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The two-nucleon problem is discussed from the standpoint of the double dispersion relations. The analytic
structure of partial wave amplitudes is completely analyzed. This is greatly facilitated by the use of the
Jacob-Wick helicity amplitudes. The program of generating a set of dynamical equations by use of the
unitarity condition is carried out. In the present approximation only one- and two-pion exchanges are con-
sidered; the resulting system of equations should be adequate for energies below about 170 Mev. The prob-
lem of computing the deuteron parameters is discussed. The general structure of the more complicated
nucleon-antinucleon system is briefiy treated.

I. IlVTRODUCTION

HE last ten years have witnessed a considerable
change in the philosophy underlying the dis-

cussion of the two-nucleon problem. Whereas in the
years following Vukawa's original work the emphasis
had been on calculating a potential which couM be used
in conjunction with a Schrodinger equation, and al-
though vestiges of this philosophy still can be found in
the literature and in our way of thinking about the
problem, it has become evident that such an approach
is, even if reasonable, not very useful. The two-nucleon
system is basically a relativistic one, even at moderate
energies, and a potential approach cannot hope to give
more than a qualitative description of the phenomena.
In all fairness, however, it should be realized that the
main reason for rejecting this approach has been our
inability to calculate a reasonable potential, or even
define it.

Ultimately, the theoretical handling of the problem
has a two-fold goal. On one hand, we wish to use it as
a testing ground for our ideas about the pion-nucleon
interaction and the formalism of field theory. On the
other, we would like to have a theoretical framework
for analyzing and summarizing the existing experimental
data. We are still very far from being able to predict
the outcome of experiments not yet performed, and at
present we must contend ourselves with deriving rela-
tions between known quantities. In this sense, we mould
like to think of the masses of elementary particles and
coupling constants as being fundamental, and try to
express other quantities, such as scattering lengths and

phase shifts in terms of them. This is already a for-
midable task.

In recent years, the dispersion theoretical approach
has successfully dealt with a variety of processes, but
the dispersion relations as applied to scattering have
had only limited usefulness. One serious drawback of
this approach is due to the fact that they cannot supply
us with any information about the momentum transfer
properties of scattering amplitudes. Related to this
difFiculty is the circumstance that one cannot conveni-
ently make use of the information contained in the
unitarity condition. Without unitarity, it seems very
unlikely that the dispersion relations could be used,
even if only in principle, as dynamical equations for the
determination of scattering parameters.

The dispersion-theoretic handling of the two nucleon
problem has been initiated by GoMberger, Nambu, and
Oehme, ' and the formal apparatus developed by these
authors. The problem is considerably complicated by
the presence of spin, but leaving aside essentially alge-
braic questions, one still runs into difFiculties because
of the extensive unphysical region which exists even
for forward scattering. Nevertheless, the dispersion
equations can be used to give an independent means of
determining the pion-nucleon coupling constant, and do
provide some information about the scattering process.

Recently, Mandelstam2 has proposed a two-dimen-
sional representation of scattering amplitudes which
has many attractive features. If correct, this repre-
sentation allows one to obtain some information about
the momentum transfer properties of these amplitudes.
Also, it allows one to derive dispersion relations for the

* Supported in part by the U. S. Atomic Energy Commission,
0%ce of Naval Research, and the Air Force Ofhce of Scientific
Research, Air Research and Development Command.
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' M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys. 2,
726 (1957). This paper will be referred to hereafter as G.N.O.

'S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741
(1959); 115, 1752 (1959).
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partial wave amplitudes for which the unitarity condi-
tion takes a very simple form. It would seem that in
principle this representation provides a full dynamical
scheme for the discussion of scattering, and we would
hope it would allow us, in spite of the approximations
we must make, to obtain many quantitative features of
the two-nucleon system.

Since much of the following deals with algebraic
difhculties that have little to do with physics, we shall
briefly summarize the contents of this paper. The work
is fairly self-contained, but we assume that the reader
is familiar with the main results of G.N.O., the recent
literature on the Mandelstam representation, and the
general approach of dispersion theory. '

We must deal not only with nucleon-nucleon scatter-
ing, but nucleon-antinucleon scattering as well. For each
process, the Feynman amplitude can be expressed in
terms of five invariant functions of the energy and the
momentum transfer. In Sec. II we choose a convenient
set of such functions, investigate the restrictions im-

posed upon them by the Pauli principle, and finally
show that the amplitudes for nucleon-nucleon and
nucleon-antinucleon scattering are connected by the
so-called crossing relations, which we derive. In Sec. III
we state the analyticity properties of these functions,
in accordance with Mandelstam's hypothesis, and write
down two-dimensional representations for them. We
then relate the weight functions which appear in these
representations to the absorptive parts of the ampli-
tudes, which arise in the usual dispersion relations.

Section IV is devoted to a discussion of the partial
wave decomposition of the scattering amplitudes, using
the formalism recently developed by Jacob and Wick. '
In Sec. V we discuss the analyticity properties of the
partial wave amplitudes, and write dispersion relations
for them. In Sec. VI we collect the information that is
available about the contributions to the absorptive
parts of the low-mass intermediate states. We give the
exact one-pion contribution, an approximation form of
the two-pion contribution, and also write down the
deuteron pole term.

In Sec. VII we show how the dispersion relations for
the low angular momentum amplitudes can be solved.
Unitarity, which we use in an approximate form by
neglecting inelastic scattering, plays an important role
in our approach. Finally, we discuss the deuteron bound
state and show that in principle one might hope to
calculate the binding energy and some other parameters
that characterize it. A special method of solving the
integral equations one obtains is given in Appendix C,
making use of a variational principle.

' After the completion of this paper v e received a preprint of a
paper with the same title by Amati, Leader, and Vitale, which
covers some of the same material treated here. For completeness,
we have not attempted to suppress our own presentation of the
topics discussed by those authors.' M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959),.

Ni+Ns —+ Ni'+Ns', (I)
Ni+Ns ~Ni'+N2', (II)
Ni+Ns ~Ni'+Ns', (III)

(2 1)

where the bars designate antiparticles. I.et the particles
with subscript 1 have initial and final four-momenta I'~
and I'&', respectively, those with subscript 2, I'2 and
P2'. We define three scalar variables

s = —(Pi+Ps)' = —(Pi'+Ps')',
t = —(Pi —Ps')' = —(—Ps+P, ')',

t = —(Pi —Pi')' = —(—P,+P,')',
(2.2)

which are related by s+t+ t =4m', m being the nucleon
mass (we use the scalar product A B=A B+A4B4
=A B—AsBs). For each of the three processes, s is the
square of the total energy in the center-of-mass system,
—3 and —t the squares of the momentum transfers for
the pairs (1,1) and (1,2), respectively.

It is convenient to describe the reactions (I-III)
using the formalism of isotopic spin. We assume charge
independence holds rigorously and thereby neglect
Coulomb effects and mass differences. Parity conserva-
tion and time reversal invariance are assumed through-
out. It is then a simple matter to show that for each
total isotopic spin state, five independent amplitudes
are required for a complete characterization of nucleon-
nucleon or nucleon-antinucleon scattering.

Consider first reaction (I), which may take place in
either isotopic spin state 0 or 1.It is sufhcient to discuss
the situation for a given value of the total angular mo-
mentum J. The two-nucleon system can be either in a
spin singlet or spin triplet state. We observe that there
can be no transitions between the two spin states since,
with our assumption of charge independence, for a
given isotopic spin I singlet and triplet states of given J
have opposite parities, as required by the Pauli prin-
ciple. For the singlet state J= l the orbital angular mo-
mentum, and one amplitude is sufficient to characterize
the scattering process. With the system in a triplet
state, we have /= J or /= J~i. For /= J, again one
amplitude is sufhcient, since parity conservation forbids
transitions to l= J&1, while for l= J~1 three arnpli-
tudes are required, to describe the transitions J+1—+

J—1, J—1 —+ J—1, and J—1=J+1, respectively.
(Time reversal invariance implies that the amplitudes

II. KINEMATICAL PRELIMINARIES AND
CROSSING RELATIONS

The kinematics and crossing relations for the two-
nucleon system have been treated in detail by G.N.O.
However, the results of these authors cannot be con-
veniently used in conjunction with the Mandelstam
representation and in dealing with identical particles.
We shall, therefore, discuss the problem from the be-
ginning, in a way which is more suitable for our treat-
ment of the subject.

We must consider simultaneously the three processes
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where the F's are functions of the scalars s, t, and 3

defined in (2.2). Our notation is such that in F(pp, y,s)
the first variable always denotes the square of the total
energy, the second and third the negative of the square
of the momentum transfers between pairs (1,2) and
(1,1), respectively. $p and Qi are the projection opera-
tors for isotopic singlet and triplet states. Specifically,

$p ——(1—~, .~,)/4,

$,= (3+~, ~,)/4,
(2.4)

where ~~, ~2 are the usual isotopic spin operators for
particles 1 and 2. We are treating Zr as a matrix in
I-spin space. Our representation is analogous to the one

' T. D Lee and C. .N. Yang, Nnovo cimento 3, 749 (1956).

for J—1~1+1 and J'+1 —+ J—1 are equal. ) Thus,
five amplitudes are needed, as stated above.

Precisely the same type of counting may be carried
out for the nucleon-antinucleon system. Here, of course,
the Pauli principle cannot be used, but invariance under
the "G" operation of I ee and Yang' insures that there
are no singlet-triplet transitions. LThis operation, to-
gether with parity conservation, implies that the sum
S+I, where S is the total spin (0 or 1) is conserved;
having assumed conservation of I, it follows that 5 is
conserved. ] Since we shall establish later analytic
crossing relations between the nucleon-nucleon and
nucleon-antinucleon amplitudes, it would have been
distressing to have the number of these amplitudes
diferent for the two processes.

The next step in our procedure is the selection of an
appropriate set of five covariant amplitudes in terms
of which the scattering matrix may be expressed. There
are no very well defined rules for making a specific
choice, but the following points should be considered:
we would like our amplitudes to exhibit in a simple
fashion the properties implied by the Pauli principle
(corresponding to the interchange t = t); and by cross-
ing symmetry (the interchange s t); further, we wish
to avoid kinematical factors which may introduce addi-
tional, nonphysical singularities into the amplitudes.
However, there does not seem to exist any choice of
amplitudes which transform simply under both the
Pauli principle and crossing symmetry operations. Since
the Pauli principle plays an important role in our dis-
cussion, we have chosen our amplitudes accordingly.
In this respect, and in the fact that our amplitudes are
devoid of kinematical singularities, our choice seems
superior to the G.N.O. set.

We shall write the Feynman amplitude Z& for process
(I) in the form

Zr ——[FiP(S S)+FpP(T+ T)—
+FpP(A 2)+F4P(V+ V)+F—pP(P P)fop-
+(F,'(S S)+F,'(T+ T)+Fp—'(A —A)

+F. (V+ V)+F, (P-P)jy„(2.3)

used in 48 decay. We have written

, S
2 —4 V
0 6 T . (2.6)—2 —4

.P

The restrictions imposed on the F's by the Pauli
principle are now' very easy to obtain. Under the inter-
change of the final particles' coordinates (momenta,
spins, and isotopic spins) t = t and the full amplitude
must change sign. Now Qp changes sign (as may be
seen by using the isotopic spin exchange operator
(1+~i ~p)/2) while Qi does not; also under this inter-
change 5 S, etc. Thus, for the isotopic spin singlet,
we find that formally interchanging the fina particles
leads to the same expression but with the signs of F2
and F4 reversed. In order to satisfy the Pauli principle
(i.e. , all signs reversed) we must demand

F,'( ts, t) = (—1)'F,'(s, t, t),

and by a similar type of argument,

F '(s, t, t) = (—1)'+'F '(s, t, t).

(2.7)

(2.8)

The general statement of the Pauli principle is then

F'( t, ts) = (—1)'+'F,'(s, t, t). (2.9)

We note that in the center-of-mass system, the inter-
change t t corresponds simply to a change of scatter-
ing angle from 0 to pr —0, or cose to —cos8 Lsee Eq. (4.1)j

We shall write the amplitudes for processes (II) and
(III) in exactly the same form as that used for process
(I); Err and Z»r will have a representation analogous
to that of Zr in (2.3) with positive energy spinors for
the antinucleons, and of course different functions
F(s, t, t) and F'(s, t, t), respectively.

As is well known, there exist relations between the
amplitudes for processes (I) and (II) and (I) and (III),
the so-called crossing relations. The crossing symmetry
principle is an important feature of present-day quan-
tum field theory, and is expected to hold in any future
theory as well. We should point out that the crossing
theorem is essentially an empty statement until certain

S= u(Pp')u(Pp) u(Pi') u(P, ),
T= —,'u(Pp') o „.u(Pp) u(P, ')o„„u(P,),
A = u(Pp')impy„u(P&)u(P&')impy„u(P&), (2.5)

V=u(Pp')y„u(Pp)u(Pi')y„u(P, ),
P= u(Pp')cpu(Pp)u(Pi')cpu(Pi),

S, T, etc. , are obtained by interchanging u(P&') and
u(P&'). The u's are positive energy spinors, normalized
according to ug= 1;explicit formulas for them are given
in Sec. IV. For convenience we record the well-known
matrix for expressing quantities like S, T, etc., in terms
of the "normal" order of the spinors as defined in 5, T,
etc. , above:

5 '

U 1 4 —2 0
T =— 6 0 —2
A 4 4 2 0

.I'. 1
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analyticity properties have been established, properties
which allow the extension of the amplitudes outside
their original domains of definition. Specifically the
amplitudes, defined for certain time-like vectors, must
be extended into a region where these vectors are
space-like.

The consequences of crossing symmetry for the two-
nucleon system have been discussed in G.N.O. We shall
repeat the relevant part of their argument in terms of
our notation. It should be noted that in G.N. O., the
crossing relations were derived for the causal amplitude
(defined in terms of retarded commutators) which is
the natural quantity in dispersion theory. We find it
more convenient to use the Feynman amplitude (de-
fined in terms of time-ordered operators); we shall
indicate later the relation between the two.

We write

ZI ——u. (Pi') T.p'(Pi', Pi) 24p (Pi), (2.10)

where

X(P,'I T(P. (x),Pp (y)) IP2)Dpp (y)e'~'", (2.11)

8
D (x)= y„+222

8$p
(2.12)

the arrows indicating that differentiations act only to
the right (~) or left (4—). LThis formula differs in
trivial respects from that of G.N.O. ; we are using box
normalization, and have not separated out the 6 func-
tion of overall momentum conservation in (2.12).j In
order not to confuse the writing with too many indices
we shall use n, P to indicate not only the spinor indices
but also the isotopic spin labels of the nucleons.

We write a similar formula for reaction (II), namely

and by standard formulas [G.N.O. , Eq. (2.10)) obtain

(22r)'&(PI'+P2 P1 P2) Tnp (Pi g 1)

t P20P20
=iI d4xd4y e '~" *D (x)) ~

(o -~) (2.17)

The important property for our purpose is r&~~r&= —~.
(Our operation of charge conjugation is the same as the
Lee-Yang G opera, tion. ')

Expressing the states IP2') and IP2) in terms of
particle states IP2') and IP2) according to the rules
discussed above, and using Eqs. (2.15)—(2.17), we find

T"(P,',P,)=C22I Ti(—Pi, —Pi')j 72C ' (2.18)

the transposition being in both Dirac spinor and isotopic
spin indices. Under the indicated transformation of mo-
menta we observe that s= —(Pi+P2)' ~ —(—Pi'+ P2)'

(P1 P2 ) ~ (P1 P2 ) (P1+P2)
f= —(P,—Pi')' + —(Pi' —Pi)'. With the assumption,
to be verified later, that the amplitudes have no branch
points at s=0, 1=0, there is no ambiguity in stating
that the crossing operation causes the arguments of the
invariant functions to undergo the transformation s
t —+ 3 (one would run into difficulty if, for instance, fac-
tors like gs or Qt were present).

In order to use Eq. (2.18), we must cast our repre-
sentation (2.3) into the form (2.10), by disentangling
S, T, etc., according to (2.6), and identifying T'. We
transform the representation for process (II) in a
similar manner and, regarding the F's as vectors in
isotopic spin space (F40,F ) we obtain the crossing rela-
tions between the E's and the E's:

P, (s,h) =I;,BF,(t,s,~). (2.19)

where K is the unitary operator which effects the charge
conjugation of state vectors. It induces the following
transformation on the field operators:

~(x) ~'(x) =~-V(x)~='C"~(x),
(2.15)

0(x) ~ 0'(x) =& V(x)&=2C "20(x),
where C is the usual unitary matrix which has the
properties

C~= —C, Cy„~C '= —y (2.16)

in our representation (y4 ——p, diagonal), C=2yoy4=422
Also in our representation (2.2 diagonal and equal to +1
for proton and antineutron),

XII=24n(P1 )Tnp (P1 )PI)Np(P1)y

(22r)'5(PI'+P2' —Pi—P2) Tnp (Pi. pPI)

(2 13) The isotopic crossing matrix 8 turns out to be

(2.20)

fPoo P20)
d4xd4y, e '~" '*D (x) with the first row and column referring to I=O, the

second to I=1, while F,~ is the matrix

X(P,'I T(4. (x),yp (y)) I P,)Dpp. (y);~' . (21.4) —1
1

p 1

1

.—1

6 —4 4 —1
2 0 0 1
0 2 2
0 2 2 —1
6 4 —4 —1

In this expression IP2) denotes a state of one anti- (2.21)
nucleon with momentum P~. We have adopted a defi-
nite phase convention: we agree that we always con-
tract first on particle 1, in both initial and final states.

The relation between IP2) and IP2) is IP2)=KIP2) Weremarkthatl'isthenegativeof thetransposedFierz
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matrix (2.6), written for the order (5, —T, 2, —V, P).
Xo deep significance should be attached to this fact;
however, it is simply a consequence of our choice of
amplitudes. Also F'=1, 8'=1., as should be, since the
relations between the P''s and the E's must be com-
pletely symmetric.

The crossing relations connecting reactions (I) and
(III) may be deduced by a method completely analo-
gous to the one just used. Alternatively, they can be
inferred from our knowledge of the behavior of the F's
under the interchange of t and t.

invariant functions:

1~;(s,t, t)

r "ds' ("dt' pgj(s', t')

"4 m & 4„~ (s' —s) (t' t)—

t
"ds' t."dt' p4j(s', t')

~4 2 m &4„2 4r (s' —s)(t' —t)

III. ANALYTICITY PROPERTIES OF THE
INVARIANT FUNCTIONS

where the 0, may be taken as the standard P-decay
matrices f( &f(2& p (')y (') etc. , the A. 's are positive-
energy projection operators h (P) = ( ip P—+m)/2m,
and the traces are taken in the spaces of particles 1 and
2. According to the Hall-Wightman theorem, ' the V s
being invariant functions of the momenta, are analytic
in the same domain as the elements of the Z matrix.

After carrying out the trace calculations, the final
result emerges in the form

9',=D,;I';, (3.2)

where D is a 5)&5 matrix whose elements are simple
polynomials in s, t, and t. The determinant of D is pro-
portional to (stt)', so that the only possible additional
singularities of the F's are poles at s=0, t= 0 or k= 0.
In fact, as we shall show directly, the F's are finite at
t=0 or 3=0, which values correspond to backward or
forward nucleon-nucleon scattering. Similarly, using the
fact that the nucleon-antinucleon amplitude is finite in
the backward direction, the crossing relations allow us
to infer that the F's are regular at s=0 as well. We con-
clude then that we can write for the F's a Mandelstam
representation, which has singularities associated with
the thresholds for physical processes only.

We write then the following representation for the

D. Hall and A. S. Wightman, Kgl Danske Videnskab. Selskab
Mat. -fys. Medd. Bl, No. 5 (1957).

According to Mandelstam's postulate, each of the
256 elements of the matrix Lregarding the appropria, tely
disentangled form of (2.3) as a matrix to be sandwiched
between initial and 6nal spinorsj is an analytic func-
tion of the momenta except in the region where s, t, and
t equal the thresholds for energy conserving intermedi-
ate states. However, it is not immediately clear that the
invariant functions F, are analytic in the same domain.
To investigate the possibility of additional singularities
we first construct Ave new amplitudes which in fact
have no singularities other than the ones present in Z,
and obtain an explicit relation between them and the
F's. Let us calculate the five scalar invariants

K,= tr{O,A(P, ')A(P&')ZA(P&)&(P2)), (3.1)

t'" dt' t' dt' p24'(t', t')
+B;(s,t, t). (3.3)

~4„4 4r ~4„s (t' t)(t' ——t)

We are regarding the Ii's, and thus the p's as vectors in
isotopic spin space, as mentioned above Eq. (2.19),
with components P,', (I=O, 1). t4 is the meson mass,
and the term B,(s, t, t) denotes the so-called one-meson
exchange terms, the Born approximation, which we
split off explicitly. The limits on the above integrals
are actually the asymptotes of the regions in which the
p's are different from zero; we shall deduce later the
actual boundaries (see also Mandelstam, reference 2).
The contribution of the bound deuteron state (for the
I=O amplitude) should also appear explicitly in the
complete representation; for reasons to be given later
we shall not include it at this point. For the time being
we overlook the question of subtractions, which plays
no role in the discussion that follows.

The amplitudes for reaction (II) have a simila, r repre-
sentation, namely

1;(s,t, t)

r "ds' ~" dt' pg2&(s', t')

~j4„~~4„m (s' —s)(t' —t)

p" ds' t."dt' pgj(s', t')

~4„2 ~ ~4„2 m. (s' s)(t' t)— —

~" dt' t" dt' p24'(t', t')
+ — — +B;(s,t, t). (3.4)

,„ ~ (t' —t) (t' —t)

The lower limits of integration are again formal; they
follow from simple physical considerations of the least
massive intermediate states that can be reached by a
nucleon-antinucleon pair (aside from the one meson
term that we have exhibited separately).

Before proceeding further, let us explain the connec-
tion between the Feynman and causal amplitudes. In
the spirit of the Mandelstam representation, we must
think of one function of three variables which describes
all three processes that we are discussing. Such a func-
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tion wiH have a representation of the form

1"(xi,x2,x4)

tdxl )dx2 p12(X1 yx2 )

2r (xi' —xi) (x,'—x,)

P1,(xi'x, ')t'dxr pdx2

(xi' —xi) (X2' —x2)

f
dx2 f dx2 p12(X2 X4 )

$2'-X2 X3'-$8

Let us temporarily abandon our convention whereby
we always let the first variable denote the square of the
energy. Then, one can make the statement that the
function F(xi,x2,X2), where one of the variables is
positive (and larger than some minimum value), and
the other two are negative or zero, describes that process
for which the positive variable denotes the square of
the energy. By letting x&, x&, and x3 in turn be positive,
we obtain the amplitudes for the three possible reactions.

We must have now a prescription for dealing with
vanishing denominators. The instruction is x ~x
+ie„where the 4 s are positive quantities. With this
convention, I.

'
gives the Feynman amplitude for any

one of the processes, as defined in terms of time-ordered
operators. One obtains the causal amplitudes by using
the instruction x —+ x +ie x / ~

x
~
. Thus, whereas the

same branch of an analytic function Ii gives the Feyn-
man amplitude for all three processes, the causal ampli-
tudes are obtained by going to different branches of F.
The correctness of this instruction may be verified by
going over to the one-dimensional dispersion relations,
as we shall do presently. It is also easy to verify, by
observing that the weight functions are real, that
crossing symmetry implies for the causal covariant
amplitudes the same kind of relations as (2.19), but
with the right-hand side complex conjugated (provided
that the variable which is unaffected by the crossing
operation is in its physical region).

The number of weight functions which appear in the
representation (3.3) can be reduced. A priori 30 such
functions appear (five F'sX2I-spin statesX3p's for
each F). It turns out that only 20 independent func-
tions exist, and of these ten are symmetric (or anti-
symmetric) functions of their a.rguments. This reduc-
tion comes about by virtue of the Pauli principle,
which leads to relations of the form

p»'(s', &') = (—1)"'p»'(s', l'),

p»'(~', ~') = (—1)'"p22'(&', l')
(3.5)

t" invariance implies similar relations for the p's.
From the crossing relations (2.19) and the repre-

sentations (3.3) and (3.4), we can also deduce a number
of relations between p's and the p's which must hold
because, as mentioned above, there exists essentially

only one basic quantity describing all three of our re-
actions. In order to simplify the notation, let us call the
combined crossing matrix operation F&B=Q, and let
the indices j, k imply also the isotopic spin label 0 or 1.
We find then

P12'(s, t) =0 „P12'(t,s),

P, 2&(S,t) =0;2P22'(S, t),

P22 '(h) =0,2P„'(t,t).

(3.6)

t

" dt,' 0; A (t', t)
+ ' — +~,(s,~,i), (3.~)

"4„~ 2r t' t—
t
"ds' A, (s', i)

E;(s, t, t) =
2r $ S

P" dt' Q;2A2(t', t)
+B,(s, i,i). (3.8)

"412r f' t—
The relation between the 3's and the weight functions
appearing in (3.3) and (3.4) is the following:

I
"Ch' p12&(t)t') r

"ds' p12&(t,s')
A, (t,t) =

~

— + —,(3.9)
~4@' 7r t 3 ~4~4 7r s s

or, using (3.6) and the fact that 02=1

t."dt' p22" (t, t,') p ds' pip(s', t)

where, of course, s=4m' —t —t,. Also,

p" dt' p12&(s, t')
t
"dt' p12&(s, t')

A, (s,~) =
~~

— + —— . (3.»)
~/

The remaining combination of weight functions, p2~ and

p~3, appears in the following formula:

t
"dt' p22" (t, t)

A, (i, t,) =(—1) +'n, ,
4„x t' —t

p" ds' p12" (s', 3)
+

~4m ~ $ s
(3.12)

The derivation of formulas like {3.9) to {3,12) has been sketched
several times in Mandelstam's papers. ' For the sake of complete-
ness, and because of the rather involved crossing relations, we
shall give some of the details.

Let ns rewrite the expression F; given in (3.4l, by niaking a

Next, we record the one-dimensional dispersion rela-
tions for the Ii's and the P"s, and exhibit the relations
between the weight functions and tbe absorptive parts
of reactions (I) and (II); these formulas will be of use
in Sec. V. We have

p" ds' A; (s', t)
F, (s, i,~)= '

s' —s
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partial fraction decomposition of the term involving p12&:

F;(s,t,t) = (—1)'+zF;(s,t,t) =K;4F4(s,t, t), (3.e)

where K denotes the combined matrix elements (—1)'+'s;; szz
From the one-dimensional dispersion relation (3.7) we have

F; (s,t,t)
d As( 4t)s"dt' 0 aA 4(t', to) & ( -) (3

4m~ m' s —s 4„& m t' —t

where we have changed the variable of integration from t' to t'
in the second term. Again, we make a partial fraction decom-
position in (3.3), namely

4~' 4r J4l' 4r (s' —s)(t' —t)

+
" ds' " dt' p444(s', t')

4sa2 1r 4@2 lr (s —s) (s +t —s—t)
- di' - dt' p»4'(t', t')+

4t4 4r 444 sr (t' —t)(t' t)—
f+

" ds' " dt' p&44(s', t') +& (
4 4 4r 4,4 4r (t' t)(s'+t' s t)— ——(3 g)

Comparing the second term in (3.7) with the last two integrals
and making a change of variables, we are led to Eq. (3.12).

As is well known, the A; (s,t) are to be calculated by
considering the absorptive part of the amplitude for
reaction (I) and the A;(s, t) are to be found from the
absorptive part of the amplitude for reaction (II) Lsee
G.N.O., Eq. (4.7), (4.7a); note the diiference of factors
of 2x, arising from our use of box rather than continuum
normalizationg. We have for (z',z, the absorptive part

4@4 4r 4o4 4I (s —s) (t t)—
" ds' " dt' pisz(s', t')+

4g4 4r 4m 4r (s' —s) (t'+s' s —t)—
+

" dt' " dt' ps's(t', t')
4 4 ~ 4.4 ~ (i' —i) (t' —t)

f ds dt P (s,t) ~It ( t t) (3
4~4 7r 4m4 4r (s' —s) (t'+s' —s—t)

Comparison of the discontinuity across the positive s axis with
the corresponding one in (3.3) leads to the identi6cation

~ dt'p44'(stt') " dt p444(s, t')
(3 b)

4.~ ~ d-t 4m& ~
It is slightly more convenient to write the equation for A;(t,t),
by which we understand the absorptive amplitude A; with the
energy variable being numerically equal to t. This means that in
the last term (=4m' —s—t —+ 4m' —f—t=s; we also change the
name of the variable of integration in (3.6) to s' and write 6nally

~ (- )
I'" dt'P14 (t,t') t ds P12 (t,s')

(3 )~4.~ ~ t —t J4~~ ~ s —sJ t r

which is Eq. (3.9).
In a similar fashion, by looking for the discontinuity across the

t axis we 6nd, by comparing the last two terms of (3.a) with the
second term of (3.8),

tz~ (tt)
dt P43 () ) + ds P12 ( 7) (3d)

4tt& 7l s —S

In this equation t represents the numerical value of the square of
the energy for reaction (I). Again it is convenient to change the
name of the variables, which leads to Eq. (3.11) of the main text,
after making use of (3.6).

One further relation can be obtained, which involves the ab-
sorptive amplitude for reaction (III). We can avoid explicit in-
troduction of this amplitude by using the Pauli principle. %e
recall that

of reaction (I),

t P20Poo
(z'z(s, t) =~I I 2 ~-(Pz')(Ps'If«l~)

Sit' & ~(P~-»+Ps)

X(~ I fp I
Po)~&(P,) (2P o)3E(Pi+Ps)'+~.'j, (3.13)

where m„ is the "ma, ss" of the intermedia, te state Ist)
and f, f are defined by

(yB/()x+ mg= .f,
( y'(—t/Bx+m)P= f (3.14)

IV. THE PARTIAL WAVE AMPLITUDES

For the study of the two-nucleon system at moderate
energies, it is very useful to discuss the amplitudes for
scattering in given angular momentum states, rather
than the whole scattering amplitude. In addition to

~ M. T. Grisaru, Phys. Rev. 111, 1719 (1958).
See reference j., p. 247 and p. 266 for a discussion of these

points; also M. L. Goldberger and R. Oehme (to be published).

The matrix elements in (3.13) are essentially those for
the reactions IPzPs) ~

I
st) and IPi'Ps') ~

I
st) so that,

by nucleon number conservation sit '~&4m' (apart from
the bound deuteron state which we shall consider
separately), which explains the lower limit of the first
integral in (3.7) and the second in (3.8). Of course,
(3.13) coincides with the usual statement of unitarity
when s and t lie in the physical region; we assume the
existence of an analytic continuation of Sj into the
unphysical region. (This property has not been rigor-
ously proven, but is true to all orders of perturbation
theory provided that —t(4t4'. ) The individual A s

may be found by writing Qz in the form (2.3).
The corresponding quantities A; are to be obtained

. from the absorptive part 8&& given by

(PsoPso ) *

ezz(s, t) =~l
Srt' ) 44 (Pa-Pi+Ps)

X(Ps'I (t«sf)- IN&(~ I (s(= 'rsf) s IPs)

X (2P.o)&I (P +zP )'+stjl.o(3.1S)

The states I ss) included here have nucleon number zero.
The lowest mass state that enters is the one pion state,
which contributes to the Born term 8; we have sepa-
rated o8 this term explicitly. The next state is that of
two pions, hence the minimum value of m ' is 4p', This
corresponds to the process of nucleon-antinucleon
annihilation into two pions which may be unphysical,
when the energy of the pions is less than the physical
minimum 4''.

The use of (3.1S) in the region 4tt'(s(4szt' in which
the center-of, -mass momentum (s/4 —sit') & becomes
imaginary, needs justification. The legitimacy of the
procedure has been partially verified in perturbation
theory, ~ and we shall not question it. The manner in
which 0',z~ is evaluated in practice will be discussed
later. '
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various technical reasons, two main motives may be
given: first, the partial wave approach allows easy
contact with experimental data; second, the unitarity
condition, which plays an important role in our dis-
cussion, takes a much simpler form for the partial
wave amplitudes than for the whole scattering ampli-
tude. Even if we did not have such motivation, it would
be necessary to treat the low angular momentum states
(at least the 'S state) separately, for mathematical
reasons. The point is that, as was shown by Mandel-
stam, ' when bound states or very strong interactions
are present, subtractions are required in the repre-
sentation for the P's. The additional weight functions
thus introduced cannot be determined by the unitarity
condition for the whole amplitude. Instead, one must
use the unitarity condition for individual angular mo-
mentum amplitudes; this will lead to integral equations
for their determination, and for the determination of
the bound-state energies. We shall devote this section
to the expansion in partial wave amplitudes and in the
next one, derive the dispersion relations that they
satisfy.

The scattering process is described in the center-of-
mass system by a matrix p in spin space, defined in
such a way that the differential cross section is given by

d~/did=
I
&~i'~2'1&Ii i&2&1',

where P ~', 5,2' represent the spin states of the outgoing
nucleons, A, ~, ) 2 the spin states of the incoming nucleons.
The matrix p is a function of the total energy W=2E
in the center-of-mass system (or the momentum p), and
of the scattering angle e (or. s=cos8). These variables
are related to those defined in (2.2) by

s= W2=4(p2+ m2),

t= —2p'(1+s), (4.1)
r= —2p'(1 —s).

The connection between p and the amplitude V'i de-
fined in Sec. II is

Zi = 2n. (W/m') &Xi'X2'
I y lhiX2&. (4.2)

It is convenient to express g in terms of amplitudes
for transitions in states of given quantum numbers for
quantities which are constants of motion, such as total

angular momentum, parity and isotopic spin. In many
problems the orbital angular momentum l is a1.so con-
served, but this is not the case for the two-nucleon
system. Therefore, we have no particular reason for
writing g in terms of amplitudes for transitions in
states of given /. Instead, we should take advantage of
the intrinsic simplicity of the expansion of the scatter-
ing matrix in terms of amplitudes for transitions be-
tween states of given helicities, following the formalism
developed by Jacob and Wick.' We consider therefore
such amplitudes as defined by these authors:

&&i'l~2'
I p I i~&2&=—Qg(2 I+1)

x&~A, 'I r (w) 1~,),&d», (e), (4.3)

where d» ~(e) is the reduced rotation matrix and
X=X&—X2, X'=X&'—X2'. Without any loss of generality
we have set the azimuthal angle of the final momentum
of particle 1 equal to zero.

As shown in Sec. II, if the interactions are invariant
under space inversion, time reversal and rotations in
isotopic spin space, nucleon-nucleon scattering in a
given isotopic spin state is described by five independent
amplitudes. For the helicity amplitudes, the invariance
properties imply the following relations:

(i) Parity conservation

&~,9,'I T'(w)
I z,x,&

= (—.~,'—~,'I r (w)1 —~,—x,&, (4.4)

(ii) Time reversal invariance

&Xi'X2'I T~(W) IXikg&=&XiX21T~(W) lhi'X2'&, (4.5)

(iii) Conservation of total spin

&~i'l~~'I T'(W)
I
~i4&= &l~2'~i'12"'(W)1~2lii& (4 6)

(As pointed out in Sec. II, conservation of total spin
follows from conservation of isotopic spin and parity. )
Taking into account these symmetry properties and
using the relations

one can select the following set of hve independent
amplitudes:

(4.8a)

v 2= &+k+5 ill —
k
—2&=- Z~(»+1)&+2+21T'(W) I

—
2
—k)~oo'(&), (4.8b)

1
v ~= &+5—4141+2—8=-Z~(2J+1)&+2—k I

T'(W) I+2—k&d»'(0)i (4.8c)

~4= &+5—
k I & I k+5& = —Z~(»+1-)&+x2 212'(W) —

I

—4+2&&-»'(tt) (4.8d)

v ~= &+k+x21& I+0—
0&

=-Z~(2J+1)&+2+212'(W) I+2 —2&dio'(~). (4.8e)

' Reference 4; note a difference by a factor of 2 in our definition.
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A convenient feature of these amplitudes from the
point of view of analyticity is their symmetry under
the transformation 8'~ —5', namely

&~, ~, Iq(w, .) I~,~,)
= (—1)&'+~+

&Z, 'X, 'I y( —W, s) I
XP,,&, (4.9)

which can be seen directly from Eqs. (4.17).
Our next step consists in relating the helicity ampli-

tude q; to the covariant amplitudes Ii, . We write the
Dirac spinors, in the center-of-mass system as the
direct product of Pauli spinors in the following way:

1 (E+m) 1 (E+m)
Ix&~ uz'x= I, Ie "'" ~ xz'~,

1V & 2phg ) 1V k 2pXg')
(4.10)

1 ~E+mi 1 (E+mi
Np, g=—

1V ( 2pX ) N & 2pX ')
where 1V= L2m(E+m) j', x&, is an eigenstate of —,'o, with
eigen value X, and the representation is such that
po =p3, p =p2e, p5 =—p&. We then compute the matrix
elements

up, up= (1/2m)L(E+m) —4V.'(E—m)]
X (xax +e"' "'xp&) (4.11)

ug y,ug (p/m——) (X'—X) (x~), +e'""'x~g), (4.12)

uv7574u~= (p/m) (7 '+~) (x~~+e"'"'"xk~), (4 13)

u), p, pug ———(~/2m) L (E+m)+4M. '(E—m) )
X (x+x +e'"'"ex~a), (4.14)

where the appropriate sign is taken in y~&, and y~q, i.e.,
positive for particle 1 and negative for particle 2.
Finally,

yy +e'""'xy =
I
X'+X

I
cos (0/2)

+P,
'—X) sin (8/2), (4.15)

xq+e' ~'"exq= (X'+X)Le, cos(0/2)
+i(X'+X)e„sin(9/2)+ e, sin(g/2)]
—IX'—XII e, sin(8/2)+i(X' —X)e„

)&cos(0/2)+e, cos(8/2) j, (4.16)

where the e's are unit vectors along the three axes. (The
explicit calculation of matrix elements other than
uu, n&5N up5&„n can be avoided by using the relations
U+ U= S+5 F P, T+T=5—+S+—P+P.) Using
these results, we obtain the connection between the q 's

and the F's:

4' pg
—— m(P2+F4) sine. —

4z q g
——(1/E)I m'f Fg+ (F2+F4) cos9)

—(3E'+p')F33 (4 17a)

47r y2
——(1/E) L

—E'P~+ {(E'+p') F2+m'F4) cosg

+3m'F3 —p'Fgj (4.17b)

47ry3= (1/L'))2m'F2/2E'F4/p'( Fy+ 2F3—+Fr)$
&& cos'(0/2), (4.17c)

4wq 4-——(1/I')L2m'-P2+2I P4 —p'( —Pg+2 '3+Fr) j
Xsin'(6/2), (4.17d)

(4.17e)

We investigate now the restrictions imposed on the
helicity amplitudes by the Pauli principle. From (4.17)
and (2.9) it follows that

~~(~—~) = (—1)'"'~~(~)

~2(~ 0)—= ( 1—)"'~ 2(tl),

~3(~—0)=(—1)' v4(~),

~5(~—0)=(—1)' v5(|)

Using the relation

(4.18a)

(4.18b)

(4.18c)

(4.18d)

d,„~(e)= (—1)~+~a, „(~—S), (4.19)

we deduce the following conditions, which are imposed
by the Pauli principle on the helicity amplitudes in
states of given J:
&+l+l I

T'(lU)
I
~l~l&

= (—»~+r+~&+k+ 2 I
T~(w)

I
~1~-;&, (4.20a)

&+l —l I
T'(lU) I+l —

l&
= (—1)'+'+'&+k —

k I
T'R')

I

—2+2&, (4 2ob)

&+2+ l I
T'(lU) I+l —

k&

= (—1)'+'+'&+2+2
I
T'p') I+2 —2). (4 20c)

The helicity amplitudes we have introduced do not
represent transitions in states of given parity and total
spin; we shall introduce now amplitudes that do repre-
sent such transitions. In so doing we shall be able to
get a better understanding of the above conditions. I.et
us first form the states of given parity, namely

(1/v2) (I J; +2+2)~ I &; —
2
—2)), (4.2»)

(1/v2)(I&i+-,' ——',)+ I J; ——,'+-,')). (4.21b)

Inspection of these states shows that the first one,
(4.21a) taken with the minus sign is a singlet, while
the others belong to the triplet state. Moreover, the
states with the minus sign have orbital angular mo-
mentum /= J; indeed, they have the same parity and
evidently 1=J for the singlet state. Therefore, the
following transitions are possible, in states of given
parity and total spin:

»ngl«: fo'=&+k+l
I TI+l+l&
—&+2+2 I

T'I —
2
—

k& (4»a)
Tripl«: f '=&+5 l I

T'I+l-
(J�/)

—&+l —l I

T'I —-.'+l& (4»b)
J &+1+1

I
TJI+lyl&

+&-+;y; I

~T~I-
Triplet ' fq~~=2&+2+2

I
T~ I+2—

~& (4.22d)
(J=l~l) f»'=&+l —ll T'I+i —

4&

+&+2—
k I

T'I —5+2& (4 22e)

The condit:ions (4.20) then imply the expected selection
rules due to the Pauli principle, as shown in Table I.

It is now clear that one should look for such combina-
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tions of the q 's which yield uncoupled singlet and triplet
amplitudes where from one can project out the partial
wave amplitudes f~. After some manipulation with the
functions d»~, one finds that a simple set satisfying
this requirement is

fi=E(pi ps) =—E'Gi zp'G—s+nPGs)

fs =E(pi+ q s) = (E'Gs+tis'G4)z p'Gs, —
(4.23a)

(4.23b)

f,=2(~/y) &,=-~ (G,yG, ), (4.23e)

where s= cos8, y= sin8, and we have introduced the new
set of covariant amplitudes

47rGi=Fi 4Fs+Fs, —

4xG2 ——2P2,

4zG3 ——Fj—2F3—P5,

4mG4= 2P4,

4irGs= Fi+4Fs+Fs.

(4 24)

A factor E has been included in the dehnition of the
f's, in order to make them even functions of this variable.

Aside from their simple relation to the covariant
amplitudes G;, the new scattering amplitudes have
another advantage over the initial p's, in that the
partial wave amplitudes f~ may be projected out of
them by means of Legendre polynomials (rather than
the functions di„s). We find

rl
fed — f,——(s,z)Ps (z)dz,

2m~,
(4.25a)

rl
f„=— f, (s,z)Ps(z) dz,

2E&
(4.25b)

pl
fis = fs(s,z)LJ(J+1))&/(2J+1)

2m 1

&&LP".()-P.—.())d, (425 )

f s= E(L1/(1+ z))p s—L1/(1 —z))y4) = —p'Gs, (4.23c)

f4=E(D/(1+z))~s+I 1/(1 z—))v 4)
= tis'Gs+E'G4, (4.23d)

TAsz.z I. A11owed transitions in nucleon-nucleon
scattering: (—1)'+'+i = —1.

I=O
I=i

s=0

J oddJ even
J evenJ odd

J=l+i
J oddJ even

The expressions for the transition amplitudes in states
of given orbital angular momentum / may readily be

. obtained by means of Clebsch-Gordon coefIicients.
They are

From an analysis of the behavior of partial waves at
threshold, namely that transition amplitudes in a state
of orbital angular momentum /, or of the type (/ 1)—

(/+1) behave like p", we may conclude that in the
vicinity of p= 0 the G's behave either like constants, or
like p'z, according to whether they are even or odd
functions of z.

In the following section, where we write down dis-

persion relations for the partial wave amplitudes, we

shall come across nonphysical values of the energy. To
deal with this situation we may wish to express the
amplitudes in such unphysical regions in terms of
amplitudes for process (II). Therefore, our task now is
to derive crossing relations for the f's. To this effect we

have to establish 6rst crossing relations for the G's by
connecting them to G's describing the reaction (II),
then express the G's in terms of corresponding f's, and
finally the f's in terms of f's The first st.ep is easily
carried out by using the crossing relations (2.19) for
the P's. Ke obtain

where

G(s, t,&) =aBG(t, s,i),

fi=s-i= I:1/(2J+1))(Jf»'+ (J+1)fss
+2P(J+1))'*f»')), (4 26a)

fi=s+i=l/(2J+1))((J+1)fii +Jfss
—2t J(J+1))'f»'), (4 26b)

fs-i, s+i= [1/(2J+1))(l:J(J+1))'*

X (fs2 fll ) f12 ). (4.2«)

fss'= —
I fs(sp)Ps(z)

2J+1 2E~

JP&+i(z)+ (J+1)P&-i(z)
+f4(s,z) dz, (4.25d)

2J+1

1 1
1

4 —1

6 4 —4
2 0 0 1
0 2 2 —1
0 2 2 1
6 —4 4

(4.28)

r'
f (s;)P

2J+1 2E& i

and B is the isotopic crossing matrix (2.20). We write
then

JPs+i(z)+(J+1)Ps i(z)
+fs(s,z)— — dz. (4.25e)

2J+1

f;(s,z) =a ;,(s,z)h, kBGi(t, s,t).,

f(s,z) =A ( ,s)zBG(t, ts),

(4.29)

(4.30)
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where f={f',f'} is a vector in isotopic spin space, the coefficients of the G's in (4.23) and A(s,s)=a(s, s)b, is
indices again referring to I=O or I=1; the a;, 's are the the matrix

.--,'P (1+ )
1 -'p'(1+s)

A =— ——',p'
2 —2p'

0

3E' p'z-
3p'+—E's

0
m2

3E'—p'
m's+2P'

—p'
E2

—m2

E2 p2

m's —2P'
—p'

E2
—m2

—m' ——,'p'(1+s)
-'(E2+m2)s+ p'

2P'
—,
' (E'+m')

—m2

(4.31)

Finally we want the amplitudes G(t,s,t) expressed in
terms of the amplitudes f(E,z) in the center-of-mass
system for process (II), with the nucleon energy E
and the scattering angle cos ' z between the nucleons
(particles 1), given by

t= 4E'=4(p2+m2),

t =—2p2(1 —z),

s = —2p'(1+ z).

(4.32)

Since the connection between the covariant and scatter-
ing amplitudes in the center-of-mass system are for-
mally the same for processes (I) and (II), the required

relations are obtained by inverting a system of equa-
tions of the type (4.23). The result is

Gi ——(1 /E2) Lf&+ (m2/P 2)f2 zf4 —z(E'—/m') f2j, (4.33a)

G2= —(1/P) Lf4+ (E'/m') f43 (4.33b)

G2= —(1/P) f2, (4.33c)

G4= (1/P) (f4+f4), (4.33d)

62———(1/p2)Lf2+zf4+zL(E2+m')/m'jf4}. (4.33e)

Substituting into (4.30) we can obtain the desired rela-
tions between f(E,s) and f(E,z), namely f(E,s)
=Xf(E,z), where

—1+
Sp'p'

2p'

2p2 8p2p2

2p'

st sy
+ (1+

gp2p2 ( 2p2 j
stt

2p' s—4m2

gp2

p' ) 2m2y

p2( t )
p2 2m2 ( s—1- . I

1+
p2 t q 2p2)

2sp'+tt

2p' s+4m'

sp'

p 2m (——1+
/

1+—
f

p2 t ( 2p')

2m' s ) t—1+ I
1+ il 1+

p2 t ( 2p2) E 2p2)

m2/ s——
f

1+
p' i 2@2)

2$p2+ts

4p4

2p' ( st

gp p')

Before turning to the discussion of the analyticity of
the partial wave amplitudes, let us settle the question
concerning the behavior of the covariant amplitudes
at s, t, or t=0. In the previous section we have argued
that the covariant amplitudes have the analytic be-
havior implied by the Mandelstam representation ex-
cept for the possibility of poles at s, t, or t=0. To study
this question we examine Eq. (4.23).

It is clear that at 4=0 (s=1) or t=0 (s= —1) the
6's will have singularities unless

222(s= —1)=0,
p4(s=+1) =0,
222 (s= w1) =0.

From the definitions (4.8) it follows that 222(—1), 224(1);
and p2( —1) represent transitions in which the s-com-

ponent of the angular momentum is not conserved.
Therefore they must vanish. Similarly the fact that
there is no singularity at s=0 can be deduced by a
corresponding argument applied to the XX amplitudes.

The behavior of the amplitudes at ininity is, as
usual, rather more dificult to specify. For fixed values
of cos8 it is reasonable to assume on physical grounds
that fi, f2, f2, and f4 approach constants as s ~ ~
while f4 —+ 0. This follows on the real axis from the
boundedness of the partial wave amplitudes due to
unitarity; the point at infinity is (as is already implicit
in the representation) no worse than a branch point
or a pole so the same conclusion about the f's may be
drawn for complex s. From the formulas relating the
(r"s to the f's (Eq. (433) we see that the G's, for fixed s
approach zero at inanity. This implies that there are
no over-all constants in the representations of the G's.
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The relevance of these remarks for the partial wave
dispersion relations is discussed in Sec. VII.

V. DISPERSION RELATIONS FOR THE PARTIAL
WAVE AMPLITUDES

The deduction of partial wave dispersion relations
from the Mandelstam representation has been treated
by MacDowell" by Frazer and I"ulco" and by Chew
and Mandelstam. "The corresponding discussion in non-
relativistic theory has been given by Blankenbecler,
Goldberger, Khuri, and Treiman. "Because of the com-
plexity of the present problem and since one important
detail had been overlooked in some of the previous
treatments we shall explain the method from the
beginning.

We have learned in Sec. IV how to project the helicity
amplitudes corresponding to total angular momentum
J from the amplitudes f;, by means of Eqs. (4.25a-e).
Further, we know how to relate the f's to the G's which
have a Mandelstam representation. Instead of dis-
cussing the analyticity properties of the f s, it is useful
to remove certain trivial (and nonanalytic) factors
which appear in these quantities. We multiply fs, fii,
fss~, fi~ by E/p and call the resulting functions
ho~, hit~, h2s~, hi~, and multiply f»~ by m/p and call
the result h~2~. The general structure of the quantities
from which the analytic properties of the h's are to be
deduced is

h„~(s)=) dst P C.,~~'a;, (s,s)G, (s, t, t)]Pg (s), (5.1)
gf

where t and t are to be expressed in terms of s and s
according to the definition (4.1). The index n takes on
the values 0, 11, 22, 12, 1; i and j run from 1 to 5, and
J' in general runs over J—1, J, 1+1. The matrix
a;;(s,s) has been defined just below Eq. (4.30) and the
C,,~~' are the numerical factors which appear in
(4.25). For example

Next, we substitute the representation for the G's
(which are linear combinations of the F's) from Eq.
(3.3) and imagine carrying out the integration over s.
We then study the location of the zeros of the de-
nominators s' —s, t' —t, t' —t regarded as functions of s
and s, as s goes over its integration range.

I et us dispose first of the Born terms which, as is well
known, have the structure (ti' —t) '= Lti'+2p'(1 —s)] '
and (tis —t) '= [jP+2p'(1+s)] '. The first term gives
rise to a branch line in the h's which extends from p'
= —p'/4 to —ee or& in terms of s, from s=4m' —p' to

' S. W. Macoowell, Phys. Rev. 116, 774 (1959).
"W.R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).
"G.F. Chew and S. Mandelstatn, Phys. Rev. 119, 467 (1960}.
'SR. Slankenbecler, M. L. Goldberger, Khuri, and Yreiman,

Ann. Phys. 10, 62 (1960).

s= —~. The second term gives rise to the same cut.
Since the Born terms are explicitly known, we can
actually carry out the integration in (5.1), and obtain
thereby a contribution to h ~(s) which we call h ii~(s).
The deuteron pole, which appears only in the I=0, J= 1
amplitude, will be left out for the time being. We have
some information about it, but since we hope to be
able to calculate from first principles at least the
residue at this pole, if not its location, we will not
include it at this point.

Turning now to the double integrals in the repre-
sentation for the G's, we note first that from the vanish-
ing of s' —s there is a cut in the s plane extending from
4m' to infinity along the real axis. Next we consider the
vanishing of the denominator t'—t,; since t' varies from
4p,' to ~, we obtain a cut in the t variable extending
over this range. In terms of s as a variable, with s—4m'
=—2t/(1+s) we have a cut in the s plane from s
=4(m' —p,') to s= —~. It is clear from symmetry
considerations that the vanishing of t —t gives rise to
the same cut. It should be noted however that, since t'
has the minimum value 4ti', for a given s (or p') the
denominator t' —f, vanishes only for s in the interval
—1—2ti'/p'&s&1 (note that p'&0 whenever t' t=0). —
Similarly, t' —t vanishes only for s restricted by —1(s
&1+2ti'/p'. This accounts for the limits on the inte-
grals which appear later in (5.6) and (5.7). To sum-
marize, h ~(s)—h n~(s) is, except for poles associated
with the existence of bound states, analytic in the s
plane cut from s=4m' to ee and —ee to 4(m' —ti')
along the real axis. We might add that the presence of
subtractions in the original representation does not
aftect these conclusions.

We give now a representation for the h ~(s) which
embodies these characteristics. In order not to compli-
cate the formulas unnecessarily we shall not worry about
the question of subtractions or the desirability of in-
suring the proper behavior of our amplitudes near
s=4m', by dividing h ~(s) by appropriate powers of
P'= s/4 —ms (see MacDowell, reference 10); these
questions will be dealt with in Sec. VII. We write, on
the basis of the remarks in the previous paragraph
(assuming, incorrectly, that h (s) vanishes at infinity),

1 t-" Imh ~(s')
h.~(s) =h.s~(s)+ 'ds'—

7l'~ 4m' S —S

1 t
4' '—"'& Im[h ~(s') —h.n~(s')]+-

,

ds'- —. (5.3)
S —S

In both terms we define the imaginary parts by using
the instruction Imh ~(s) = fh ~(s+ie) h~(s ie—)]/2i-

We may compute now the indicated imaginary parts
in terms of the weight functions appearing in the repre-
sentation for the G's. LThese weight functions are
linear combinations of the ones appearing in the repre-
sentation for the F's and it is clear, from an examina-
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Imh. ~(s) = Q C„,s~' ds a,;(s,s)

"dt' pi2i(s, i') p" dt' p i3i( st')
X —— +

~

— PJ (s).
t' —t ~4„~ X t' —t

(5.4)

Reference to Eq. (3.11) shows that the quantity in
brackets is just the absorptive part A, (s,t) of the one-
dimensional dispersion relation for the relevant G, .
Therefore we write

pl
Imh. ~(s)= Q C.,~~', ' ds

tion of Eq. (4.24), that they have the same symmetry
properties. Since we use them for formal manipulations
only, we shall keep the same symbol p.$ We find, for s
in the interval 4m'&s& ~

ImLh~ (s) —hii ~ (s)]
~1

Q CJJ' dsa(s, s)DB ReA (t,t)Ps (s)

f 1+2I"!n'
C~~'

li dsa(s, s)

XZza ReA(t, i)P, (s), (5.7)

fied in Sec. III and may be taken directly from Eqs.
(3.10) and (3.12) except that the crossing matrices for
the 6's, introduced in Sec. IV, must be used. Note the
appearance of the principal value sign in front of the
integrals over p~a in (5.6); this implies that we must
take the real part of the absorptive amplitudes of
Sec. III.

%e have then, introducing an obvious vector-matrix
notation

Xa,;(s,s)A;(s, t)Ps. (s), 4m'&s( ~. (5.5)

"(—1—~~'(u')
dsu;;(s, s)

p" ds' pi2'(s', t) r" dt' p»i(t, t')
X — +P — Pz (s)

7r s —s j4q' m'

f'i+&l4'/n' f' ds p»'(s )t)
C~, J, dsG, j.(s~s) Jl

4p' Ã S —S

In this equation t is to be interpreted as —2p'(1 —s) in

carrying out the s integration. Since s is in the physical
region, in practice we shall use the unitarity condition
for h (s) directly; Eq. (5.5) is simply an explicit
statement of this condition.

The value of Imb, s(s) in the region —~ &s(4
X (m' —p') is somewhat more dificult to obtain. As we

have explained, it arises from the vanishing of t —t and
t' t in (3.3)—. There is therefore a contribution from all

three terms in the 34andelstam representation; from
the one involving both factors t' —t and t' —t we obtain
two contributions, since each of the factors may vanish.
We find, for the interval —~ (s(4(m' —ii'):

1mLh. s (s) —h.ii (s)]

with the understanding that we must write t= —2p'

X(1—s), t= —2P'(1+s) and P'=s/4 —m' If it were
not for the rather subtle point of the appearance of
the real parts of the absorptive amplitudes, "one could
have deduced Eq. (5.7) using crossing symmetry, with-

out reference to the Mandelstam representation (as
done in references 11 and 12).

A close examination of the matrices appearing in the
second term of (5.7) allows us to simplify the equation
somewhat. We change the variable of integration from
s to —s, in which case the limits of the two integrals
become the same; further, we note that t and t get
interchanged. The properties of C~~'a(s, s)EP~ (—s)—
are just such that for all allowed transitions, i.e., those
for which (—1)'+'+'= —1, the second term in (5.7) is
identical to the first. This of course is no accident, but
a direct consequence of the Pauli principle.

The next step consists in substituting (5.7) into (5.3).
Depending upon algebraic convenience, it may be de-
sirable to make a series of variable changes so that,
insofar as it is possible, the arguments of the A. 's

appear in the physical range for reaction (II). The
procedure is slightly involved, so that we give some
details. Ke temporarily drop all irrelevant subscripts,
constant matrices, etc. We are then led to consider the
following double integral I, given by

pg3~

~4„X t' —t
Pg. (s). (5.6)

4(m~—~2)

I=—J~ ds
~1

dha(s', s)
s ( ] 2p/y)

The minus signs in (5.6) arise from our convention
about how the imaginary part is to be dehned:

Im( (
=Im/

E t' —tl &t'+2(s/4 m') (1+a)+is—)
=—~s(t' —i).

The expressions in the square brackets have been identi-

XAp —2p" (1+s), —2p" (1—s)]Ps.(s). (5.8)

We introduce a new variable t'= —2p" (1+a) in place
of s, and obtain

&4 (m2—p2) $ ~
—4y'&

I= i ds —— u(s', s)
s s&4&2 2p 2

XALt', —2P"(1—s)jPs (s), (5.9)
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where z= —1—i'/2p". Next, interchanging the order
of integration and defining p"= t,'/4 m—21 we find

4~i2 dS 1

A.Lt', —2p" (1—z)]Ps (z). (5.10)

Finally, we introduce a new angular variable s, in place
of s'; the object is to turn —2p" (1—z) into a momentum
transfer variable which corresponds to the energy t'.
Thus, we define z by —2p" (1—z) = —2p" (1—z), which
means s'= —2p"(1+z) as it should. In making the
variable change we must split the range of the t' in-
tegration into 4p, & t'&4m' where p" &0, and 4''& t'
&~ where p"&0. We obtain then

J=—
j

~

p"
a(s', z)A(t', —2p" (1—z)

p" 2p" (1+z)+s
XPs (z), (5.11)

where we must interpret z, p", s, as

s'= —2p" (1+z).
p"= —,'s' —m'.

z= —1—l'/2p' =Lki'+ p" (1—z)&/

/2m'+ p"(1+z)j. (5.12)

A somewhat simpler looking form of this result may be
obtained by introducing the momentum transfer vari-
able t' in place of the angular variable z. We define
t'= —2p" (1—z) and eliminate s'. We find then

where the sign depends on details of Dirac and isotopic
spin algebra, and P,= qi+q2 P2. Similarly-,

&P2' If l qiq2)-C(Pi' —qi)'+m'j
aL(P, '—q,)2+m&$-i (5.15)

where Pi' ——q, +q2 —P2'. Substituting into (3.15) and
carrying out the integrations in the rest frame of
Pi+P2 we obtain, up to irrelevant factors,

00 900

dt'
J4 2 40

1 1 t —3)
ai 4m' —t—t,

t'+ 3' t,'+ t' 4m'+s- t'+t')t'p-
X~(i',~')P,.

~ i, (5.13)
Ei'+~'&

'

Reh. The whole problem is slightly academic since,
unless we want to resort to perturbation theory in
order to compute A, we have no choice but to use the
partial wave expansion, whether or not it converges.
In practice, we shall take only a few terms of the ex-
pansion, and disbelieve anything that happens for large
arguments. However, the calculation of the precise
boundary is worth performing, since at a future time
we may be able to overcome the present difficulty.

For this purpose, we turn to the expansion of the
absorptive part in terms of a sum over states, as given
in (3.15).It is obvious that, barring extreme anomalies,
the domain of analyticity in s will be determined by the
least massive intermediate state, namely that of two
pions (we recall that we have split off the one pion
contribution to the absorptive part). Fortunately, it is
not necessary to know in detail the nucleon-antinucleon
annihilation amplitude into two pions, in order to
determine the boundary of the region. It is sufhcient to
use the Born approximation to this amplitude; this is a
well known characteristic of the iterative construction
of the weight functions p in (3.4), as has been described
by Mandelstam. ' In fact, the answer to our problem
could be read from results obtained by him, by suitably
changing variables; however, since the calculation is
short, we give it here.

Spin and isotopic spin play no role in this essentially
geometric argument and for the sake of clarity we drop
them temporarily. In the evaluation of (3.15) we write
for the matrix element &QiQ~ ~ f ~

P2) which enters there,

&qiq2I f'IP2)-L(Pi —qi)'+m'j-'
~L(P,—q,)'+m'7 —i (5.14)

where we have written the z dependence explicitly.
As we mentioned earlier, it is largely a matter of

convenience whether or not the complicated manipula-
tion above should be used in practice. One possible
virtue of the procedure is the fact that we can now
readily expand 2 in terms of I egendre polynomials
(with t,

' as the energy and z as the cosine of the scatter-
ing angle), in the region where such an expansion is
convergent. The determination of this region can be
easily effected by inspection of (5.11) rather than (5.8).

It is worth noting that the boundary of the region
where the Legendre expansion converges is precisely
the place where we must distinguish between A and

X „„&,(5.16)
X—p' qX —

q p li —p' qX+q p
where X= (s/2 —p')/pq, p'=s/4 —m', q'=s/4 —p', and
the vectors in (5.16) are unit vectors. We are reverting
to our original labeling of the scalars s, t, t of (2.2).
The integral is readily transformed into the following:

f 1
dg ~ dg

Jqo Y/
—cosg X(g) ~go 7J+cosg y(g)

(5.17)
x(.) = (1/4 )L(.-l')'-(l'-1) j,

g0=2li' —1, cosg= p' p
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In the first integral we substitute cos8=1+t/2p' and
in the second cos8= —1—t/2p', and we change the
variable of integration to 2p (g—1). We have then,
evaluating the limits in terms of s,

ep(t' —4m') (s—4p') —4p'j
dt'

(t' —t)L1+t'/2p'3

eI (t' 4—m') (s 4—p') 4—p45
dt' . (5.18)

(t —t)L1+t /2p'3

The 8 functions define the regions in the (s,t) and

(s, t) space where the weight functions pis(s, t) and

pi2(s, t) in (3.4) are different from zero. The critical
values of s= cosP for which 2 becomes complex and the
Legendre expansion breaks down, are found by setting
t= —2p'(1 —z), t= —2p'(1+z) equal to the boundary
curves given by the 0 functions. This leads to

z= —1+)4m'+4p'/(s —4p,')$/2 (4s—m') t'= t, (5.19a)

z= —1—I:4~'+4p'/( —4p')3/ (4—~') '= ( 19b)

The first of these is shown in Fig. 1. The regions above
curve (1) and below curve (2) are the allowed ones.
The second condition is simply the reQection of these
curves in the s axis. The maximum of curve (1) occurs
at s=6p' —p'/m' and the value of z at this point is
given by

3p 2p p
z= —1+

20k $2 21S

5p,' 2p,4

1— +- — — —1—4p'/m' (5.20)
2m' ns4 2''

With these facts in mind we return to Eq. (5.11).
It is easy to check that condition (5.19b) puts no re-
striction on the polynomial expansion, whereas (5.19a)
does. Referring to curve (1) a,s zi(s) and curve (2) as
z, (s), we see that the region of integration may be
broken up further into sub-regions where the expansion
is, or is not valid.

~&4™dt t'd;—
"4p'

co 4m2 ~1 a& imisi

d; (..p.......l,d)
d4 4' ~1~s) ~ 4m + 1

'

4m2 8] (S) 00 QQ

+ ~ dt', dz —~ dt' ~ dz (expansion not valid). (5.21)
4p —~ 4m z2(s)

If we wish to use Eq. (5.13) in place of (5.12), we may
use the boundary curves in terms of momentum transfer,
directly given in (5.18). Transforming to the variables
appropriate to (5.13), namely s —+ t' the energy vari-

able, we have the conditions t'= (4nz'+4p, '/(t' 4p')$—
and t'=L —t' —4p'/(t' —4p')7. Again the second condi-

tion is irrelevant, since we are concerned only with t'&0.
Evidently the t' integral may be broken up into two

regions, namely 0 (t'(L4m'+4p'/(t' —4p') ]where a Le-
gendre expansion converges, and I 4m'+4p'/(t' 4p')7—
&t'& ~ where it diverges.

Barring a complete solution of the nucleon-anti-
nucleon amplitude problem, we will be forced in practice
to neglect the contributions from the regions where the
expansion is not valid, or else perform some approxi-
mate evaluation of their magnitude, based on other
considerations. We return to this point in Sec. VI.

VI. LOW-MASS CONTRIBUTIONS

In the next section we shall show how the partial
wave dispersion relations can be used as dynamical
equations for the determination of the low angular
momentum amplitudes. In this approach, we shall

make extensive use of the unitarity condition which,

along the right-hand cut, takes the form

Imf'= &-lf-' I'p-,

the summation extending over all allowed channels

compatible with conservation laws. Here p„ is a phase
space factor. Furthermore, on the grounds that the be-
havior of the amplitudes in a low-energy range is mostly
afI'ected by the nearby singularities, we shall ignore pro-
duction processes and use the unitarity condition as if
nucleon-nucleon scattering were elastic at all energies.

Just below the beginning of the right-hand cut, the
deuteron pole may be present, depending on the par-
ticular state we are considering. As we shall show, the
parameters which define it (residue and location) can
be calculated in principle. In practice, we may want to
take these quantities as given, but at any rate its
handling present no difFicultv.

Qn the left-hand cut the situation is considerably
more involved. The first singularity one encounters is
that associated with the one pion state which, as dis-
cussed before, gives rise to a branch cut running from
4'' —p' to —~ along the real s axis. With the pion
mass and the pion-nucleon coupling constant given,
the contribution of this state can be explicitly calcu-
lated. For the determination of the remaining singu-
larities we must turn to nucleon-antinucleon scattering.

In principle, the partial wave dispersion relations for
this process could be used. On the positive cut we would
make use of unitarity (extended into the unphysical
region to the point where the nucleon-antinucleon pair
has total energy equal'to 2p); on the negative cut, we
would in principle have to use some information about
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FIG. 1. Curves showing the domain of validity of the Legendre
polynomial expansion of the nucleon-antinucleon amplitude. The
allowed region is that above curve 1 and below curve 2. Outside
this region the expansion de6nitely diverges.

nucleon scattering. Ke would thus be led to a very
complicated set of coupled integral equations which, if
solved, would give us the desired answers for both
nucleon-nucleon and nucleon-antinucleon scattering. In
practice the task is almost hopeless. In making use of
unitarity, we could not possibly neglect inelastic proc-
esses in the physical region; nucleon-antinucleon scatter-
ing is violently inelastic and besides, if we wish to con-
tinue the amplitude below the physical threshold we
must take account of precisely these inelastic processes,
at least those which involve nucleon-antinucleon anni-
hilation into up to 13 mesons.

Returning to the nucleon-nucleon problem, the first
singularity we encounter on the negative cut beyond
the one meson branch point, is the two meson singu-
larity. In the region between (4nP 4p') and (4m' —9y')—
on the real s axis, there are no other singularities and
one might hope that, if the idea that only nearby singu-
larities are important is correct, it might be permissible
to restrict oneself to the one and two pion contributions
on the left-hand cut.

The two pion contribution to the absorptive part can
be calculated if one knows the nucleon-antinucleon
annihilation amplitude into two pions, extended into
the unphysical energy region for this process. Although
this amplitude is not exactly known at present, it
might be worthwhile to use such results as obtained by
Frazer and Fulco" '4 in order to find out what conse-
quences they entail in nucleon-nucleon scattering. I.et
us remark that, consistent with our approximation of
neglecting higher singularities, we expect the main con-
tribution to come from the nucleon-antinucleon energy
region near 4p, '. For the partial waves in the lower

"W. R. Frazer and J. R. I'ulco, Phys. Rev. 117, 1609 (1960).

angular momentum states (J=O, 1) we would take the
Frazer and Fulco solution, modi6ed by a normalization
procedure which will be described by Ball and Wong
in a future paper. "Higher partial waves may be con-
sidered in Born approximation; this will lead essen-
tially to the fourth-order contribution to the nucleon-
nucleon amplitude for these higher waves. To this
effect, we take the full Born approximation to the
annihilation amplitude, subtract the lower angular mo-
mentum, and replace the subtracted parts by the
explicit solutions mentioned above.

As discussed at the end of Sec. V, we can. obtain the
imaginary parts of the amplitudes f in the unphysical
region by relating them, via the crossing relations (4.30)
and (4.33), to the imaginary parts of the corresponding
amplitudes f for the nucleon-antinucleon process. The
contribution to the imaginary parts of these amplitudes,
due to the two meson intermediate state, are related
through the unitarity condition )see also the definition
of Qzz in (3.15)), 'to the amplitude for nucleon-anti-
nucleon annihilation into two pions as follows:

Imfz ——0,

qE p
Imf, =—

~ dQ(Gj. ,p, „'),

Im(f3+ f4) = qE
dn(V, e+ *),

2m (1+8)~

E
( g)

(6.1)

q18
1m'= ' dQ(p++p+ +),

2ir(1 —P)-:

where F&z are the annihilation amplitudes defined by
Frazer and Fulco." Here q= (s(4—y')*' denotes the
momentum of one of the mesons-in the center-of-mass
system for the annihilation process, the integration is
over the directions of j, and we have written

s/4= E'= q'+zJ, '= P+m2, z =cos8+1+2tj(s 4m')—
Of course, unitarity implies that Eqs. (6.1) are valid
for s)4m' only, but the extension into the region below
4m' can be justified. " In the Appendix we illustrate
such continuation by calculating the fourth-order
perturbation theory contribution. Since the exact
quantities diRer from the fourth-order parts only in
the weight functions which appear in the Alandelstam
representation, functions which are real, the result we
obtain is valid in general.

I et us now give the partial wave expansion of the
right-hand side of (6.1). We will then state the correct
analytic continuation and again, in Appendix B, verify

"J.S. Ball and D. Y. Wong (to be published}."S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).
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it for the fourth-order case. According to Frazer and
I'ulco (note the slight change of notations)

~++=&9+s) L(7iq)'/7 E7&+'(s)dso'(ll),

~+-= & —+=-&—V+l)E(Pq)'/p7& '(s)-~ o'(tl)
(6.2)

Substituting into (6.1), we obtain

Im fi=0,
Imfs = (q/2PE) E (2I+1)(7 q)" I

&+'I'doo'(8),

Im(f4+ f4) =LqE/2io'(1+I) 7Q (21+1)
x(7-q)" I&-'I'd '(0),

(6 3)
Im(fs f4) =L—qE/27''(1 —z)7Z(2J+1)

x (rq)" I
&-'I'd»'(0)

Im fs——Lqrri/2PE(1 —z')'*7+ (2J+1)
x (7~q)" I

&+'b-'I der'(0).

Here, the absolute value sign means that we must take
the analytic continuation of bb* from the region s&4m2.
In the perturbation calculation the b's are real, and the
absolute value sign is superfluous. I et us point out,
however, that a certain amount of care is required
when using the quantities Z"~ of Frazer and Fulco""
given by

T+'= Lq(77q)'/77&7&+', I' '= Lq(pq)'-/7i7& '(6.4)-
In continuing these quantities into the region 4p2(s
&4444' we must replace

I
T~~ I' by (—1) '

I T~ I' since,
in this region, p is imaginary.

Using the crossing relations for the f's and projecting
out individual angular momenta, we can easily obtain
the contributions to the imaginary parts of the partial
wave amplitudes. Since the final expressions are rather
long, we shall not write them explicitly.

Before concluding this section, let us write down the
one-pion and deuteron terms. The one-pion state gives
the following contribution to the Feynman amplitude
for nucleon-nucleon scattering Lwritten in the repre-
sentation (2.3)7:

)P P~
4 r(1 pion) =3g'I +

I
(Ps

(p' —t 14' t)—

I'inally, the contributions to the f's are given by

3g' ( t t
2

164r Ep' t —14' t)—
g'( t t

fi'= fs'-=
I

+
164r 3ti' —t Ii' tJ—

(1 pion)
3gt' p p'

8~ (p' —t ps —t)
3g( p p'

3fs'=f4'=
I

———+
8m (l4' —t P' —tJ

fs'=f4'=0.

(6.7)

To avoid any possible confusion about normalization,
we remark that g'/44r~15.

According to Blankenbecler, Goldberger, and Hal-
pern, " the deuteron state makes a contribution in the
I=0, J=1 part of the Feynman amplitude of the form
R/(s —mDs) where

R=Pg u(Ps')L5'sy (+&Ps' &7Cu(P&')u(P )C-'
XL+'V P+P's P7u(P.), (68)

( is a complex unit pseudovector describing the deu-
teron polarization, which satisfies $ (Ps—Pi) =0, F and
g are real. The summation over $ leads to

R—5 u(Ps )ypcu(Pi )s(Pr)C you(Ps) y(Ps Pi )
(Ps—Pi) u(Ps')Cu(Pr')u(Pr)C 'u(P )—6 g(u(Ps')4y. PsCu(Pi')u(Pi)C 'u(Ps)

+u(P, ')Cu(P, ')u(P, )C 'sy Ps'u(Ps)}, (6.9)

and the following contributions to the covariant
functions:

G,'= —(p'z/2~vs) S'g/(s —4uD')

G;= —(E'/2~m) Zg/(s —~ s),

(deuteron) Gss=0, (6.10)
G4'= (1/2') 5'(&+my)/(s —mg)')

G,'= —(P'z/2~ns) g(r+mg)/(s —rrios).

The contributions to the f's are

g'= 0

fss = (S/24r) (4ri &'—p' g)'
(deuteron) fss =0, (6.11)

f4'= (E'/24r) S',

f,'= (444/2~) p(crisp —p' —g).

Finally, let us quote the relations between the quantities
5 and g, and the nonrelativistic parameters de6ned in
GN.O,

'

P P
I

op, . (6.5)
&p,s—t p,

' t&—
Gg' = —3G2' = —G3' =3G4' =Gg'

3g'( 1 1

8 &p' t 14' t)——
(6 6)(1 pion) %=4(4m)'*(1+p/V2)Lm(1 —nr, ) (1+ps)7—!

g =—6 (24r/n)'*nipL'444 (1—nr, ) (1+ps) 7
—'*,

(6.12)

'~R. Blankenbecler, M. L. Goldberger, and F. R. Halpern,
Nuclear Phys. 12, 629 (1959).

3g't' 1 1
+

Srr Ep,'—t ps —t)

The contributions to the covariant functions are
therefore
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where p is the asymptotic d to s-state ratio for the deu-
teron wave function and n'= zzz&( (binding energy). r, is
the effective range as defined in G.N.O.

h(v) =1V(v)/D(v), (7 1)

where X(v) is analytic in t.he v plane except for the
branch cut from —~ to —vp while D(v) is analytic
except for the branch cut from 0 to ~. The deuteron
pole, for the J=1,I=O amplitude, which could be
incorporated in E(v), will be discussed later on, when
we shall argue that it may correspond to a zero of D(v).
The discontinuities of X and D across the respective
cuts are given by

X(v+zp) —X(v —zp) = 2z Imlz(v)D(v)
= 2m-in(v)D(v) (v & —vp), (7.2)

. t'
D(v+ip) —D(v —ip) = —2il l

A (v) (v&0). (7.3)
& v+zrz')

These conditions alone are not sufficient to determine
Iz(v) completely. One must also specify the asymptotic
behavior of X and D for large v. The lack of knowledge
of this behavior in field theory, leads to the well-known
Castillejo, Dalitz, and Dyson ambiguity. In connec-
tion with the Low equations, where this kind of am-

biguity also arises, it has been argued that the physical
solution is the one that corresponds to the iteration
solution of the equation, the expansion in power. series
in the coupling constant. One can state this argument

' I . Castillejo, R. H. Dalitz, and F. J. Dyson, Phys; Rev. 101,
453 (1956).

VII. DETERMINATION OF THE PARTIAL WAVE
AMPLITUDES FROM THE DISPERSON

RELATIONS

We turn now to the method of solution of the partial
wave dispersion relations. As we have mentioned before,
we shall make extensive use of the unitarity condition
for the partial wave amplitudes in an approximate form,
by neglecting inelastic processes.

Let us consider first transitions in states with J=/, for
which f~= e"~ sin8q, the phase shift being real in our
approximation. The functions h(v) = [(v+zzz')/vj'*f~(v)
where v is the square of the momentum in the center-
of-mass system, v=P'= (s/4 —zizz), are analytic in the
v-plane cut on the real axis in the intervals (—~, —vp)

and (O, pp) where vp=zz'/4. In addition, they have the
following properties:

(i) h(v)*=h(v*),
(ii) For —pp (v(vp, Iiilh(v) =zrn(v) where n(v) is

assumed to be a known function of v. In our approxima-
tion, u(v) is given by the one- and two-pion contribu-
tions to the absorptive part.

(i») Fo«&v&~ Im&(v)=[v/(v+~')3'lh(v)l' or,
equivalently, Im (1/h) = —[v/ (v+zzzz) ]'*.

We write, following Chew and Mandelstam, "

~
—vp

X( ) =Iz(0)+ ' n(v')D(v')
V V V

(7.4)

v t" ( v l* dv'

l
X(v ) . (7.5)

zr& p E v'+zzz') v'(v' —v)

more generally in such a way that it applies to the
present situation, by requiring that the physical solu-
tion contain no undetermined parameters once the
masses and coupling constants have been specified; the
precise content of this statement will become clear later.
If it is at all possible to find a solution satisfying this
criterion, we will assume it to be the physical solution.

Analytically, any solution satisfying (7.2) and (7.3)
may contain zeros in. D(v), which are poles of h(v). In
nonrelativistic potential scattering, where the physical
solution is obtained by making D(v) —+ 1 at infinity,
the zeros of D(v) correspond to bound states of the
system. In field theory, any bound state gives rise to a
pole in the scattering amplitude for the corresponding
angular momentum, when continuation in the energy
is effected below the threshold for the scattering process.
In the present problem, we would like to allow for the
existence of one pole in the amplitude for the J= 1, I=0
state, but nowhere else.

At the present stage of development of axiomatic
field theory, one cannot distinguish between elementary
and composite particles. To each stable particle is
associated a field which asymptotically satisfies a free-
field equation corresponding to the given iliass of the
particle. In such an approach, the possibility of calcu-
lating the binding energy of particles like the deuteron
is precluded. On the other hand, in the usual Lagrangian
formalism a distinction is made between elementary
and composite particles, since the Lagrangian depends
exclusively on the fields describing the former. In this
case, one must be able to compute the binding energy
of the latter. In our approach, this is possible only if we
think of the deuteron pole as arising from the. vanishing
of D(v) at the proper place.

Physically, we would like to picture the situation as
follows: for sufficiently small coupling constant, the
scattering amplitude has no bound-state poles. As the
strength of the interaction is increased, a pole should
appear just below the physical threshold and move
down, with increasing binding energy, until the correct
location is reached for the physical value of the coupling
constant. This singularity in the scattering amplitude
could be obtained if D(v) develops a zero. Examples for
special models, or nonrelativistic potential scattering,
indicate that this in fact happens.

Let us write now representations for S and D which
display the assumed analyticity properties. h(v) does
not necessarily vanish at indnity and subtractions are
required. We shall make one subtraction, and argue
then that this is the maximum we can allow. We nor-
malize for convenience D(0) = 1, and obtain
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v q
' Lv/(v —m'))&+1

m 4v —m')
t v/(v —m')$& —1

(7 7)

In Appendix C we shall discuss a variational method of
solution of such equations. Once D is known, we can
calculate N and obtain finally h(v) for the case J=/

Let us now consider the scattering amplitudes in the
triplet states with J/1. We follow here a proposal by
Bjorken which extends the method we have described
to the case of many channel reactions.

Consider the submatrix f= ~~f;;~) of the scattering
matrix which describes a many channel process like
triplet nucleon-nucleon scattering for instance. The
unitarity relation in the physical region may be written
in matrix form:

It will be shown later that the scattering length can be
determined in principle, in terms of the source function
n(v). If, however, we perform more subtractions, the
new parameters thereby introduced cannot be calcu-
lated. Therefore the representations (7.4) and (7.5)
satisfy the criterion we have adopted for the physical
solution. We remark that on the positive axis the ampli-
tudes are certainly bounded for finite values of the
energy. Our criterion corresponds to the assumption
that this is the case everywhere in the complex plane.
I.et us also note that for J=/&0, h(0) =0.

Substituting (7.4) into (7.5) and interchanging the
order of integration we obtain

D(- )=1+k(0)~()
7(v') —V(v) dv'

j+v n( —v')D( —v') —, (7.6)
VP P P P

where

tained by solving the equations comes out. symmetric.
The variational method discussed in Appendix C applies
also to this system of coupled equations.

In the states of angular momentum J=1 and iso-
topic spin I=O the triplet amplitudes shall have a pole
corresponding to the deuteron bound state. According
to our earlier discussion we conjecture that this pole
might not be explicitly introduced as a singularity in
S but will rather appear as a singularity of D ' in the
formal solution of the equation for D. Let us write:

D'= C/-(detD) (7.9)

where the elements of C are in general homogeneous
polynomials in terms of the elements of D. In the
present case:

'- -D„D„ (7.10)

11 B 22 8 12 (7.12)

Computing these residues from (6.11) one obtains:

=1p
(f ').=——( ~—P'b)',

2Ã 3E

Then a pole of D ' corresponds to a zero of detD. One
expects that only one of the eigenstates of the 1"matrix
has a pole. This actually happens if detD has a simple
zero. We then have:

deth= (detN) (detD ') = (detN)/(detD). (7.11)

If h is diagonalized this shows that only one element
has a simple pole, the other is regular. One can then
deduce the following relation between the residues of
the triplet amplitudes:

Imf= ftpf, (7.8)

where p, which gives the density of.intermediate states,
is diagonal. Due to time reversal invariance f is sym-
metric so that we have ft= f*.Now we write

h= P(v+m')/vg&f=ND ',

1 p
(f„&),=— e(~z—p& g),

2' 3

1 2p
(f22')z=

2Ã 3

(7.13)

where E and D are matrices whose elements have
analytic properties analogous to those described before,
namely, N(v) is analytic in the v-plane cut from —~
to —vo and D(v) is analytic in the v plane with a
branch cut from 0 to 0D. Since fii and f22 are odd
functions of E and fi2~ is even one cannot in defining

h(v) eliminate all kinematical singularities. In our
present definition h» has a purely kinematical branch
point at E=0.The discontinuity of X and D across the
cut are given as before by (7.2, 3) provided we interpret
these as matrix relations. (In our particular problem
p=t v/(v+m')$& for the h's. } Therefore we can write
down representations for N and D in the form (7.4, 5)
and an equation. for D like (7.6). (Since we are dealing
with matrices the order nD must always be preserved. )
One can easily show that if h(0) and the source func-
tions n(v) are symmetric as they should then h(v) ob-

which indeed satisfy the identity (7.12).We also obtain:

1 p
(fs) ii =——(2&r+mF —P2 g)',

2& gA

1 v2P
(fso)ii = (Er—mr+—p'b) (7.14)

27/ g'E
X (2&F+nzE —p'g),

=12P
(fD) = (ES mr+p—g)—'. —

2g E

AVe shall now discuss the question of threshold condi-
tions and the determination of the S-wave scattering
lengths. An inspection of (4.33) shows that the follow-
ing conditions must be satisfied in order that the 6's
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be finite at E'=0, and p'=0:

fi fo-&f-4= o%')

f4+fo= o(p')

fo= o(p')

f2+sfo=O(p')

(7.15a)

(7.15b)

(7.15c)

(7.15d)

the imaginary part of the amplitudes. Therefore they
impose some restrictions on the source functions a(v)
which must be chosen (in our approximate calculation)
so as to comply with them. For J=1 and J=2 we
obtain.

fo' fo'+—~foo' ofi—'=0 (7.19a)

fo' —fo' —2fn'+ o foo' —(5/4) fP =0. (7.19b)

The last three are threshold conditions that simply say
that fi', fsri, fo, etc., vanish at v=0. The general state-
ment of the threshold conditions, which is implicit in
the 2vIandelstam representation is that fo and fi
behave like p'~ around p'=0 and fq i~, fq i q+i~, fr+i~
behave like p'& 'i, p', p'& +", respectively. The exact
solutions of the dispersion equations will automatically
satisfy these conditions. We make use of them to deter-
mine the values of f~(0) in our equations. In general,
however, our solutions will not satisfy the threshold
conditions for high angular momenta, because of the
approximations we have been forced to make; our
choice of the source functions n(v) leads to violation of
unitarity on the negative cut, or rather for the crossed
processes and as a consequence the threshoM condi-
tions will also be violated. One can correct for this by
suitably modifying the source functions at high energies
(where we know nothing about them) so as to insure
the proper threshold behavior of the solutions.

The determination of the S-wave scattering lengths
makes use of (7.15a). I et us write it as a condition on
partial waves. First we have:

fo+sf4

E ] J J+1
&z+i' — J'z i' Ifoo'

p

+ Eg'f i~ (7.16)J(J+1)

P )J—1 J+2 2J+1
fo2'+'+ fi' ~&~',

p & J J+1 J(J+1)
E

fi= —Z(2J+1)fo'&~= —Z(fo' ' f 'o) J'~' (7—17)

so that at E'=0 the following relations hold:

J—1 J+2
fo fo~+ foo —i+ —foo~+i

J J+1
2J+1

fi~ =0 (7.18).
J(J+1)

We might mention that, since at E'=0 the amplitudes
are complex, this relation holds for both the real and

These equations determine the singlet (7.19a) and the
triplet (7.19b) scattering lengths. For J)2, (7.1g)
should be automatically satisfied by the exact solutions.

Although, as we have seen, the scattering lengths
can in principle be determined, in practice the method
involves serious obstacles. In the 6rst place the knowl-
edge of a number of other partial waves would be re-
quired. In addition, in establishing the equations for
the partial waves, we aimed at approximations which
are presumably valid in the physical region near
E'=us'. Singularities near E'=0 were altogether left
out. Therefore the solutions we obtain will not be
accurate near E'=0 and cannot be used to determine
the scattering lengths. More generally we expect that,
short-range forces (corresponding to multiparticle ex-
change terms) contribute appreciably to the scattering
lengths. In view of the uncertainties connected with
the determination of the scattering lengths, there is
little hope of obtaining the deuteron binding energy.
Since we cannot, at present, take all the above men-
tioned effects into account, we may be forced in practice
to supply the values of both scattering lengths from
experiment. On the other hand, we expect to obtain
the deuteron residues with reasonable accuracy, hence
be able to determine the d- to s-state ratio and the
triplet effective range.

Of course, the energy dependence of the phase shifts
can also be studied. Ke would expect to get reasonable
agreement with experiment provided the one and two
pion exchange effects (aside from the possibility ot
having to give the scattering lengths) were the domi-
nant terms. This in turn might be the case for energies
such that the momentum transfer does not exceed 3p, .
It is hard to specify the energy very closely since, of
course, the process N+N~3n (which is the 6rst
neglected one) does not reach full strength instantly.
As a rough criterion, therefore, we might select a maxi-
mum momentum transfer of 4p, , which corresponds to a
laboratory energy of about 170 Mev. It would cer-
tainly be interesting to see even with only the two pion
exchange taken into account whether there was any
indication of a hard core as shown by a sign change in
the 'So(I= 1) phase shift. It is quite likely that no such
eGect will be found and that our inability to adequately
account for the left-hand cut will necessitate the intro-
duction of even more parameters then the zero energy
scattering lengths. These might appear either as cutouts
or as parameters in phenomenologically introduced
poles.
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APPENDIX A. PARTIAL WAVE DISPERSION RELA-
TIONS FOR NUCLEON-ANTINUCLEON

SCATTERING

A treatment of the partial wave dispersion relations
for nucleon-antinucleon scattering can be given along
lines quite similar to those for the nucleon-nucleon
problem. There are some important qualitative dif-
ferences between the two cases which are worth bringing
out.

One question that arises immediately is whether or
not, in this discussion, the deuteron should be re-
garded as an elementary particle in so far as the
nucleon-antinucleon process is concerned. One point of
view which is perhaps defensible is the following: the
deuteron state has nucleon number two, and is thus
foreign to the nucleon-antinucleon system in much the
same way as the pion, with nucleon number zero, is
foreign to the nucleon-nucleon system. Thus, in the
approach where one regards the pion as the source of
interaction between the nucleons and the deuteron
bound state as a consequence of this interaction, we
would be led to consider the deuteron as the source of
the nucleon-antinucleon interaction, and the pions as a
consequence. Just as we imagine increasing the pion-
nucleon coupling constant until the deuteron appears,
we might increase the residue of the deuteron pole until
the pions appear. This whole question is a rather deep
one in our opinion and we hope to return to it in the
future. For the purpose of the present discussion we
shall assume that both the pion and the deuteron are

to be treated as actually present in the theory, with
given masses.

The Mandelstam representation for the amplitudes
6, (s,t, t) which describe nucleon-antinucleon scattering
is given by an equation of the sa,me form a,s (3.4)
which we repeat here for convenience:

t."ds'
t

"dt' p~2'(s', t')

4„~ n ~4„r7(s' —s)(t' —t)

t
"ds' I" dt' p~j(s', t')

~,„~~,„n (s' —s)(t' —t)

t
"dt' t

"dt' p, '(t', t')
+

2

4 2 m. "4„m (t' —t)(t' —t)

+B,(s, t, t), (A.1)

where B;(s,t, t) contains both the one-pion and the
deuteron terms. The one pion contribution is given by

6)'= 62'= —63'= —|4'= 6'5'

3 g

24' p' —t

g2+4-
24m p' —t 4x p' —s

g
(1 pion) 6~' —— (A.2)

g
g2' ———| '= —64'= 65'=——

2 kr tM' —t

Note in particular the pole term proportional to
(pP —s) ' which, since it appears only in 6&', leads ulti-
mately to a pole in the '50 isotopic triplet amplitude of
the nucleon-antinucleon system [see Eqs. (4.23a) and
(4.25a)). The deuteron term contributes the following:

G~' ———GP = (1/32am) [SmF'+-,' (s—t)m g'+2K g(t—t+6m') j/(mn' —t),

6,'= —620= (1/32am) [—', (t—s)m g'+2@g(2m' —s)]/(mg)' —t)

(deuteron) 63' = —63'= (1/32~m) [—4m5"+ 2 (s—t)m g' —4m'F gj/(mD' —t),

6,' = —64' ——(1/32~m) [—4m B'——', (s—t)m g' —4m'F g/ (mgP —t),

6,'= —GP = (1/32vrm) [—8m&'+-', (s—t) m g'+2K g (t—t—2') j/(mgP —t).

(A.3)

The partial wave amplitudes can be projected out as
in Sec. V. The algebraic relation between the f's and
the 6's is exactly the same as that between the f's and
the 6's, and we write, by ana, logy with (5.1),

dh a;, (s,s)G;(s, t,t)Ps (s). (A.4)

The one-pion terms lead to a pole at s=p, ' and a cut
which extends from —~ to 4m'(1 —p, '/4m') The deu-
teron contributes terms of the form (mD' —t) ' which

give rise to a cut in the s plane extending from —~ to
4m2(1 —mD'/4nP). Turning now to the double integrals,
the vanishing of s' —s generates a cut from 4p, ' to ~
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and the discontinuity across it is

1m[i.'(s) —Ii. '(s)j

t
"dt' pig'(s, t') /

"dt' pi3'(s, t')
X I — —+ —— P~ (s)

4~' 7r t' —t

1
J'J

(—1—2m/p)
ds a,i(s,s)

p" ds' pi2'(s')t) ~" dt p2~ (t)t')
X ~

— +P — Ps (s)
-~4p~ X' S S 2

~l
C;.~'~ ds a,;(s,s) (»),„

(—1—2fn /y )

X«A. (t,t)P& (s), (—~ &s&0), (A.6)

where the second line follows from Eq. (3.6) [remember
that the equivalent of the matrix 0 is» Eq. (4.27)].
Finally, we have a contribution arising from the vanish-
ing of t' —t. This leads to a cut from —~ to 4m2

X (1—p'/m') provided that for fixed s, —1(s(1
+2p'/p'. We find

1m[k ~(s)—h, ii~(s)j
~112@2/y2

C, s'~ dsag(s, s)

t

"ds' pij(s', t) "dt' p23'(t', t)
X — +P — Ps (s)

-~4p, ' 3 S S 4m~

XReAi, (t&s)P~ (s) (—~ &s&4m'(1 —p'/m'))
(A.7)

C;,~'~ '

ds ag(s, s)A, (s,t)Ps. (s),

(4p,'&s& ~), (A.5)

where h ~~ is the projection of the "Born" terms. The
second line follows from (3.9), and of course we would
be able to use the unitarity relations for the region
4m2(s( ~ where the process is physical.

As in the nucleon-nucleon problem, the vanishing of
the other denominators is more difficult to handle.
From t' —t=0 we find a cut in the region —~ (s(0
provided that, for fixed s=4(p'+m') s is in the range

(—1—2m'/p') (s(1.We obtain then a contribution

Im[h, ~(s) —h its(s) j

where we have used Eqs. (3.6) and (3.12) to get the
second line. The contribution just obtained corresponds
to "crossed" nucleon-antinucleon scattering in which t

plays the role of energy and s that of momentum
transfer between the nucleons.

We see that the analytic structure of the nucleon-
antinucleon partial wave amplitudes is considerably
more complicated than that met in the nucleon-nucleon
problem. I.et us write Irnh 1 for the contribution given

by (A.5) in the region 4ti'(s&0, Imh &~ for (A.6) in
the region —~ (s(0 and 6nally Imh 3~ for the con-
tribution (A.7) in —~ (s(4m'(1 —p'/m'). A repre-
sentation for h„~(s) which expresses all of this informa. —

tion may be written as follows (we omit discussion of
behavior at infinity):

t."ds' Imh, ~(s')
h.~(s) =h. ii~(s)+ '

4p2 7r $ —S

t" ds' Imh. 2~(s')

oo X' S S

S —S
(A.S)

where we have dropped irrelevant factors. We introduce
s"=—2p" (1+s) and find

ds' ~ 4&" ds"
I2= a(s', s)

~s —$~4 2 2p

XA[s", —2P"(1—s)]PJ (s), (A.10)

It should be noted that the cuts associated with Imh 1~

and Imh 3~ overlap and further, that they both involve
the nucleon-antinucleon amplitude in the unphysical
region. We shall see that the absorptive amplitudes
A(t, t) and A (t,s) that enter in this overlap region are in

fact both real and can be expanded in a I.egendre series.
The presence of Imh 3 means that there is an explicit
coupling of partial wave amplitudes, in contrast with
the nucleon-nucleon case. Also, as mentioned in Sec. VI,
the multipion states occur in the vicinity of the physical
threshold, so that no approximation which neglects
them makes much sense. The only possible approach
for handling the situation would have to be a phe-
nomenological one.

In order to analyze the problem of the expansion of
the absorptive amplitudes in partial waves, it is con-
venient to make a series of variable changes analogous
to those made in Sec. V. In evaluating the integral over
Imh 2~ we have to consider the following type of
quantity:

ds'
ds a(s', s)

~ S —S~ ( 1—2m'/p')

XA[—2p"(1+s), —2P(1—s)3" (s), (A 9)
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with z= —1—s"/2P". Interchanging the order of in-

tegration we are led to

p '&"' ds'

XA[s", —2p" (1—z) jPg. (z). (A.11)

Finally, we introduce a new angular variable z// in

place of s'; the object is to turn —2P"(1—z) into a
momentum transfer which corresponds to the energy
s". Thus, we define z" through —2p"(1—z)= —2p'"
X(1—z") which means s'= —2P'"(1+a"). Since in

this case p'") 0 over the whole range of s", there is no

need to split the s// range of integration as we had to do
previously. %e obtain finally

~ co ~oa pll2 I

4m2 (1—/t~/m2) d'S/ &
—4p'2 d)//

a(s', z)
s —s~ 4ll' 2p

XA (t",s')P (z), (A.16)
where z=1+t"/2P". Interchanging the order of in-
tegration leads to

4/2 d/
I,= Jl dt")I a(s', z)

2 2p s —$

A (t",s')Ps (z), (A.17)

00 00 00

I3= ~ dt ~t dz —t dt
J

dz
4/t —1 4nl 00

where 7i'"=t"/4 —nP. There is no obstacle in interpret-
ing s' as simply the momentum transfer variable in this
amplitude. Alternatively, we may write s'= —2p'"
X (1—Z") and obtain

where
s'= —2p'"(1+a"),

p"= s'/4 —m' (A. 13)

XA fs", —2P"'(1—z")$Pg (z), (A.12) p//P

a(s', z)
p' 2P '(1—z )+s

XA ft" —27-"&(1—z")$P,.(z), (A.18)

z= —1—s /2p ~

An alternative form of the result is obtained by using
the momentum transfer variable t"= —2P'"(1—z") in

place of z". Then

00 00

I,=4 l ds" I

J,„. s"+t"s"+t" 4m'+s—

X~ 4~~—s// —t",
sll+tll

(S
XA (s t )Pj~ [ ~ (A.16)

E s"+t")

4~ (1 ~/~) $$ 1+2@/

I3=—
J

— t 4tz a(s', z)
S —S

XAf—2P"(1—z), s'jPg. (z). (A.15)

We introduce then in place of z, t"= —2p"(1—z) and

Note that the momentum transfer t"&0, so that un-
limited applicability of the polynomial expansion cannot
be expected.

For Imh 3~ we carry out a similar calculation. We
start with

where, of course, s', P" and z must be expressed in terms
of the new variables.

Let us find now the region where the Legendre poly-
nomial expansion of the absorptive parts converges.
To do this, we refer to our computation of the boundary
curves given in Sec. V. First, we must justify our state-
rnent that in the region where the cuts overlap, namely
from 4t4' to 4(m' —t4'), the annihilation amplitucle for
the "crossed" nucleon-antinucleon process can be ex-
panded in Legendre polynomials. This may be readily
seen by looking at the expression for A given in (5.18).
It is necessary to reinterpret the variables so that s in
that equation corresponds to t" in (A.17), and t ~ s'.
The breakdown of the expansion occurs when either of
the curves (s' —4m') (t" 414') = 4@4 or (s—'+ t'l) (tl' 4p,')—
=4@4 are intersected by the region of integration in
(A. 17). Confining ourselves to the overlap interval
444'(s'(4(m' —p,') we see that the region in (A.17)
shown in Fig. 2 is free from singularities, so that the
polynomial expansion is legitimate. It is a simple matter
to reinterpret these curves in terms of the angular
variable P.", but we shall not stop to do so.

In order to attempt an evaluation of I~ in Eq. (A.12)
or (A.14) by means of a Legendre polynomial expansion,
we must determine the analyticity properties of A (s",t")
as a function of t". This may be done by finding the
region where p~~ and p13 are diferent from zero, by
means of a calculation analogous to that carried out in
Sec. V for A. Thus, according to Eq. (3.13), we must
evaluate the absorptive part by retaining the lowest
mass intermediate state which in this case is that of
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Sj

I

I

I

I

4m'

4 2

(S'-4 ) ($- 4p. ) = 4p,

ing amplitude. The crossing relate@.s can be used then
to obtain the corresponding contribution for the
nucleon-nucleon amplitude.

In terms of the invariant amplitudes for nucleon-
nucleon annihilation into tw'o pions, the quantities Szz
which appear in (6.1) can be written in Born approxi-
mation as

F++——P = (mq/Ss-E) cos8iB,

) «4p,4 F+ = —(q/Ss. ) sin8ie '&'B,

F +——(q/8') sin8ie'e'B,

FIG. 2. The region of integration in Eq. (A.17) is shaded. The
curve which encloses the double cross-hatched region is the
boundary where the Legendre expansion fails. It has it's maximum
at s'= —Sy~, t"=6@'.

two nucleons (the deuteron being treated separately).
We find, omitting unimportant factors

(Q Q. lzl~.)-, p . .. (A. 19)
(~i—Qi)'+t ' (~i—Qs)'+t '

7++~ ——7 ~ = (mq/8~E) cos8sBe,

q sin8(cos8i+cos8s) '

P+ = ——slneye» ——
87r 1+cos8 (8.2)

q sin8(cos8i+cos8s)
7 +~———sino)e

—'» ——
Sm 1+cos8

where

(~s'lylQiQ. )-, ~ . (A.2O)

p i Q1)2+tt2 (~1 Q2)2+ti2

(g6)2 g
—

1

2) pq 3,—si X—s2

Proceeding through the calculation as in Sec. V, we
6nd Anally

8[(t' 4tj,') (s 4m') —4ti4j— —
A (s, t,t) i

dt'
0

t' —t

r
" 8L(t' —4ti') (s—4m') —4ti4j

(A.21)
0

t' —t

The critical values of t" as a function of the energy
variable s" are given by the equations

t"= 4p,'+4tJ,4/ (s" 4m'), —

t"= 4 (m' —p') —s —4ti'/ (s"—4m').

A.22 Fio. 3. Coordinate system for evaluation of the two-pion inter-
mediate state contribution to the negative cut.

(A.22)

The second restriction is irrelevant since we are only
interested in t"&0. Again, it is quite easy to reinterpret
these results in terms of angles, for use in (A.12).

The relevant angles are shown in Fig. 3. The upper
factor and sign refer to I=O, the lower to I=1. We
have written z~ ——cos0~, z2 ——cos82 and

APPENDIX B. THE TWO-MESON CONTRIBUTION
IN FOURTH-ORDER

s 2p,
X—

4pq l (s—4ms) (s—4ti')]l
(8.4)

Ke calculate here the fourth-order contribution to
the absorptive part of the nucleon-antinucleon scatter- Substituting into (6.1) we find
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E 1/4)

(1/6q gp, gE
I Im(f3+ f4) = "dD sin'8g—

01/4) 327rp'(1+ z) &

g'p'm'q I. ( 1 1 i ( 1 1
Imf = - —dQzz I—

32~EP" (X—z, Z+z, ) 4X—z, X+z,)
sin8 sin8~(cos8q+cos8~)e '&'

1+cos8

1 1 ) 1 1
&&

I

&X—zg X+zg) ~X—z. X+z,)
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(1/6q gp gE
I Im(f3 —f4)= ~~ dQ sin'8~e "&'—

32z-p2(1 —z) ~

sin8 sin8~(cos8~+cos82)e '&'

1+cos8

1 1 ) 1 1

&X—z,

(1/6q
!

(1/4)

g'p'm'q t cos8~ sin8(cos8~+cos82)
Imf~= ~' dQ —cos8~ sin8~e'&'+

32z.p~E (1—P)kJ 1+cos8

1 1 i 1 1
x!

EX—zg X+zg) &X—z2 X+z2)

I.et us define

s—2p
Ti ———I dQ

4~" Z —z, ! (4m' —s)(s—4p')]l

j(4'' —s) (s—4p') jl
&tan '

s—2p,

X' 1T=—
i

dQ
4'~ (X—zg) (X—z,)

(s—2p')2

static limit:

z. (s—2p')
I'q —+

4m (s—4p, ') *'

(s—2p') 2

T2~
4m'(s —4p')

(s—2p')'
T3~

4m'(s —4p')

(8.7)

(g (s—4p') L (s—2p')'+ g (s—4p') j}'*

&(tan ' t(s 4p')—
(s—2p')'+ t(s—4p')

1
Tg=—I dQ

4 " P.+z,)(Z—z,)
(s—2p')'

(~(s—4l ')L(s—2p')'+~(s —4p') j}'
t(s —4p')

&tan '
(s 2p')'+~(s 4p')— —

Also, near the two-meson threshold, the following ex-
pansions are of interest:

T&=1+ + +
5&4

2+z 7+6z+2z2
T~= 1+ +- +

3X' 15K'

(2—z) 7—6z+2z2
T8=1+ + +

15X4

These integrals have the following simple form in a We obtain then

Im f2'= z (g4p4ns'q/Ep') (2 4T~+ T2+ T3),—

Imf~'= (g'p'~'q/Ep') (T2 T3), —

3 g'qE 4Tg (z—3 1 q (1
Im(f3'+f4') =- —2+ + I +—

I
T2—

I

—1
I
T3

2 p'(1+z) 1+z E1+z X') (X' )
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g'qE 4T (z—3 1 ) r'1
Im(f„'+f, ')= -- +i ——+—)T~+i ——1 iT3,

p'(1+a) 1+z (1+z X') (X' )
3 g'V'qE 4 ( 1i (—z—3 1

Im(f3' —f4') =- —2+ T~+
i

1——
I T2+

(
+—

)
T3

2P(1—z) 1—z & X') i 1—z X')

g'v, 'qE 4Tg f 1 ) (—z —3 1 )
Im(f, ' —J, ) = ——+( 1——(T,—i +—)T, ,

p'(1 —z) 1—z ( X') & 1—z Vj

3gp82$28 1
Im f~"=— Ti+ T2—T—3—,

2 p'E 1—2 1+z 1—z

(Il 9)

g p, fsg
1m'

p'E

2 1 1
T1+ T2+ T3

1—z' 1+z 1—z

In order to compare with the partial wave expansion,
we make use of the Born approximation to the quan-
tities b~ which appear in (6.3):
(1/Q6) b+' =g'p'mQ i(X),
]1/+6i

) (pq) ~b+~ =g'p'mXQg (X),

t'1/v'6i . . . P(~+1)l:
i(7q)'b-'=g'r '

&1/2 ) 2J+1
xt Qz i) —Qz+i(&)j,

where the Q's are Legendre functions of the second kind.
Substituting into (6.1) and making an expansion in
powers of 1/X (near threshold), it is not too dificult
to check that it agrees with the corresponding expan-
sions of (8.9).

I

Vp

1V(v) =LV(r)+ (p —p) n(p')D(p')x, (c.1)
P P P P

APPENDIX C. VARIATIONAL METHOD FOR
THE 1V AND D EQUATIONS

The most familiar method for solving the Fredholm
equation (7.6) is by iteration. However, the convergence
of the series thus obtained depends on the magnitude
of the source function. In many instances of interest
the series fails to converge as is the case when bound
states are present. A numerical integration of the equa-
tion is possible to any desired degree of approximation
by replacing the integral by a finite sum and solving a
system of linear algebraic equations. It may, however,
be useful to handle the equations by variational
methods. In this appendix, such a variational approach
is developed which is valid also for the multichannel
case.

Let us make a subtraction in (7.4, 5) at some value
P=P. We obtain

Multiplying both sides of (C.3) on the left, by
D( v)rn( —v)/(v+—p)' and integrating, one obtains

where:
2 (r)1V(v) = st(r), (C.5)

dp
Z(r) = D( v)rn( —v)D(v)N(r) '—

(v+ v)'

+ D(—v) ~n( —v)K(v, v)
vp v+P

dp
D(—p)'n( —v)~(p)

(v+ r)'

F00 dp
+ D(—p)'n( —v)v(v)

~ Vp (v+r)'
=I.Pg (p)+I.P, (C.6)

P P f P

~( ')
"o Ev'+m'I

dp
x . (c.2)

P P P P

Replacing 1V(v') in (C.2) by the expression (C.1), in-
terchanging the order of integrations, and making
p —+ —p, we obtain

D( p) =—D(p)+~'(p) Lv(v) v( —p)7—

+ (v+r)
i

n( —v')D( v')E(v—',v), (C.3)
vp v+9

where
1 r" 6

L, p"+m'I (v"+v')(v"+v)
V(v') —V(v)

(C.4)
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8'p

(R(v) = i D( P) cx( P)D( P)J., (v+r)'

dv' r" dv
D(—v)'~( —PW (v, v')

4 vv P +P4 vo V+V

amplitudes themselves. Ke now make a subtraction
in (7.6) at v= —v:

D(—v) =D(v) —(v+v)
QO dv

X I n( —v')D( —v')E(v', v, —v) —, (C.14)
X (—.')D(—.'), (C.7)

where

n(v)=h(v) '—v( —v). (C.8) I;(„„„-)

(C.9)Zr(R-'2= Sr(r)X(v)-',
dv

Now it can be shown, because of the symmetric 1 t'" (
nature of E(v, v'), that, when D(—v) satisfies the inte-
gral equation (C.3) the expression Zr(R '2 is stationary.
But when D(—v) is a solution of the integral equation, M~ltiplyi~g (C 14) by D( v) ~( v)/(v+v)v and jii
(C.S) gives: tegrating one obtains:

and making use of (C.1) and (C.3) one deduces:

ZrsV '= dpi/dr. —

The variational principle gives then:

(C.10)

D(—v)~n( —v)D(r)
v(v+ v)

dp p dp I dp
D(—v)rn( —v)D( —v)

J„, V(V+ V)~ vv V 4 vv P

dri/dv= (g—Li+L2)6t i(Lirq+L2r), (C.11)

which can be used to calculate successive derivatives
of g. For the lowest angular momentum the variational
principle for the first derivative at v=o gives the effec-
tive range in terms of the scattering length. It seems,
therefore appropriate to make a power series expansion
of q(r):

q(v) = (1/m) (a '+-,'rv+ ). (C.12)

The coeScient r in the relativistic expansion is related
to the nonrelativistic eGective range by:

r = r,+4/nm a '/m'. . ——(C.13)

The double integral in (C.7) is positive definite. There-
fore if —n( —v) is positive definite, (C.9) is actually a
minimum (and negative) and the value obtained for r
is positive and a lower bound.

For higher angular momenta one can take advantage
of the vanishing of the amplitudes at threshold, h(0) =0,
to derive a more powerful variational principle for the

zi(r)D(v)= Ni(r). (C.17)

Again the keriiel E(v, v', —r) is symmetric and one ob-
tains that 2& '(R&(Z& ') is stationary when D( v)—
satisfies the integral equation (C.14). But then (C.17)
holds and gives:

(C.18)

On the other hand from (7.4) one can readily identify
Zi (v) as X(v), and the variational principle is estab-
lished for the inverse of the amplitude:

h(v)-'= Z,-'61, (Z )'. (C.19)

For v)0 (physical region) both sides of this equation
become complex but the imaginary parts are identical.
The variational principle obtains therefore for the
real part.

XD(—v) n( —v)E(v, v', —v)n( v')D( ——v'), (C.16)

or in an obvious notation:


