with u ln(E'/m2) and n ln(E/d, E)
nonlogarithmic terms and we shall neglect them in the
calculation of hard-photon cross sections. Since most
photons tend to be emitted along the directions of
motion of the electrons from which they are emitted,
we can infer that hard photons are emitted mainly
from the final electrons pi'and p2' for reasons mentioned
in Sec. III A. Thus we divide the hard-photon cross
section into two parts, hard-photon emissions by pi'
and by p2'. The two parts should be equal by the
geometrical symmetry of the experiment. If photons are
emitted by pi', then the most significant terms in the
matrix element are those terms with a denominator
p,

'
k, and all other terms can be approximated by

assuming that photons are emitted in the direction of
pi'. Thus we have

pi'M/Ei) Ei E (8)

pi k=E(o(i —cosg) = q2sp/2E, p, k=——q""/2E,
p2' k=s'co/2E) pi pi'= —q'Ei'/2E,

P'Pi'= PEi'/2E) P—2' Pi'=s'Ei'/2E)

In Sec. III A we have taken care of those photons
which have energy smaller than AE and the infrared
cancellation between elastic and inelastic cross sections.
Here we consider those photons which have energy
greater than DE and are emitted by the outgoing
electrons pi' and p, '. The exact evaluation of the hard and Eq. (19) can be written as

f E ) ~~"&«piv.) (v'Xv.pi'e)+, +-, (v„Xqs)+ (Ei $'(V g M EEi) g p
Similarly,

e m' 1 p, ' e 2E(p2 e)

(2m)'12 (2cuEiE2Ei'E2')& p pi' k q"~ . . E,' 2(p, ' k)

(7),Xepi'y")' E(y„Xy"pi'e)'

e' m2 1 pi'e 2E(pi e)- " '(epics Xv")
3fb= + (~sX Y )+ (VsPleXP )(2~)'" (»EiE2Ei'E2')'* q2 -pi'. k q2~ Ei' 2(p, '.k)

(25)

2E' p2' ~ pi ~ t' E ) ' (ep, 'V„X~s)' (~„p,'eX~&)' t-+, ——+ (~,x~")'+)
Ei - g2(g q2(g ( Ei)) g2 ~2

where
(QX8) =-8(P2)AQ(Pi)u(Pi')Bu(P2).

12 J. Schwinger, Phys. Rev. 76) 790 (1949), Eq. (2.105).

Before taking the summation over the electron spins
and photon polarizations, we want to determine what
kinds of terms in the integrand of Eq. (21) contribute
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to logarithmic terms after the integration. To do this,
we 6rst simplify the expression

r d'pg' l. d'p2' p d'k
g(p +p +k p~—p.)—.

The only experimental condition which restricts the
range of this integration is that the directions of p~'

and p2' must be within the solid angles of the respec-
tive counters. After the integration with respect to
p&' and p2' by using the 8 function, this experimental
condition is transformed into a restriction on the range
of k integration. In the following we appeal to intuition
and geometry to help determine the range of the k

integration. We consider what kind of photon can be
emitted by p&' such that p&' and p,

' are simultaneously
detected by the respective counters. Figure 5 shows the
geometry needed to determine the range of k integra-
tion. Suppose a photon k is emitted with an angle P
from p&' such that p2' is barely accepted by the counter

2, hitting a point 8 on the periphery of the counter,
and pq' hits a point E on the surface of the counter 1, the
distance of E from the center of the counter surface
being a. k, p, ', and p2' should be on the same plane by
the conservation of momentum. The point 2 on the
surface of the counter 2 is obtained by extending the
line EO. p is the angle between AB and CQ, C2 being
the center of the surface of the counter 2. The angle

P(co,a, y) is a function of &u, a, and p. Using energy-
Inomentum conservation one can show that

Similarly

Q 1lIIbtMp
spill

—m2 E Eg'
X + . (30)

2(pg' k)' M(pi' k) E

S4
=Mgf2II/g =

(27K) 2COEyEgEg E2 g g

—m2 E
X +

2(pg' k)' co(pg' k)

s' E q'4+q4+- +
~2 q2q~2 E I s2~2~I2 P' ~2 s2

Q 3EIbtlFIb
spin

e6

(31)

(2m)'2~E~E2E~'E2' q"
—m2 E Eg'

X +
2(pg' k)' a&(pg' k)

(32)

terms with denominators (P~'k), (P~'k)', or bp-"give
logarithmic contributions; among them many are of
order O(nP/g') and can be neglected. Hence we can
write

eP 1 s4+q'4
Q MbtMb=

sp~~~ (2s.) 2arEgE2Eg E2 q'

costP = 1—
E2-( gp )1 g -2

(
1——sin'&p (

——cosy . (28)
2D' ap ( r' ~ r

It can be shown that the terms with a denominator +2

in Eq. (31) are much smaller than other terms after the
integration, hence they can be neglected. Thus we have

Finally we average over u by assuming that electrons
hitting the surface of counter 1 are uniformly dis-

tributed. The expression (27) can then be written as

Q (MbtMb —MbtMb —Mba/Ib+3/IbtMb)
spin

e~ s'+g" 2s4 s4+q4
+ +

(2'.) '2(dEyE2E, 'E2' g' g'g" g"
—m2 jv E,

X + —.(33)
2(pg' k)' co(pg' k) EE' p~ r

2~ p2u
dQy

J G)dM~ dp~ t4—
dE 0 0

Unter I

sln7 d7'

X~, (29)
LJ p s pp (1 cost)

f'd py t d p2 f'dk
g(pi+p2+k pi p2)——

Eg' & E2' " 2(o

where r is the angle between k and p~'. The term

cu(1 —cosr) can be neglected, since when ~ is large

(1—cosr) is small and vice versa, due to Eq. (28).
From Eq. (29) we can determine what kind of terms

in the integrand of Eq. (21) contributes to the log-
arithmic terms after the integration. Consider M~t3f~

using Eq. (25). Terms whose denominators are in-

dependent of k can be neglected. The term E~'=E—~
in some of the denominators does not give any additional
logarithmic terms, since there are always equal or
more powers of p&' or E&' in the nurnerators. Only those

Counte

FzG. 5. Geometry used for the calculation of the hard real
photon contribution to the cross section for the colliding-beam
experiment (Exp. I}.
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2a (s' ~ ( 16E
d0hasd =do M'Aller — ln

I

E m') ( (AE) ' sin'8)

(El (Ei (E
X»/ —

f

—1 —2 In] /+in'/
(AE& EZE) (AEi

(35)

where DE= 2EA8/(sine+LB). From Eqs. (24) and (35)
we can obtain the cross section do-' for Exp. I. Let

(dfT elastic+dfT soft)+fI& hard

=dfT Mflllerf1+ 8soft (0)+8hard(0) 3&

Substituting Eqs. (29) and (33) in Eq. (21) and
multiplying by 2 to take into account the emission of a
photon by p2', we obtain the cross section for the
emission of hard photons,

fsE dfd 2s (e 2f4 fs 1

dfT hard dfT Mff lier ) ~ dp~ d44~ dX
7l g +f 4) 0 ~ eOSg

—m' (E-fd)+, (34)
4E'(1—Pi'x)' 2E(1—Pf'x) I

where cosf is given by Eq. (28) and pi'= pf'/Ef'. After
the integration, neglecting the nonlogarithmic terms,
we obtain

There are two possible sources which may alter the
Mgller formula at high energies. First, an electron may
not be a point particle, but may have some kind of
charge distribution. In this case we may associate with
each vertex a form factor F,(q') analogous to the charge
form factor F„'(q') used in the analysis of electron-
proton scattering. " (The magnetic form factor used in
electron-proton scattering can be neglected in our case,
since we have shown that the contribution to the cross
section from the anomalous magnetic moment of the
electron is of order o'Mdlf„(nm'/frq') ln( —q'/m'). $
Second, the Coulomb law may not hold at small
distances. This is equivalent to changing the photon
propagator, 1/q' —+C(q')/q'. Since each photon prop-
agator is connected with two vertices we may use the
substitution 1/q'-+C(q')F. '(q')/q'. We may assume
C(q') to be in the form of the Feynman regulator for
the photon propagator, ' C(q') = (1—q'/A') ' and"
F,(q')=(1—(r,')q'/6) '. A ' represents a measure of
the distance at which the Coulomb law breaks down
and (r,') is the relativistic generalization of the mean
square radius of the static charge distribution of the
electron. We notice that it is impossible to determine
C(q') and F,(q') separately by Exp. I. In fact, no
experiment involving only electrons and photons can
do this, since they always appear in the form C(q')
XF.2(q'). Thus we choose a simpler form and define

where 8„g~ and 6q„q are radiative corrections to the
MPller scattering from dfT'efastfc+fEo'soft and flfr hard,

respectively. Assuming 8=500 Mev and 88=3.5',
we have where

G(q') —=C(q')F, '(q') —=

1—q'/E'
(36)

8f (9O') =h',.f,(9O')+ Ãh. ,d(90')
= (—13 8+4 3)X10 '= —9.5X10 ',

5f (35') =8'„ft(35')+8'h„d(35')
= (—82+2 2)X10 '= —6.0X10 '.

The error is estimated to be less than 2% of the cross
section which arises from nonlogarithmic terms which
we have neglected in the calculation of inelastic and
two-photon exchange diagrams.

The fact that the angular dependence of the radiative
corrections is rather small is very important experi-
mentally. It shows that the eGect due to the radiative
corrections does not mar signiicantly the measurement
of the eQect due to the possible Qnite size of the electron
which the experiment was originally designed to
investigate.

IV. EFFECTS DUE TO POSSIBLE BREAKDOWN OF
QUANTUM ELECTRODYNAMICS

The eGects on various physical processes due to the
possible breakdown of QED have been discussed
extensively by many authors. ' "We discuss here how
this breakdown in QED may manifest itself in Exp. I.

»D. R. Vennie, M. M. Levy, and D. G. Ravenhall, Revs.
Modern Phys. 29, 144 (1957).

1/Z'= (r.2)/3+ 1/A'. (37)

Replacing 1/q' by G(q')/q', Eq. (3) can be written as

2 E2 -s4+qf4
d0' Mff lier= ~01 G (q )

8 m' q4

2s4 s4yq4
G(q2)G(qf2)+ w2 (qf2) (38)

g' g
/4

Table I shows the e6ect of G(q') on the counting rate
per unit solid angle at 90' and 35' for various values
of E '. The counting rates are arbitrarily normalized;
they represent the numerical values obtained from the
terms inside the bracket of Eq. (38).

E '=0 or G(q') = 1 represents the case of no break-
down in quantum electrodynamics. E '=0.05 fermi
represents the smallest distance which Exp. I can

E ', fermi

0
0.33
0.05

8=90'

18
18/5.75
18/1.075

248.8
248.8/1.67
248.8/1.017

TABLE I. The effect of G(q') on the relative differential cross
sections at 90' and 35' for the clashing-beam experiment with
8=500 Mev.
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presumably probe. From the electron-prot. on scattering
we have

F.(q')C(q')F~'(q')

=Fs'(q').b.= . (39)
1—(0.8 fermi)'q'/6

Notice in this case F,(q') and C(q') do not appear in
the form C(q')F, '(q') as in Exp. I. Thus the true
proton form factor F„'(q') cannot be obtained from
the results of Exp. I and electron-proton scattering.
In order to determine F„'(q'), one has to know F,(q')
and C(q') separately and it can be shown easily that
it is impossible to design any experiment to do this. If
F '(q')=C(q')=1, then from Eqs. (36) and (39) one
obtains E—'=0.46 fermi which is the upper limit on
E'—' given by electron-proton scattering. Similarly if
F '(q') =F (q') =1, then one obtains E '=0.33 fermi,
whose e8ect on the cross section is shown in Table I.
In conclusion, we should mention that Exp. I gives
information about G(q') for space-like q. The electron-
positron clashing beam experiment which is also being
planned at Stanford will give information about G(q')
for time-like q. (See Sec. VI.) Similar to the modification
of the photon propagator when (q'~))0, one might
expect modification of the electron propagator (p —m) '
when p is far from its mass shell, i.e., ~

p'~))ms. To
test the modification of 'the electron propagator one
has to perform experiments such as Compton scatter-
ing, pair production by electrons'4 or photons' in the
proton field, or e++e —+2y.

V. INELASTIC SCATTERING FOR EXPERIMENT II

It is most convenient to calculate this cross section
in the center-of-mass system. "In order to do this, we
have to transform all the experimental conditions for
Exp. II into the conditions in the center-of-mass
system. All the quantities in the laboratory system are
denoted by a bar on top of each quantity. The geometry
for Exp. II is shown in Fig. 6. The entrance slit S&

selects those final electrons scattered into the solid
angle subtended by it. The final slit S2 selects those

S
I

El rneX

1
min

Ei= (mEi/2) '. (40)

In the laboratory system we detect those electrons
which are scattered with angles between O,„and 8;
and have energies between E~' and E~',„. The
angle 8 and the energy Ej' can be expressed in terms of
the center-of-mass quantities by choosing suitable
invariant quantities. For example,

m'(pi pi') m'
tan'(8/2) = (1—cos8) =8'/2, (41)

(pi. ps)(pi' ps)

Pi'. Ps/m =Ei'= (Ei'Ei/m) (1+cos8),

Ei'= mEi'/Ei(1 —cos8). (42)

From Eq. (41) we can determine the maximum and
minimum angles 8, and 8;„ in the center-of-mass
system; we obtain

tan(8, „/2) = (Et/m) 8 (43)

tan(8;./2) = (E,/m) 8„;„. (44)

From Eq. (42) we can determine the maximum and
minimum energies of the detected electrons in the
center-of-mass system:

electrons whose energy is within the range E~' i &Ei'
(E&', . This energy range is very small compared
with Ei' (about 0.25%), thus we may assume Ei' to
have a definite value. For the elastic scattering, there
is a one-to-one correspondence between E&' and the
scattering angle 8. Thus we define this angle as H,i„t,.6, and 8; are the maximum and minimum angles
defined by the entrance slit S& as shown in Fig. 6.
It will be shown later that no electrons with scattering
angle grea, ter than 8,i„&;, (strictly speaking the angle
which corresponds to Ei'; in the elastic scattering) can
go into S2, and the radiative correction depends upon
the quantity 68=8,&„&,,—0;„rather than the energy
resolution of the spectrometer hE&'=E~'m, x—E&'~;„ if
~~' is much smaller than the energy diGerence between
two elastically scattered electrons at angles 8;„and
~ei.s~ C

Now let us transform all of our experimental condi-
tions into those in the center-of-mass system. The
incident energy E&=E2 can be obtained from the
invariant pi. ps.

pi ps=mEi=Ei'+P'=2Ep m';—
thus

eras«c-emin

Pro. 6. Geometry for Exp. II.

Ei' =mEt' /Ei(1+cos8),

Ei min =mEi min/Ei(1+cos8) ~

From energy-momentum conservation, we have

(45)

(46)

(47)

'4 J. D. Bjorken and S. D. Drell, Phys. Rev. 114, 1368 (1959).
'f'The author is grateful to Dr. J. D. Bjorken for several

suggestions on this section. (See the discussion in Sec. VII D.)

We plot the boundary obtained by Zqs. (43) to (47)
on a (8,Ei') plane (see Fig. 7). The electrons which are
detected must be in the shaded area as shown in Fig. 7.
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Let us define

E, max ~&= (~E,SE,~E,') ~. (51)
I AEI-J J-

B Cf' min
h, 8

Pro. 7. Geometry for
Exp. II expressed in terms
of the quantities in the
center-of-mass system.

%e 6rst integrate the photon momentum E from 0 to
bE assuming an isotropic E, =bE. Denoting this
cross section as do '„qt, we have from Eq. (22)

Thus we have accomplished transforming the experi-
mental conditions for Exp. II into those in the center-of-
mass system. Since the majority of the electrons have
energies very close to E~, we may approximate the
number of electrons going into this shaded area by the
number of electrons going into the area ABED. The
width a of the entrance slit 5& in Fig. 6 is not changed
by the coordinate transformation. I.et us denote the
lengths of AB and BC by bE&' and b8, respectively.
Then our consideration shows that Exp. II is equivalent
to an experiment in the center-of-mass system with a
single counter which has an energy resolution bEj'
and a rectangular entrance slit defined by u and iN.
AE&' and rM can be calculated easily from Eqs. (43)
to (47). We obtain

68=maE~'/EP sine,

Eg/AE&'= t s'/( —q')$8, &,.t,; /268.

(4g)

(49)

Under the condition of Exp. II, LN is about 1/400
radian. The maximum energy of photons which can be
emitted in the direction of p&' is DE~', thus from Eq.
(49), the quantity DE&' which comes into the radiative
correction is dependent upon b,8 rather than the
energy resolution of the spectrometer bE&'. This is one
of the essential differences between the radiative
corrections to e—e scattering and e—p scattering as
mentioned in the introduction. Let us denote the
maximum energies of photons which can be emitted
along p&, p2, and p, ' directions by AE&, EE2, and AE2',
respectively. We can calculate bE&, bE2, and bE&'
easily from energy-momentum conservation. The
results are

q ~.i.st, c
I2

b,Eq q2260

E1 t elastic El
and

~82 2b, tI SE,'
= 1. (50)

Unlike the situation in Exp. I, in this case 2B~ and
682 are independent of b8. This is because in this case
6rstly b,e is very small and secondly we have a single
counter instead of two coincident counters as i' the
case of Exp. I. It is interesting to observe that approxi-
mately 8/268 in Exp. II plays the role of E/AE in the
center-of-mass system except for the photons emitted
along the direction of ps' wliere the photon can steal
almost all the energy from p2'. Under the experimental
condition 8„l„~;c&&2b,8, we have bE&, QE2, hE~'&&E~.

(E& l (Ado"„gt= —do"Mes.—ln( ( ln~ ~

—1
i~E& ismms)

1 (mq+- 4 in' —I+s'y2( —s')
L, X&

+q'I 2(q')+q"»(q") (52)

This cross section represents approximately the inelastic
cross section in which the maximum energies of photons
emitted by pg, p2, pg' and pm' are hEg, AE2, AEg', and
bE, respectively. This statement is quite plausible in
itself; in fact we have used a much more elaborate
method Lthe coordinate system in which (k+p2');=0,
where j=1, 2, 3) to calculate the same cross section
and the results indicate that our statement is true.
Since the maximum energy of photons which can be
emitted by p2' is E&, we must add to Eq. (52) the cross
section for the photons emitted by p2' with energies
from bE to E~. %e call this the hard photon cross
section for Exp. II and denote it by da"h„d. This
cross section can be calculated by using Eq. (34)
(divide it by 2, since we are considering the photons
emitted by p2' only). The maximum angle f between
k and p2' in Eq. (34) is a very complicated function of
the magnitude of E&' and the vector E. In general P is
smaller for larger E and E~' and vice versa. Since most
photons emitted by p2' are along pm' direction and the
number of soft photons emitted is usually much
greater than that of hard photons, the result is not very
much dependent on f. Thus we will approximate iP by
m/2, and obtain

2Q p & Qco f
Myller-

Ã ~g@ M

(Eg—
&o)

4EP(1—Pm'x)' 2Eg(1—P,'x)

e ( s
=da"Myself in~

~

—-1
(2m')

(Egg ( s' l
(53)

E~E)

Here we have used the relation p~'= p2'/E~' and
B2 EI M.
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From Eqs. (18), (52), and (53) we obtain the cross
section do" for Exp. II:

elaatio+igo' soft+if& hard.

ro' m adE't' (s'+q" s'
&

2 Et' D sin8.i„„, & q4 q'2q'i

4 )23 11
X 1——

I

———lnI 'I
I

+exchange
(18 1Z Em ii

4n ( Er ) (q'q")
drr"—Mr,ne~ 1nI I

lnI
I

—1
& AE) (s'm'i

1 (Et ) f s ) 1 fs'
I-1+-lnI I

. (54)
4 (aE i & 2m'i 4 &2m' i

We have neglected the terms f(x)+f(1—x), since they
are negligible. For 0~&90', we may write Eq. (54)
approximately as

ilrr" = ifrr"Mtiuer I 1+~(~)j,
where

4 23 11 ( q)
s(e)e&90 = ————lnI

~ 18 12 &m2i

(Et/ (qtq 2) 1 (Ei)
L~Ei i s2mti 4 &~E)

(s') 1 (s'
x»I — I-1+-»I

I (55)
L 2m'i 4 &zm'i

B(0) is the radiative correction for Exp. II. It should
be noticed that there is no term like n 1n2( —q'/m') in
our expression for B(8). The quantities AE in Eq. (55)
can be expressed in terms of the laboratory quantity
60 by using Eqs. (49), (50), and (51). The numerical
values for 5(0) for various values of 8 and O,i„t;,/zd 0

are given in Table II. The error in our calculation is
estimated to be less than z%%uo of the cross section,
which arises from the nonlogarithmic terms which we

have neglected in the calculation of two-photon
exchange diagrams and the hard real photon contribu-
tion. The experimental values given in Table II are
preliminary results supplied by Dally.

TAaI.K II. The radiative corrections for Exp, II.

VI. ELECTRON-POSITRON SCATTERING

The workers associated with Exp. I are also planning
to do the electron-positron clashing beam experiment
with the energy range between 100 and 500 Mev
(possibly higher). In this energy range the following
interactions are possible":

(a) e++e —+ e++e-,

(b) e++e —+ p++p,
(c) e++e —+ tr++s. ,

(d) e++e ~7r++tr +tr',

(e) e++e ~E++E,
(f) e++ e —+ E'+K'.

Interactions (b) through (f) involve only a pure time-
like photon as an intermediate state. Thus the Anal

states should have total energy 2E, total momentum
zero, total charge zero, total angular momentum one,
negative charge parity and zero strangeness. Two-
and three-w' states are prohibited because they have
even charge parity. For Anal states involving only two
spinless particles, the orbital angular momentum must
be one, i.e., in I' state

I
see Eq. (58)). Incidentally,

the two~' state is prohibited also from statistics since
two identical bosons cannot be in the I' state. Energet-
ically more pions than three can be produced, but we
will not treat them here because we do not know how to
handle the problem, We shall simply point out that,
from the conditions that the system must be neutral
and odd under charge conjugation, the number of
different kinds of pions produced must satisfy (zn+1)
X (tr++tr )+br', where n and l are arbitrary integers. "
In the following, we calculate the cross sections for the
processes from (a) through (f) in order to facilitate the
experimental design and further theoretical investiga-
tions.

(a) The elastic and the soft real photon parts of the
cross section to order n' of the process e++e —+ e++e
can be obtained from the result of our present calcula-
tion for Exp. I by the well-known substitution law

p~~ —p+' and p&'~ —p+, where p+ and p+' are the
four-mom enta of incident and outgoing positrons,
respectively. These substitutions are equivalent to
the substitution q" +-+s'. For example, the Bhabha
cross section with form factors can be written as

der ro' m' s4+q'4
IG(q') I'

dQ(e+) 8 I~' q4

/4 ql 4+q4

+ I
G(q')G(s') I+ I

G(s') I' (56)
g2$2 $4

E1
Mev

502
502
502

90'
107'
120'

9.7
10.3
13.2

—5.5w2—4.9a2—4.9&2

—3.6+2.4—3.5&2.9—6.0&2.4

Calculated Experimental
O.i-t .I2r 0 ~(e), %%uo ~'(s), %

"Pote added in proof.—This list is not complete. The most ob-
vious omissions are the processes e++e —& 2y and e++e ~y+m'.
The cross section for the 6rst process can be found in reference 10.
The second process is being studied and the result will be pub-
lished later."S.D. Drell and F. Zachariasen, Electromagnets'c Structure of
ÃNcleons I'Oxford University Press, Oxford, 1960, to be published).
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r)if~ &defi clio
+int sp

I ]I epvo'p+p( p J QQy QQ~ Qgp

(59)

where |.„„pis the Levi-Civita symbol in four-dimensional
space and X the coupling constant, we obtain"

eX

&ol J„(0)l~+~-~o&= —s(8~,~ ~,)--'*e„„.pp„+p.-ppo—.(6o)
ps

"Slightly different but similar results have been obtained by
N. Cabibbo and R. Gatto, Phys. Rev. Letters 4, 313 (1960).

"W. Frazer and J. Fulco, Phys. Rev. 117, 1609 (1960).
"M. Baker and F. Zachariasen, Phys. Rev. 118, 1659 (1960)."B. Bosco and V. De Alfaro, Phys. Rev. 115, 215 (1959).
~ P. Federbush, M. L Goldberger, and S. B. Treiman, Phys.

Rev. 112, 642 (1958).

h - "=(P++P )',-q'=(P+ P—+')', q"=(P+—P-')'
and G(q ) is delned in Sec. IV. This experiment gives
information about the form factor with time-like
momentum transfer G(s') in addition to G(q'). The
radiative corrections due to hard real photons cannot
be calculated unless the experimental conditions are

specified, as we have repeatedly emphasized in this
paper.

(b) The cross section for the process e++e——+ p++ p,

to order n2 with form factors can be calculated easily
and we have (neglecting the magnetic form factor of
muon s)

do. ro' m' (E'—nz ')' 1+cos'e m '
+ sin'f)

dQ(p, +) 8 E' F. 2 2E'

X IF.(~')&(~')F, (~')
I

' (5&)

where m„ is the muon rest mass and F„(s') is the muon

(charge) form factor normalized such that F„(0)=1.
This experiment gives information about F„(s) for
time-like momentum transfer. The radiative corrections
to this process have not been calculated.

(c) The 6rst-order cross section for the process
e++e —+ s++s. , with form factors, can be calculated
easily, and we have"

m' (E'—fi') & sin'8
=f02

d0(s+) 32E'

X IF.(~')C(~')F-(p') I', (58)

where p is the pion rest mass and F (s') is the pion
form factor with time-like momentum transfer normal-
ized such that F (0)= 1 (see the Appendix). It will be
interesting to see if the pion form factor obtained
from this experiment agrees with the ones advanced
by various authors" -' in order to explain the isotopic
vector parts of the nucleon form factors.

(d) The discussion for the process e++e ~m++s.
+s' will be more or less just a conjecture due to the
uncertainty even in the form of the coupling (&,3').
Assuming the interaction between the photon and the
three-pion state to be of the form"

In the center-of-mass system we have

e„„.pp.+P.-Pp' ——2E(P+XP-)„.

Thus the cross section can be written as

(61)

02 X2 1
do. = ——(P+XP-)' sin'0

32m' p' S2

X ~P+ko+dQ+ ~P doi dQ

X IF,(")C(")I'b((P++P- —~) —f s), (62)

where q is the angle between the momenta of two
charged pions p+ and p . We have replaced )i by
Fs (ss,oi+,oi ) to take into account the possible de-
pendence of A,

2 on s2, or+, and co in more generalized
types of interactions than Eq. (59). From Eq. (63) it
is obvious that the cross section is maximum when
e=s./2, i.e., all incident and final particles are on the
same plane, and the term (P+X P )' becomes maximum,
i.e., the area formed by the momenta of the three final
particles is maximum. The information on Fs (s,ni+,

o~ ) obtained from this experiment is useful for account-
ing for the isotopic scalar part of the nucleon form
factors. """

(e), (f). Assuming E mesons to be spinless particles,
then the cross sections for producing E++E and
Eo+Ep can be expressed by Eq. (58) with the pion
rest mass p, replaced by the E particle rest Inass
mx =494 Mev, and the pion form factor F (s') replaced
by Fz+(s') and F&o(s.'), respectively F&+(s'.) and
Firo(s') are normalized such that Fir+(0) = 1 and
Fico(0) =0. The cross sections for these two processes
are very small because E mz and thus the phase space
available for the interaction is very small as can be
seen from Eq. (58). However, the workers associated
with Exp. I hope to be able to raise the energy E up to
about 650 Mev so that detailed investigations of these
two processes may be feasible. '4

VII. DISCUSSION

A. We have shown that the radiative corrections to
Exp. I are rather small, namely —9.5+2 and —6.0&2%

"G.F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958)."%.K. H. Panofsky and B. Richter (private communication).

where 0 is the angle between the incident electron and
(P+XP ). Assuming the experimental conditions to
be such that de+, dQ+, and dQ are fixed, we have"

d30 552 1
=r02 —(P+XP )' sin'f)

doi+dQ+dQ 32F' (2ir)' les

P+P IF,(s')C(s')Fs. (s', id+,oi ) I'
X , (63)

(2F. ro~+P~oi —cos y/P )
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at 90' and 35', respectively. Since only angular distribu-
tions (not the absolute cross sections) will be measured
experimentally, the angular dependence of the radiative
corrections is the only thing which is important here.
The radiative corrections depend upon q' and
/see Eqs. (24) and (35), notice DE depends upon 8],
both of which tend to make the radiative corrections
larger at 90' than 35'. The two percent error shown is
from the nonlogarithmic terms which we have neglected
in the evaluation of two-photon exchange diagrams
and the hard real photon cross sections, which we do
not expect to be very angular dependent. Thus the
error in the angular dependence of the radiative
corrections is probably less than 1% o'f the cross
section. The angular dependence of the contributions
from vacuum polarizations due to heavier particles in
the closed loop as discussed in the Appendix is for all
practical purposes negligible (+0.3% corrections at
most).

B. Two-photon exchange diagrams are shown to
have only negligible contributions to the cross section
except the infrared terms which cancel out eventually
with the corresponding terms in the inelastic cross
section. It is interesting to see if this is still true for
the radiative corrections for processes such as

e++e ~p++ p

y+e ~p+e,
e +p-+e +p.

C. One of the most important results which we have
obtained in this paper is that there is no term like
rr ln'( —qs/m') (compared with unity) in the radiative
corrections for high-energy e—e scattering, unless one
assumes some unrealistic experimental conditions such
as E,„ is isotropic and &&m. As the energy and the
accuracy of the experiments involving charged particles
increase, detailed calculations of the radiative correc-
tions such as we have made in this paper may become
more important in the future. For example, the radia-
tive corrections to processes mentioned in Sec. VI
will eventually be carried out using the method similar
to the present calculation.

D. In the calculation of the inelastic cross sections
for Exp. II, we used the center-of-mass system. This
is by no means just because we wanted to use the
result of the calculation of Exp. I. In fact we tried to
calculate the cross sections in two other coordinate
systems, namely, the laboratory system and the
barycentric system of the two undetected final particles
(the coordinate system in which ps'+k=0). Both of
these coordinate systems are found to be impractical
for dealing with high-energy processes involving hard
photons. Using the laboratory system, we found that
the calculation becomes impossibly complicated unless
one assumes E is isotropic and «m. (Incidentally,
ee conhrmed Redhead' and Polovin's4 result in the
high-energy limit and under the assumption that

E is isotropic and ((m in the laboratory system. )
The coordinate system in which k+ps'=0 was tried
because in this coordinate system the photon angular
integration becomes extremely simple. However, this
coordinate system was also found to be inconvenient
because in this coordinate system it is verydifBcult to
determine what terms in the matrix elements (there are
more than one thousand terms) can be neglected.
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APPENDIX: VACUUM POLARIZATIONS

The closed loop in the vacuum polarization diagram
M4 is assumed to be an electron pair in our calculation.
But in reality it can be a pair of any other particles or
even three or more particle states of various particles;
for example a muon pair, a pion pair, a nucleon pair
or three-pion state s++~ +ms. It is interesting to
investigate how these various kinds of intermediate
states in the photon propagator aBect the cross section
of e—e scattering. The matrix element M4 for a pair
of structureless fermions in the closed loop can be
written as' "

n —5 4 1( 4y&
M4(fermions) =M~— + +-~ 1+—

~

3x' 3E x')

( 2 ) p(1+4/x')&+1)
X] 1——flnl I, (A1)

xs) i(1y4/xs)~ —1)

where x'= —qs/3P and M is the rest mass of the
particle in the closed loop. Similarly the matrix element
M4 for a pair of structureless bosons in the closed loop
can be written as' )see also Eq. (AS)]

n —4 4 1( 4)&
314(bosons) =3fq — +-I 1+—I—

9 3x' 6 E xsJ

((1+4/x')"*+1 )Xln)
~

. (A2)
( (1+4/x') &—1)

Assuming electrons, muon', and protons to be pure

s' R. N. Euwema and J.A. Wheeler, Phys. Rev. 103, 803 (1956},
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Dirac particles, we can calculate the contributions to
the cross section for Exp. I easily by using Eqs. (A1)
and (1). At 90' the contributions to the cross section
are about +2, +0.35, and +0.02%, respectively, for
electron, muon and proton pairs in the closed loop.
Similarly for a structureless pion pair the contribution
to the cross section for Exp. I at 90' is )from Eqs. (A2)
and (1)]+0.089%.Thus the contributions to the cross
section are negligible except for the electron pair
which we have already considered in the text.

Next let us consider the effect of the form factors of
the particles in the dosed loop. The form factors of
various particles are still to be determined by the
experiments discussed in Sec. VI. However there
exist several conjectures"" about the pion form factor
F (q') so we discuss this case as an example. "According
to references 19 and 20, F (q ) is related to the 2r —2r

interaction which has a resonance in the J=1, I=1
state of two pions. Thus we want to investigate how
this m —m interaction may enhance the cross section
for e -e scattering. The pion form factor F (q') is
dered as a vertex function consisting of one virtual
photon whose four-momentum is q (which may be
either space-like or time-like) and two "real" pions.
It is normalized such that F (0)= 1. This simply means
that we replace e associated with the above defined
vertex in the perturbation theory by eP (q'). Let us
consider photon propagators with two-pion intermediate
states as shown in Fig. 8(a) and 8(b), where the blobs
represent the effects due to the pion structure. We may
not replace e by eF (q') in Fig. 8(a) LeF„($2) in Fig. 8(b)j
because the pions in the loop are not necessarily real.
(In fact they can never be real for space-like photons
such as are shown in Fig. 8(a).) For a time-like photon
as shown in Fig. 8(b), the two-pion intermediate states
may become real when s'& 4p,', and the real intermediate
states contribute to the absorptive part of the matrix
element. Thus one may replace e by eF ($') in the
absorptive part of the matrix element obtained by the
perturbation method. Ke then use this modified
absorptive part of the matrix element to obtain the
modi6ed matrix element by the dispersion relations.
From perturbation theory, the matrix element for the
photon propagator with two-pion intermediate states

Fro. 8. (a) Space-like
photon propagator with
two-pion intermediate
states; (b) time-like
propagator with two-
pion intermediate states.

q
X - ---ef '@===2

'6 After this work was completed, an article by L. M. Brown
and F. Calogero appeared in Phys. Rev. Letters 4, 315 (1960),
which treated the same problem. We include our treatment here
for completeness. They suggest that this eGect may be used for
the determination of F (g) However, our emp. hasis here is to
prove that this eBect is negligible compared with the error in
the calculation of the radiative corrections which is about 2%.

FIG. 9. Electron-electron scat-
tering with two-pion intermediate
states in the photon propagator.

M4 (pion pair)

may be written as

where

—1 ig„„e
-D~'(q')g"= -f(q'),

2 (22r)4 2r
(A3)

Here q may be either time-like or space-like. From the
analytic properties of f(s), which is the analytic
continuation of f(q'), we can verify easily the dispersion
relation

1
I

"Imf($')d$'
f(q') =

7l ~4@& S q Z6

where Imf($') can be obtained easily from (A4).
Imf($') represents the absorptive process, and the pion
form factor F,($') is defined here. Thus we may put

2r ($'—4p,s) &

Imf($') -+—
I
F.($')

~

'.
6 s'

(A6)

If we assume ~F (s) ~2 is analytic in the upper half
plane and does not go to infinity for

~
s) —+ ~, we may

write the matrix element for the photon propagator
with two-pion intermediate states (pion structure
included) as

—1
Dp'(qs) g„„—

2

ig„„n ~" ($'—4p')&iF ($') i'
d$2. (A7)

(22r)' 62r "4„$'($' q' is)——

Thus the matrix element for Fig. 9 can be written as

M4(pion pair)

42
" ($' —F4')&~F ($') ~'d$'

q
44„s $5 ($2 q2 se)

(AS)

Equation (AS) reduces to Eq. (A2) if pions are struc-
tureless, i.e., ~F ($') ~2=1. We have made numerical
integrations for Eq. (A8) with various forms of

~

F ($') )2

given in reference 20. The results are still negligible,

1 4 F4' 1
t

4l4') &

f(q')= —— ——
~ 1

q'. 9 3q' 6 & q' I

t (1—4l42/q2) &+1)
&&in~ —

~
. (A4)' (1—4~'/q')' —1&-
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namely less than 0.12 jo contribution to the cross
section at 90' for Exp. I.

We have used the result obtained from the perturba-
tion method in our derivation of Eq. (A7). However this
is not necessary. We will show in the following that the
same result can be obtained directly from the method
of the spectral representation. "In terms of the spectral
representation the matrix element for the photon
propagator with two-pion intermediate states may be
written as

where the factor (8,t5» —8,28q~) represents the system
m++m which is odd under charge conjugation.
Summing over the isotopic spin indices and contracting
over A, , we have

P (0I jz(0) Iq, jq,u&(qt jq2kl j"(0) Io)
Js, j=l

—2e'(p ' —4p')
I
~-(p-') I' (A»)

4']G) 2

—2D~'(q')g"

1
"d'*~"'(0I2'(~.(*) ~ (0))lo&

(2m)' ~

—i r" p„„(s')ds'

(2s)' ~ 4„~ s' q' —ie—

where

(A9)

Hence, from Eqs. (A10) and (A12), we have

p" (~')

~'(tl t+ t12)2(~t+»)
3 (2s-)' ~ 2~t ~ 2s)2

X8(p„'—s') (p„'—4p')

p" (~') = aa" 2- (2~)'~'(Ip-) 2&-~(p-' —~')

p„(0I jz(0) I +)(+ I
j"(0) I 0), (A10)

a (s'—4p')&IF (s') I'
gp,v-

6x
(A13)

and p„and E„are four-momenta and energy of the
intermediate state in the center-of-mass system. For
an intermediate state consisting of mesons of four-
momenta q& and q& with isotopic spin indices j and k,
we may write""

(oI j~(0) I
~&= « I j~(0) I q~jq~&&

ie
, (ql q2)X(~jt~k2 '5j2~k1)~w (pn )1 (A11)

(4(dy(d2) 2

"G. Kalldn, Helv. Phys. Acta 25, 417 (1952).

Substituting Eq. (A13) into Eq. (A9), we obtain
exactly Eq. (A7). Thus, we have obtained the same
result as before without the help of the perturbation
method.

It is instructive to notice that the matrix element for
the photon propagator with two-pion intermediate
states LEq. (A7)) can be expressed (other than a
constant factor) as a Hilbert transform of the total
cross section of the process e++e —+m++vr in the
center-of-mass system /integrate Eq. (58) over the
solid angles and let Fq'(s') c'(s') = 1].


