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Application of the Phase Space Quasi-Probability Distribution to
the Nuclear Shell Model*
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The quantum mechanical joint position-momentum quasi-distribution function is applied to the nuclear
shell model. By introducing approximate quasi-position and quasi-momentum variables, the quasi-distri-
bution function is converted into a non-negative (and hence nonquasi) distribution. Numerical results are
presented for one-dimensional and three-dimensional potentials leading in three dimensions to a nonisotropic
nonindependent distribution with a predominance of low momenta at the nuclear surface. These results are
in contrast with the usual Thomas-Fermi m.odel and in addition provide a simple base for the discussion of
direct nuclear reactions involving an average over many states of a residual nucleus for which linear mo-
mentum as opposed to angular momentum is a relevant quantity.

or equivalentlyI. INTRODUCTION
' 'NHKRKNT in the Thomas-Fermi statistical model
& ~ for a many-body system is the notion of the mo-
mentum distribution of one of the typical particles
of the system at a given spatial position. From the
viewpoint of classical mechanics, the notion of a joint
position-momentum probability distribution is not
particularly startling; however, from the point of view
of quantum mechanics according to which the simul-
taneous measurements of position and momentum are
incompatible, it may seem a little peculiar to discuss
such a joint distribution. On the other hand, the use of
the position probability distribution IP(q) I', where

f(q) is the Schrodinger wave function, or the momentum

probability distribution
I tp(p) I', where io(p) is the

momentum wave function, is very familiar.
If we imagine such a joint probability function

t(q, p) in one dimension, we would expect at least that

Ik(q) I"=„" dp f(q,p), (1)

~+QO

f(q,p) = ~"*(p+ )""".(p .).--
2m-5

This joint position-momentum quasi-probability
distribution function f(q,p) is real, but, in contrast to
the corresponding classical distribution function, as an
expression of the quantum mechanical incompatibility
of the simultaneous complete knowledge of position
and momentum, it sometimes takes on negative values,
giving it a quasi-probability character.

If we take the Fourier transform of (3) with respect
to p, we find

+OO 2
dp e ""'"f(q,p) = 4*(q+~)4 (q ). (~)—a&. ' 2a

Since the variables q+w and q
—w are independent, we

conclude that despite the "quadratic" appearance of
f(q,p), a knowledge of f(q,p) is completely equivalent
to a knowledge of iP(q) Lor p(p) by a similar argument];
in fact, it has been shown' that the formulation of
quantum mechanics can be developed in terms of

f(q,p) instead of the more conventional wave functions.
In particular, the expected value (0) of a measurable

quantity O(q, P) is given by

I v (p) I'= dq f(q,p)

+QO ~+OO

(o)=j" dq
' dpf(, ,p)o(, ,p),

as would be anticipated for a classical distribution.
All of the above remarks can be carried over to a

' G. A. Baker, Jr., Phys. Rev. 109, 2198 (I958). Other pertinent
references are given here.
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That it is possible to construct a function f which

satisfies these two requirements was first shown by
signer. ' The function can be written as

+00

f(q P) = „~ dy &*(q+y)"'""'V(q ), (3)—
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system consisting of e particles with a wave function
It («r, «u, ,«). The rt-particle version of (3) is

f(«r, «., «.,I ~,I, ,I.)
( 2 ) $% +00 )+00 +QD

d'y dy". ~" d'y
&2 lt)

x4*(«i+yi, «.+y~, , «.+y.)
n

Xexp~ —P p; «;
~Ea'=

' '3

XIt («r-yl, «2-y, , «--y-) (7)

Again we have the result that the expectation value of a
measurable quantity 0((«,), fp;)) is obtained as

(0)= d'q& I dsq2 dkq„' d'p& d3p2. d'p„

Xf((«;&,(I,))0((«;),(I,)). (8)

which corresponds as does (6) to the classically antici-
pated result.

The significance of the quasi-probability distribution
for nuclear (or atomic) bound states arises because
there are experiments which measure to a good approxi-
mation the momentum distribution of bound nucleons
(or electrons) in a region of space which is smaller tha. n
the whole nucleus (or atom). In general, such an experi-
ment falls into the category of a "direct interaction"
experiment in which, to a good approximation, the
incident particle interacts with only one nucleon (or
electron), and at least for the nuclear case the entrance
and exit channel wave functions are so distorted by the
remainder of the nucleus, that interactions in some parts
of the nucleus are more likely to be observed than those
in other parts.

Previously such nuclear experiments have been con-
sidered to give information about nuclear momentum
distributions. The interaction of high-energy protons
(the wave functions of which are only slightly distorted
in nuclei) with bound nucleons is found to observe a
momentum distribution which approximates that
obtained from the momentum transform of bound
single-particle wave functions. ' Anomalously high-
momentum components are usually attributed to the
effects of strong correlations. The interaction of E
mesons with a heavy nucleus is well described by
assuming that the interactions occur isotropically in
the nuclear surface. ' (Isotropically, here, means no
dependence on the angle between the incident direction
and the position vector of the collision point. ) This
assumption of isotropy is also made in the simple

' K. R. Greider, Phys. Rev. 114, 786 (1959).' I. E. McCarthy and D. J. Prowse (to be published}.

direct-interaction theory of Butler' and others for
low-energy nuclear reactions, but the actual anisotropy
of the distribution' is known to lead to errors. ' A low-
energy (p, 2p) experiment has also been considered to
measure the momentum distribution of nucleons
localized in an equatorial belt on the nuclear surface. '
In this case the momentum distribution was assumed
to have a Fermi form. The Fermi momentum is practi-
cally a meaningless concept since the severe localization
leads to a spectrum which may have a completely
diferent shape in the high-momentum region.

II. POSITION-MOMENTUM DISTRIBUTION
IN ONE DIMENSION

Before we discuss the joint position-momentum
distribution for the nuclear shell model, it is worthwhile
to display the character of the quasi-probability
function f(q,p) and to show how this quasi-distribution
can be related to an actual measurement.

It has already been remarked that the function

f(q,p) is everywhere real but not everywhere non-
negative. We can remove this non-negative ("quasi-
distribution") property by replacing the canonically
conjugate variables q and. p which cannot be simul-
taneously sharp by two quasi-variables $ and rt called
quasi-position and quasi-momentum, respectively, such
that $ and g can be measured simultaneously and can be
interpreted as being very similar to q and p. In general,
both $ and rt will depend on both q and p arrd also the
measurement process, i.e., the coordinates and momenta
of the measuring "apparatus. " In the case of a (p,2p)
reaction, for example, the incident proton and its
coupling to the target nucleons (the coupling range
determines the amount of localization) make up the
measuring "apparatus. " It is intended however that g
be "closely correlated" with q and g with p even though
they are not the same dynamical quantities as q and p.

We wish to show that a joint probability distribution
(not quasi-probability) for $ and rt exists. This state-
ment is equivalent to saying that the operators repre-
senting $ and rt commute. For convenience we will

specify a Gaussian correlation function and the variances

((5—q)') =o'/»

((n —p)') =&'/2o',

for which

L&(k
—q)')((n —p)'8'=&/2,

expressing an optimal measurement consistent with the
uncertainty principle. We write the joint distribution
of $ and rt as Lcompare to (6))

' N. Austern, S. T. Sutler, and H. McManus, Phys. Rev. 92,
350 (1953).

I L E. McCarthy, Nuclear Phys. 11, 574 (1959).
~ 7 I. E. McCarthy and D. L. Pursey (to be published).

8 I. K. McCarthy, K. V. Jezak. , and A. J. Kromminga, Nuclear
Phys. 12, 274 (j.959),



256 BAKER, McCARTHY, AND PORTER

(vnT') &

exPf —0'(il —P) '/5']

(~5'/0') '

~+00 ~+00

dq~ dp2' ~

l.+" p+" exp/ —((—q)'/o-']
b(g»; &) = J' dq~' dp

2~a&(q, p)

2

V{q)

-boa

(t q)' —~'(n p)')-
XexpI — — 'If(q, P), (11)

(r'

0

in which f(q,p) is to be determined from the appropriate
wave function according to either (3) or (4). Clearly,
since the transformation (11) from f(q,p) to b((,q; 0.)
involves difference kernels, it can be readily inverted
using Laplace transform techniques so that it is in
principle a well-defined process. to go from the (non-
quasi) probability distribution b(g,g; 0) to the quasi-
probability distribution f(q,p) and then to the wave
function via (5).

The choice of Gaussian kernels allows us to complete
the demonstration that b (g,g; o-) is non-negative.
Substituting from (3) into (11) and performing the
integration over p by completing the square, we find

+ +
b(P,g;a.)= dy ~ dq

2m.A (mo') i

(5—q)' y' 2~ye&
XexpI — ——+

0' 0'

awf, (q,p)

2wkf, (q,p)

2

0

2

We now let
u= q+y,
v=q —y,

(q+y)k(q y) (12)—

(13)

Qi

for which the transformation Jacobian is —,. This yields
for b(g,q; o.)

b(k, n; ~) =
2mb(mo')-*

p+" ) (t—u)' iud ~
X ~~ expI —— — )P(u)du . (14)

2~'

2vihf, (q,p)

Qr'

Clearly, b &~0 independent of what P is assumed. Thus q

and p are simultaneously measurable, ' and their joint.
distribution is given by (14). It is immediately clear
from (14) that the quasi-momentum distribution which
can in principle be measured locally depends on the
size 0- of the region of measurement.

It is possible to describe the conventional "snapshot"
measurement of $ and g.' The term "snapshot" is

9 W. Heisenberg, The Physical Prirbci p/es of the Qearbtzfrn Theory
(Dover Publications, j:nc., New York, 1930), p. 20 ff.

-2

(d)

I"ia. 1. Plots of the joint position-momentum quasi-probability
distribution function f(q,p) as a function of the position q and
momentum p for the &5rst four energy levels of a one-dimensional
in6nite square well of width 2a. The quantities f, q, and P have
been transformed to the dimensionless variables 2m.kf, q/a, and
pa/A. The not-always-positive character of f(q,p) resulting from
the uncertainty principle is clearly in evidence.
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Pzrbb, tq, P;R)
0.5

wave function lb„(q) appropriate to this problem is

( I 'l * zzzr(q+a)
lb-(q) =

I

—1»n
&a& 2a

pi
Combining this with (3) we 6nd for the joint quasi-
distribution function

2I' —nor

zzzr sinL (2P—zzzr) (1—
~ Q ~ )

f-(q,p) =
2P

Fic. 2. Plot of the joint probability distribution function
fI (q,p; E) for the first energy level in the one-dimensional infinite
square well of Fig. 1 with the resolution constant 8=&2/4. The
variables q and p here are the quasi-position and quasi-momentum
variables which are associated with the position and momentum
variables of Fig. 1 in the measuring process. The resolution
functions describing the measurement of position and momentum
are optimal subject to the requirement of measurement consistent
v ith the uncertainty principle. As a result of this consistency, the
joint probability distribution function is seen to be always positive,
Note that the way in which the measurement is made may yield
particles apparently outside the well.

appropriate if we replace the eye of the observer by a
photographic film. Two measurements are needed to
determine both $ and zl for a particle in motion. To
measure $ with dispersion a, we use light with wave-
length X such that X 0-. This gives a quasi-position
measurement and disperses the mome~turn. AVe obtain
the quasi-momentum p by taking a second snapshot
at a later time with extremely high-frequency light so
that in this (the second) measurement the position is

precisely known. From the two position measurements
and the known time lapse, we calculate an appropriately
smeared quasi-momentum g to go with the smeared
quasi-position $ obtained in the first. snapshot.

In order to learn about the features of f(q,p) in one

dimension, numerical calculations of this function were

carried out for the first four states of a one-dimensional

infinite square well of width 2a centered at q=o. The

f-(0,0) = (—)""2,

sin f (28+zzzr) (1—
~ Q ~ )j

2I'+zzzr

III. POSITION-MOMENTUM DISTRIBUTION
IN THREE DIMENSIONS

In the realistic discussion of the three-dimensional
distribution we shall focus our attention on the joint
(nonquasi) distribution b(q, p; o)=b(q, p, x; o—) where x
is the cosine of the angle between q and y. The three

where Q= q/a and I'= pa/A.
In Fig. 1, plots of f„(q,p) are shown for the first four

states in the well. The regions in which f takes on
negative values are very much apparent.

In Figs. 2—7, are shown plots of the joint quasi-
position, quasi-momentum distribution function (14)
for the potential used in Fig. 1 for various states and for
different values of the position resolution R=o/2a. To
obtain these figures, the wave function of (15) was
substituted into (14) and a numerical integration was
performed. Beginning with these figures, quasi-position
and quasi-momentum are indicated by q and p.

In Fig. 8 the way in which the value of position
resolution R= a/2a affects the spreading of the function
b(q, p; o.) is indicated. This has been done by plotting
bi(0,0; o) as a function of R for the lowest state of the
infinite square well.

2vggtq, p;R

0.5

0

FIG. 3. Plot of the joint probability
distribution function of Fig. 2 with
E=V2. This value of the resolution E
tends to smear out the distribution
more than that of Fig. 2.
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2vkb, (q, p;R)
0.5

0

FIG. 4. Plot of the joint probability
distribution function of Fig. 2. with
R=2V2. Even more smearing than
shown in Fig. 3 is seen here.

dimensional version of (11) is

b((,n; )=)")")"d'q)" d p-
expE —((—q)'/o'7

expE ~'(n p)'/I'7—
f(q, p) (»)

(a A'/o'):

By following procedures directly analogous to those
leading to (14), we replace (14) by

b(qp; )=
(2m')' (mo')&

(q —u)' iu p)
dag exp

l

— —
lg (u) (1g)

2o'

where now q and p replace ( andy as the quasi-variables
a,nd iP(u) is the appropriate three-dimensional wave
function.

We wish to examine the distribution b(q, p, x; o) for
the nuclear shell model. Thus we consider a single
particle state P„&, specified by the quantum numbers
nl jm. In general, we will not distinguish between states

with different m values so that we construct the function
b„i;(q,p,x; o) which represents an average of the distri-
bution over ns values:

(q —u)'
xe pl

— — — ltt- -( ) (21)2'
It is convenient to introduce the dimensionless

variables
U= u/o-, Q = q/o-, P=po/A,

and the expression

S.„(q,p,x; o)

(22)

j
b„,(q,p,x; ) = Q b„t, (q,p,x; ). (19)

2j+1
This becomes, upon using (18)

1 I +j
b„i;(q,p,x; o) = P lI.t; '~', (20)

(2~A)' (a o')'* 2j+1 —/

where

so that

dU U~tdQ expE —-', U' —i(P+iQ) U7

XZ„„(U ) I",.(Q,), (23)

I„i,„' o' exp( ——,'Q')I„i;——„„

R=~2/4

FIG. 5. Plot of the joint probability distribution function
b2 {g,p; R) for the second energy level -of the in6nite one-
dimensional square well of Fig. I with the resolution constant
R =%2&t'4 as a function of the quasi-variables g and p. The beginning
of additional spatial structure is seen here as grefa @s tbe shift of
the momentum peak to po/A —2lvr/2)=~.

where R„~; is the single particle radial wave function
and 'Jj,„is the appropriate angular momentum function.
In the case of no spin, j land 'JJ=;I,= I'&~(Qzr) where
I'q is a spherical harmonic. We then have

I„, =Jt dU U' exp( —~2U')E„i(Uo)

x ~dQ~ expE —iU (P+iQ)7v, (Q~) (25).
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2~kb~(q, p:R)

0,5

Fro. 6. Plot of the joint probability
distribution function bs(q, p; R) as in
Fig. 5 for R=@2. This choice of
resolution clearly- smears out the
distribution.

0

This leads us to introduce the complex vector ( such we find

that I.,„= dU f„i(U)i'j, (U1.) Y& (nr)
0

(29)

In addition we define

f-i(U) = U' exp( —
s U')~-i(Ua)

Hence the angular integration becomes

I dnri exp (iU ()Y; (()t )

=4m dQt Q i'j i (U1)Yi *(QU)
&'m'

(Although dQr is a complex solid angle, the addition
formulas usually stated for spherical harmonics still
hold. ) Carrying out the average over m yields

~l
(27) 2l+1 ~—i

16m2 2

d U f-i(U)i i(U1 )
21+1 ~o

&& Q Yi„*(I)r )Yi„(Or), (30)
m—L

((* (i
dUf. (U)i (Ui) &I

)& Yi. . (Qr) Yi (Qtr). (28)

By using the orthogonality of the spherical harmonics
l.o

2+Nb&(q, p;R)

0.5

o 0&
C7

Ol

FIG. 7. Plot of the joint probability distribution function
b&(q,p; R) for the third energy level in an in6nite one-dimensional
square well with resolution constant R=V2/4 as a function of
quasi-position q and quasi-momentum p. The movement of the
major momentum peak to pa/fi —3(s/2) is clearly shown.

R& 0/2O

FIG. 8. Plot of the joint probability distribution function
b1(0,0; R) for the first energy level in the infinite one-dimensional
square well evaluated at quasi-position q =0 and quasi-momentum
p=0 as a function of the resolution parameter R=o/2a where 2a
is the width of the well as in Fig. 1. The optimum value of R is
seen to be R—$. Since the function b~(q, p; R) is monotonically
decreasing in q and p, this plot gives a fairly accurate idea of the
resolution dependence for a large q-p region.



Combining our results we find in the case of no spin

b„,(Q,P, x; o)

4——exp( —Q')
(2wh)' ~i

P(g) — P' /(1+e(a —&)/ ) (35)

The functions b, (q.,p, x; a) have been computed for a,ll

of the neutron wave functions for carbon. The wave
functions that were used were obtained for an Eckart
potential" using the parameters of Ross, Mark, and
Lawson. "This potential is

F00 2

X i
dU U' exp( —,'-U-')R„&(Uo) j&(U&)

0

I'C (&
xPgl I, (31)

with

R=r+', re 1——.3X10 "cm,
V0=42.8 Mev,

a=0.69X10 "cm,
(36)

in which A signihes atomic weight.
In Fig. 9 plots are made of b, summed over the

neutron states and averaged over the angle between

q and p, i.e., of

in which |= (f ()'= (P' Q'+—2iPQx)&,

(* ( P2+Q2

li I I IP +Q -2P Q (1-2*)
I

j-:
(32)

+1

(2m.k)' P —,', t dx b, (q,p, x; o-).
-1

(37)
In the case of spin-orbit splitting, the result is

identical to (31) provided the label e/ is replaced by
m/j: The curves for each value of 0- have been arbitrarily

b„g)(Q,P,x; a)

0-' 4—exp( —Q')
(2z lt)' z-'*

IO crn

p
00

dU U' exp( ——,'U')E„&, (Uo.)j&(Ui)
0

xP~((*.(/Ii'I), (33)
b, (Q,P,x; o)—,

where s denotes a shell model state. As we remarked
concerning the one-dimensional distribution, it is
possible in principle using three-dimensional Fourier
transforms to unravel the quasi-distribution f from the
distribution b and then to proceed from f to the wave
function.

Under the circumstance x =0 (tangential momentum
distribution), special treatment of (32) or (33) is
needed for P —+Q. By using the formulas for the
spherical Bessel function j~(Uf) for small argument
(since $~0) and the asymptotic formulas for the
Legendre function P~((* (/I@I) for large argument,
it is possible to show, for example, that (33) becomes

o' 4
b, (Q,P,O; o) —& ——exp( —Q')

~ @ (2z-A)'z-'

oo 2

X
~

dU U' ' exp( ——'U')R (Ucr)
0

X
(21+1)'I' (l+-,')1'(/+1)

in which F (z) is the standard gamma function.

'cm

b
7C

CL

~in

sC

OJ

4»

0 cm

.5
p(IO cm )

p(iO" cm'j

Fxo. 9. Plots of the three-dimensional joint probability distri-
bution function for carbon summed over the is and 2p states and
averaged over the cosine of the angle between the vectors q and p.
These calculations are based on wave functions obtained from an
Eckart potential (reference 11) with a radius parameter of
2.98&(10 "cm, a surface diffuseness parameter of 0.69X10 "cm,
and a depth of 42.8 Mev. Two diferent values of the resolution
width 0 are shown with plots (arbitrarily normalized for each
0. value) being made versus quasi-momentum for two different
quasi-positions q in the nucleus. The dashed curves show the
shapes (arbitrarily normalized to the solid curves at p=0) of the
momentum resolution functions corresponding to the space
resolution width 0. The purpose of this plot is to show that
additional information beyond the shape of the resolution function
can be obtained, and to indicate that low-momentum values are
found near the edge of the nucleus.

"C. Eckart, Phys. Rev. 35, 1303 (1930).
"A. A. Ross, H. Mark, and R. D. Lawson, Phys. Rev. 102,

1617 (1956).
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normalized so that the left-hand scale has only relative
meaning within each 0 set. Dashed curves representing
arbitrarily normalized Gaussian momentum resolution
functions with width 5'/2o' Lsee (9)j are also shown to
emphasize that more than just the shape of the reso-
lution function emerges from the computations. Since
the radius of carbon used here is 2.98X10 "cm and the
spatial resolution is 2—3X10 "cm, the positions chosen
in Fig. 9 are "in the edge" (q=4X10 " cm) or "out
in the tail" (q=6X10 " cm) of the potential, respec-
tively. The computations clearly indicate a preference
for low momentum values in this region.

In Fig. 10 a plot has been made of the ratio of the
two solid curves with 0.=2X10 " cm from Fig. 9. It
might be thought (in the spirit of the Thomas-Fermi
model) that the resulting distribution plotted in Fig. 9
would be composed of two independent distributions
of q and p separately. Fig. 10 provides a, counter-
example, i.e.,

2.0

1.8

l.6

1.4

1.2—

I.O—

.8—

.6—

4

~2

I I

VARY WELL
KART WELL

= 2xIO cm

-15
q= 4xIO cm

a

q = 6x 10 crn.
~le

l

.8 I.O

(2rrk)' Q —,'J dx b, (q,p,x; o.) Nu(q)P(p).
—l

V(q)= —Vp, q&~R,

V(q)=0, q)R
(39)

18

It is also possible to ask if the distribution functions
depend in a significant way on the rounding of the edge
of the well. To answer this question computations were
carried out for a square well very similar to that of
Levinson and Banerjee. "The potential well used was

P(IO cm )

FIG. 11. Comparison of square well calculations with Eckart
(rounded) well calculations for the 1P state of carbon. The square
well (radius 3.66)&10 " cm and depth 28.7 Mev) is very close to
that used by Levinson and Banerjee (reference 12) in an inelastic
scattering calculation. The Eckart well represents a choice based
on best 6ts to energy levels over the periodic table according to
Ross, Mark, and I.awson |',reference 11)and is the same as used in
Fig. 9. The g=4)&10 " cm. Curves for each well are arbitrarily
normalized to the same number on the vertical scale. This plot
indicates that only a small effect in the momentum distribution
results from very different potentials.

with

l6—

Vo——28.7 Mev,

8=3.66X10 "cm.
(40)

CL

Ol
Cf

~o lp

l0—

0.5

P(IO cm )

l.O

FIG. 10. Plot of the ratio of the two solid curves in Fig. 9 for
o.= 2&& 10 "cm against quasi-momentum. This plot demonstrates
that even after angular averaging the quasi-position q and quasi-
momentum p are not independently distributed; for independent
distributions (e.g. , the Thomas-Fermi model) the ratio would be
constant for all quasi-momentum values.

n C. A. Levinson and M. K. Banerjee, Ann. Phys. 8, 67 (1958).

There is no spin-orbit term. The results shown in Fig. 11
are for the 1p state of carbon together with the rounded
well (Eckart) which is the same as that used in Fig. 9.
Although the potentials used are quite different, very
little change is seen to occur in the distribution. It is

tempting to infer from this plot (although an actual
calculation should be made as a check) that using a
distorted (nonspherical) potential would not produce
very significant changes in the distribution. However,
there is the more likely possibility that the angular
dependence of the distribution which has been averaged
out here might be changed in an important way by
distorting the potential.

Beginning with Fig. 12, we examine the angular
features of the distribution b(q, p,x; o). It is particularly
convenient to de6ne the radial and tangential com-

ponents of the vector y:

(41)
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q=3X10 "crn, and l=1. This gives

P, 1.08X10"cm '
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FIG. 12. Plots of the tangential (x=0}and radial (@=1) quasi-
momentum distributions for the 1s, 2s, and 1f states in Ca"
with the quasi-position q=2)&10 " cm and the resolution width
0 =2)&10 '3 cm. The parameters used here for the Eckart well
(reference 11) are a radius of 4.44X10 "cm and edge diGuseness
of 0.69&(10 " cm, well depth of 42.8 Mev, and a spin-orbit
parameter A, of 39.5. Scaling factors for the various curves are
indicated on the plot.

Note that p, ))p~, for low angular momentum states,
this is a typical result. Thus a very nonisotropic local
behavior for the momentum distribution is clearly
indicated in regions of strong potential, and this
feature is born out by the numerical computations.

Figures 12-14 show the results of numerical calcu-
lations of the tangential (x=0) and radial (x= 1)
quasi-momentum distributions for three states of Ca".
Each 6gure corresponds to a diGerent radial position.
The potential that was used for these calculations is the
same as (35) with an added "derivative type" of spin-
orbit term. "

In terms of the variable x, these are

p, =xpq/q,

qX (pXq)
p)= (1—x')'*p

I «x (yxq) I

Clearly

p p+p
p= pr+pt

V(q) =
1+expL (q

—R)/a]

h )
s Vo expI (q —8)/aj 2L.S

(50)
(2Mc j a(1+expL(q —E)/aj)'

(42) where
j=l+rs,2L. S

(51)—(l+1), j= l——,'.
The numerical values of the parameters that were
used in the machine computations are

Ke are particularly interested in the angular rno-
mentum L of the particle; this is

L=qxy=qxy&,

since gXy„=0. But we can write

R=reA') re=1.3X10 "cm,
Uo= 42.8 Mev,

a'=0.69X10 "crn,

X =39.5.

(52)

or

p =qx(pxq)/q'= (qxp) xq/q',
=Lxq/q',

p~'= (Lxq) (Lxq)/q',
—Ls/qs

since q I,=O.
The energy of a particle in a potential V(q) is

E=p'/2M+ V(q),
=p,'/2M+ p p/2M+ V(q),
=Prs/2M+L'/2Mq'+ V(q)

(45)

(46)

20

I t

q ~4xlO cm

These parameters are identical to those of (36) except
that 2 =40 for calcium and A. WO.

A study of Figs. 12—14 indicates the relative pre-
dominance of low quasi-momentum components near
the surface of the nucleus compared to the behavior of
the momentum distribution inside of the nucleus (the
radius of calcium used here is 4.45X10 " cm). In
addition the favoring of large radial quasi-momentum
components compared to tangential components is

lI'l (l+1)pr =E U(q)——
235

(48)

For a state of defjnite orbital angular momentum,
L'=0'l(l+1), so that b

o I2
~r

Yl
la

8
Af

This equation enables us to get an idea of the expected
value of p„at some radial position q. The expected value
of p~ is given by (46).

We can obtain typical estimates of p~ and p, for a
nucleon by considering J" = —8 Mev, V(q) = —40 Mev,

I.5'
0

P(IO ctn )

FIG. 13. Plots of the same functions shown in Fig. 12
for quasi-position q=4)&10 ' cm,
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evident in Figs. 13 and 14. The large amount of tan-
gential quasi-momentum associated with the 2s state
at q= 2&10 "cm may be from uncertainty in direction
for such small q values.

In Fig. 15, the definite non-isotropic character of the
distribution is indicated by fixing the magnitudes of q
and y and plotting the distribution against x, the cosine
of the angle between q and y. This plot contrasts with
the usual viewpoint of the Thomas-Fermi model which
would predict an isotropic result.

IV. COMMENTS AND CONCLUSIONS

b

CL0I'
lo

CV

q ~ 4xlO cm
1S -I

P -0,5xlO cm

0 =Rxl0 cm

2s xl0 ~~
r

Is xl0

The usual direct interaction theories' for reactions
leading to low excited states of a residual nucleus place
overwhelming emphasis on the importance of the
angular momentum transfer involved in the reaction. At
first sight, this may seem to be in convict with the
viewpoint (emphasizing linear momentum) of this
paper. The reconciliation of these two points of view
is achieved by noting that the arguments presented here
are not to be applied to reactions leading to a single
final state (with .well-defined angular momentum) of
the residual nucleus; only when the reaction measure-
ment averages over many final states can the notion of
linear momentum come into play since a state of well-
defined angular momentum is a superposition of many
states of well-defined linear momentum and vice-versa.
One immediate consequence of these statements is that
it might be rather suggestive to examine joint quasi-
angular-momentum and quasi-angle distributions to
see what insights can be obtained into the usual direct
interaction theories.

The large effect of the localization of a reaction on the
measured momentum distribution may explain the
inability of plane wave direct interaction theory to
account for the fact that a diffraction pattern is

generally not observed in nuclear inelastic scattering
when the particles are sharply focused by the optical
potential. A simple JWKB calculation" which does not

20
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FIG. 14. Plots of the same functions shown in Fig. 12 for quasi-
position q=6&(10 "cm. Comparison of this plot to those of Figs.
12 and 13 shows the relative predominance of lower quasi-
momentum values at the surface of the nucleus. Both Figs. 13 and
14 indicate a mean radial quasi-momentum larger than the mean
tangential quasi-momentum.

s S. T. Butler, N. Austern, and C. Pearson, Phys. Rev. 112,
12?7 (1958).

0 0.5 I.O

FIG. 15. Plot of the angular variations (x is the cosine of the
angle between g and p) of the probability distributions for 6xed
values of 0, q, and P: 0=2X10 " cm, q=4)&10 " cm, P=0.5
X10+" cm '. Scaling factors for the curves are indicated on the
plot which is based on the wave functions used in Fig. 13. The
definite nonisotropic character of this dependence is in contrast
to the Thomas-Fermi model. The distribution is symmetric about
x=0, i.e., about the angle between q and y equal to 90'.

take into account localization, predicts that the
diffraction "wiggles" in sharply focused nuclear inelastic
scattering should be more pronounced than for strongly
absorbed alpha particles for which the focus is not
significant. This is opposite to the experimental facts.
Where a restricted part of the nucleus is sampled, the
momentum spread largely eliminates the diffraction
pattern arising from the interference of exit channel
waves coming from opposite sides of the nucleus and
characterized by a length of the order of the nuclear
radius. This concept will be developed in a future
publication. '

The sharp differences between the joint distribution
considered in this paper and the Thomas-Fermi model

have been pointed out: the directionally averaged joint
distribution is not a composite of independent distri-
butions of quasi-position and quasi-momentum, and
the unaveraged distribution is not isotropic. In addition,
the prevalence of low quasi-momenta at the nuclear
surface has been emphasized as well as the predominance
of the ra,dial over the tangential quasi-momentum there.
These features result in a simple picture of, for example,
a (p, 2p) reaction. ""The reaction is viewed as a
"chipping" reaction occurring primarily in an equa-
torial belt of the target nucleus located in a plane
perpendicular to the direction of the incident beam.

'4 R. J. GriKths and R. M. Kisberg, Nuclear Phys. 12, 225
(1959); T. J. Gooding and H. G. Pugh, Nuclear Phys. (to be
pub 1ished).

'5 A. J. Kromrninga and I. K. McCarthy, Phys. Rev, Letters 4,
288 (1960).
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The main momentum component (radial) of a
nucleon in the target nucleus in this equatorial belt is
perpendicular to the momentum of the incident particle.
Arguments for a 90' collision between two unbound
particles wouM lead to a hnal sharp angular correlation
between them centered at 90'; however, the non-zero
binding energy of the nucleon in the target shifts this
to an angular correlation centered near 60' in closer
accord with experiment. The actual formula for the
angle 8 between the two 6nal protons is

where Ejf and E2~ are the Anal kinetic energies of the
two protons and V is the strength of the potential
binding the bound proton at the point of collision. The
sharp character of the angular correlation peak is ac-
counted for by the small tangential (as compared to
radial) momentum component since only this com-
ponent broadens the peak. In addition, the momentum
distribution corresponding to the bound nucleon favors
low momenta and has a shape more characteristic of
the localization than of the structure of the wave func-
tion of the bound nucleon.

It is, of course, very tempting to consider the appli-
cation of the techniques discussed here to atomic and
molecular reaction problems. The extent to which a
screened Coulomb potential may alter the preceding
discussion is presently not well understood.

The formalism discussed here is clearly generalizable

to a joint distribution for more than one particle as
indicated in (7). Generalizations of this sort could prove
useful for discussing reactions involving composite
systems.
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