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The spherical lattice gas is a modification of the ordinary lattice gas in which the occupation number of
each cell is permitted to be any real number rather than 4-1. However, the sum of squares of the occupation
numbers is required to equal the number of cells. This permits one to evaluate the partition function by
integrating over the surface of a certain sphere rather than by summing over lattice points on that surface.
The partition function and the equation of state of the gas are evaluated in this way. It is found that in three
dimensions the gas condenses, but not in one or two dimensions. Graphs of the phase transition curve and
of the isotherms in three, two, and one dimension are presented.

The analytical work is simplified by taking advantage of the relationship between the properties of the
lattice gas and of the Ising model of a ferromagnet. This relationship, demonstrated by C. N. Yangand T. D.
Lee for the ordinary lattice gas and Ising model, also applies to the spherical lattice gas and the spherical
model of a ferromagnet. The properties of the latter have been evaluated by T. H. Berlin and M. Kac.
Graphs of the isotherms of the spherical model of the magnet, which were found in the course of the work,

are also presented.

1. INTRODUCTION

HE spherical lattice gas is a simplified model of a
gas. We introduce it because we can deduce its
equation of state statistical-mechanically. We find that
it undergoes phase transition in three dimensions,
although not in one or two dimensions. We also find
that its isotherms and transition curve, shown in Fig. 9,
are in qualitative agreement with experimental curves.
However, they exhibit a physically unreasonable nega-
tive pressure at very large and very small specific
volumes. This can be traced to an inadequacy of the
model for such specific volumes.

The ordinary lattice gas is defined by first dividing
the volume V, which the gas occupies, into V identical
cells (e.g., cubes), each of unit volume. The potential
energy of interaction between two molecules of the gas
is defined to be infinite if they occupy the same cell,
to be —4J<0 if they occupy cells which are nearest
neighbors, and to be zero otherwise. Thus at most one
particle can occupy each cell. Therefore the distribution
of particles can be described by the ¥V coordinates
g1, o2, *++, oy where g;=-1 if cell 7 is occupied and
o;=—11if it is not. By analogy, we define the spherical
lattice gas by permitting each o; to have any real value,
but requiring that the o; lie on the sphere

ey

Then the grand partition function Qg¢ of the spherical
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lattice gas is obtained from that for the ordinary
lattice gas by replacing sums over lattice points which
lie on the sphere (1) by integrals over that sphere.

We were led to introduce the spherical lattice gas by
the work of Yang and Lee! and that of Berlin and Kac.?
Yang and Lee showed that Qg, the grand partition
function of the ordinary lattice gas, could be expressed
in terms of Qy, the partition function of the Ising model
of ferromagnetism in a magnetic field H. But Q; has
not been evaluated for a three-dimensional magnet nor
for a two-dimensional one with H#0, although the
spontaneous magnetization is known as a function of
temperature in the two-dimensional case. Therefore
the phase transition curve of the two-dimensional
lattice gas could be determined, but not the isotherms,
while nothing could be found for the three-dimensional
case.

Berlin and Kac introduced the spherical Ising model,
which is related to the ordinary Ising model as the
spherical lattice gas is to the ordinary lattice gas. They
were able to evaluate its partition function Qgz for any
value of H in one, two and three dimensions. It exhibits
spontaneous magnetization in three dimensions but not
in one or two dimensions.

We noticed that the method of Berlin and Kac could
be used to evaluate the grand partition function of the
spherical lattice gas. We also noticed that Qg is related
to Qgr in the same way that Qg is related to Qr. There-
fore we could actually use their results to obtain the
value of Qge.

In the course of our analysis of the isotherms and
transition curve of the spherical lattice gas, we were
led to examine the magnetization curves and spon-

1C. N. Yang and T. D. Lee, Phys. Rev. 87, 410 (1952).
2T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
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taneous magnetization of the spherical Ising model.
Therefore these curves are also included.

Berlin, Witten, and Gersch® have studied a cellular
model of the imperfect gas. In it the numbers of
particles in the cells are taken as thestatistical variables.
Their partition function, like ours, involves an integral
of the exponential of a quadratic form. However, whereas
our integration extends over a hypersphere, theirs
extends over a hyperplane. Their integrand includes a
weighting factor which damps their integrand when it
deviates from the average configuration of one particle
per cell. In three dimensions their model exhibits con-
densation-like behavior below a critical temperature.
There the p-v isotherms are nonanalytic functions of v
consisting of three pieces. However, the condensation
region is not characterized by constant pressure, and for
temperatures sufficiently low theisotherms show thermo-
dynamic instability. Thus their condensation phe-
nomena are rather different from ours.

2. BASIC FORMULAS

The grand partition function of the lattice gas is*

QG(V,&J’) = Z

o1=x+1

g v
X eXp[— 2 aiﬂhﬂf]
ov=1+1 2 i,i=1

Xexp[ (cg+3 Iny) E oilexp[3(cg+Iny)V]. (2)

Here ¢; equals +1 if cell 7 is occupied by a particle
and —1 if it is not. We note that the o; satisfy (1) and

®)

The constant ¢ is defined in terms of Boltzmann’s con-
stant £ and the absolute temperature 7" by

g=J/kT. )

The quantity a;; equals +1 if cells 7 and 7 are nearest
neighbors and is zero otherwise, while ¢ is the number
of nearest neighbors of a cell. For cubic cells in one,
two, and three dimensions ¢ equals two, four, and six,
respectively. The fugacity is denoted by y.

From the definition of the spherical lattice gas, its
grand partition function is

QSG(V:&}’)
g v
=f fdal - doy exp[~ > ai,vo,-o,]
s 2 i,5=1

Xexp[ (c§+3 Iny) 2 o;] exp[3(cg+Iny)V], (5)

gi=1.

where 2 represents the spherical surface > o2=V.

(lagr.)H. Berlin, L. Witten, and H. A. Gersch, Phys. Rev. 92, 189
953).

4G. F. Newell and E. W. Montroll, Revs. Modern Phys. 25,
353 (1953).
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The partition function for the Ising model of ferro-
magnetism is®

QI (Nng;‘?c) = Z Z
g1=2x+1 oN=%1
g w N
Xexp[— Z (11;,'0','0']"*—5(3 Z O'j.J (6)
7, 7=1 =1
In (6) N is the total number of lattice sites and

3e=puoH /ET. (N

Here uo is the magnetic moment per particle. The parti-
tion function for the spherical model of ferromagnetism
is®

QSI(N,S,&’C)=f fd(,l oo doy
z

g x N
XeXPI:E 2. aioio 30 Y Uj]. (8)
,7=1

=1
In (2) let us replace V by N and set
Iny=2[3c—cg].

Then by comparing (2) with (6) we obtain the following
relationship, first obtained by Yang:

QG(N;ga exp[Z (5(3— 68)])
= CXPI:GC—'%C(S]QI (N,S,GC) (9)
Upon comparing (5) and (8) we obtain the correspond-
ing relation for the spherical models,
QSG(N73) exp[Z(t}C——cg)])
=exp[H—3cg10s1(NV,g,3¢).  (10)
From either (9) or (10) it follows that? the thermo-
dynamic properties of the lattice gas are related to
those of the magnet. These relations are the same for
the spherical and the original models. They are
*(9,3) = (F+30)/9— 3¢, (1)
v(g,3¢) =2/ (1+91). (12)
Here p*=p/J where p is the pressure of the gas, v is its
specific volume, and 9M=M/uo where M is the mag-

netization of the magnet. F, the limiting free energy
per particle of the magnet, is defined by

1
F(3e,9) =:][VJLIB E InQ. (13)
Here Q denotes either Q; or Qgzr. M is given by
oF
M (3¢,9) =—. (14)
a3c

5 See reference 4, p. 353.
6 See reference 2, p. 827.
7 See reference 4, p. 384.
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Fi16. 1. Isotherms of the one-dimensional Ising model of a ferro-
magnet. The curves, based on Eq. (20), give the normalized
magnetization 9 =2M/uo as a function of the normalized external
field 3¢=H /KT for constant values of 9=J/kT. Since M is an odd
function of 3C, only the non-negative values of 3¢ are shown.

Equations (11) and (12) are the parametric form of the
equation of state of either the lattice gas or the spherical
lattice gas. The parameter is 3¢, which ranges from
minus infinity to plus infinity.

To obtain the equation of state of the spherical
lattice gas we must insert F(3C,g), the limiting free
energy per particle of the spherical Ising model, into
(11) and (14) and then use (14) in (12). For a simple
cubic lattice in # dimensions (z=1, 2, 3), Berlin and Kac?
have evaluated this free energy which we denote by
F.(30,9). They obtain

2

Falit,g)=31n G) )t gt .

15
49(z—n) (9

AND J. B.

KELLER

In (15) we have omitted an additive constant which
occurs in reference 2 due to multiplication of Qsr by a
normalization factor. Here z is a real positive solution
of the equation

Je2 ' dfa(2)

= i 1
29(z—n)?  dz e

The function f,(z) is defined by

fal®)= (Z:r)” fozr ... foﬂ dwy -+ dw,

Xln[z—i cosw,-]. an

7=1

It will prove convenient later to note that (16) implies
dF 4(3)/dz=0 and that 3 is an even function of 3¢. Then
(15) shows that F, is also an even function of 3C.

The equation of state of the spherical Ising model of
a magnet is obtained by inserting (15) into (14). It is

M (3¢,9) =3/29(z—n). (18)

From (18) we see that 917 is an odd function of 3C. In the
following sections we shall examine the equation of
state of the spherical lattice gas and of the spherical
Ising model in detail on the basis of the above equations.

In order to compare the properties of the spherical
lattice gas with those of the lattice gas, we must
determine the properties of the latter. We can do this in
the one-dimensional case. The limiting free energy per

Fre. 2. Isotherms of
the one-dimensional lat-
tice gas based on Egs.
(22) and (23). The
curves show the norma-
lized pressure p*=p/J
as a function of specific
volume v for wvarious
values of 9=J/kT.




EQUATION OF STATE OF SPHERICAL LATTICE GAS 25

particle of the one-dimensional Ising model Fyy, is®

F11(3¢,9) =In{expg coshic

+[exp(29) sinh23c+exp(—29) ). (19)
Upon substituting (19) into (14) we obtain
My (3€,9) =[sinh?3e+exp(—49g)]~? sinhge.  (20)

(This formula is misprinted in reference 4.) From (20)
we deduce, omitting the subscripts,

M (3¢,0)=tanhiC; (21a)
M3, 0)=1, 3>0; (21b)
m0,9)=0, g<o; (21¢)
M(w,9)=1. (214d)

Equation (21c) demonstrates the well-known fact that
spontaneous magnetization does not occur in the one-
dimensional Ising model. Magnetization curves based
on (20) are shown in Fig. 1. Less complete graphs are
given in reference 4.

Upon substituting (19) into (11) and (20) into (12)
we obtain the equation of state of the one-dimensional
lattice gas in parametric form,

1
p*=—In{expg coshi¥C
J

+[exp(29) sinh?*3¢+exp(—24) ]3¢} —1,
v=2{14[sinh?e+exp(—49) T* sinhse} L

(22)
(23)

Isotherms of the one-dimensional lattice gas based on
(22) and (23) are shown in Fig. 2. We see from (23)
that as 3C varies from 4« to — =, v varies continu-
ously and hence no phase transition occurs. We also
obtain easily the values listed in Table I. We see that
the equations of state of the one-dimensional Ising
model and of the one-dimensional lattice gas are
physically quite reasonable.

3. THE ONE-DIMENSIONAL SPHERICAL
LATTICE GAS

Since the properties of the spherical lattice gas can
be found in terms of those of the spherical Ising model,
we shall first examine that model. Its equation of
state is given by (16) and (18) which become, in one

TaBLE L. Three pairs of values of 3C and 9 for the one-dimen-
sional Ising model of a ferromagnet and the corresponding pairs
of values of v and p* for the one-dimensional lattice gas.

3 Mm ? p*
+ +1 1 ~23C/9 — +»

0 0 2 (1/9) In(2 coshg)—1
— —1 -+ 0

s See reference 4, p. 385.
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FiG. 3. Isotherms of the one-dimensional spherical model of a
ferromagnet based on Egs. (24) and (25). The normalized mag-
netization 9 =M /uo is shown as a function of the normalized
external field 3¢=H/kT for various constant values of §=J/kT.
These curves lie below the corresponding ones of the Ising model
shown in Fig. 1.

dimension,
Je2 N 1

B g1 @—DF @4
M=3C/29(z—1). (25)

From (24) and (25) we find that
M (3e,0) =23e[ 1+ (14+43c2) ¥, (26a)
Me,0)=1, 31>0; (26b)
m(0,9)=0, g<=; (26¢)
M(,9)=1. (26d)

The proofs-of these results are similar to, but simpler
than, those given in Appendix B for the three-dimen-
sional case. Equation (26c) shows that spontaneous
magnetization does not occur in this case. Magnetiza-
tion curves of the spherical Ising model, based on (24)
and (25), are shown in Fig. 3. For a given 3C and g, the
magnetization of the spherical model is less than that
of the Ising model (Fig. 1).

From (11) and (15) we obtain for the spherical
lattice gas in one dimension

p*(9,5€)= (F1+30)/9—1, (28)
FiGe.9) =3 ln(g) 3 nife+ (2= 1]
302
+32+m- (29)
From (12) and (25) we obtain
(g,9€) = 2{1+35¢/[29(z— 1) ]}~ (30)

Equations (28)-(30) express the equation of state of
the one-dimensional spherical lattice gas in terms of the
parameter 3C. The quantity z is defined as a root of (24).
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Fic. 4. Isotherms
of the one-dimensional
spherical lattice gas
based on Egs. (28)-
(30). The curves show
the normalized pressure
p*=7p/J as a function of
specific volume o for
various values  of
9=J/kT. Each iso-
therm crosses the axis
p*=0 for a sufficiently
large value of v indicat-
ing the inadequacy of
the model for such large

Isotherms of the one-dimensional spherical lattice gas
based on (28)—(30) are shown in Fig. 4. The method of
computation used in preparing this and the subsequent
figures is explained in Appendix A. Since spontaneous
magnetization does not occur in the spherical magnet,
phase transition does not occur in the spherical lattice
gas. Much as in Appendix B we obtain the special
results shown in Table II. We note from the third line
of the table that when » becomes large, p becomes
negative. Furthermore for large v the isotherms corre-
sponding to large values of g lie below those correspond-
ing to smaller values of g. This unphysical behavior of
the equation of state for large v is due to the inadequacy
of the spherical model in this limit.

4, THE TWO-DIMENSIONAL SPHERICAL
LATTICE GAS

For n=2, Egs. (16) and (18) for the spherical Ising
model become

29=5%/29(s— 2"+ (2/72)K (2/2),
Mm(3e,9)=3¢/29(z—2).

(31)
(32)

In (31), K(a) is the complete elliptic integral of the
first kind, 0<¢<1. From (31) and (32) we find that
(26) is still valid for #=2. This is shown as in Appendix
B by using the facts that K(0)==/2 and K(1)=co.
From (26¢) we see that spontaneous magnetization does
not occur for the spherical Ising model when n=2.
The Ising model, however, does exhibit spontaneous
magnetization when »=2. Magnetization curves based
on (31) and (32) are shown in Fig. 5.

To obtain the equation of state of the spherical lattice
gas in two dimensions, we set #=2 in (11) and (15)

values of 2.
which become
T Je?
Fy(3,9) =5 In——3foi(a)+ gst+——  (39)
g 49(z—2)

Here f5(2) is defined by
1
(2m)

9T 21
fo(z)= f f dwdw; In[ 3— cosw; — cosws .
0 0

Upon integrating once, f3(z) becomes

1 T
fa(z)=— f dw In%{ (z— cosw)

+[(z—cosw)?—17%}.  (36)

TasLE II. Three pairs of values of 3¢ and 9 for the one-
dimensional spherical model of a ferromagnet and the correspond-
ing pairs of values of » and p* for the one-dimensional spherical
lattice gas.

(d an 9 p*
23
+ » 1 1 ~N— — 4
g
1 1
0 0 2 —3 (1449 —In—[ (1+492)4]} —1
29 4
In}3c|
— —1 4 ~— — — w0
29
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From (12) and (32) we obtain
v(9,5¢) =2[14-3¢/29(z—2) ™ 37

Isotherms of the two-dimensional spherical lattice
gas based on (34)—(37) are shown in Fig. 6. From (26),
(34), and (37), by considerations like those in Appendix
B, we obtain the special results in Table III. Here 2z,
is the solution of Eq. (3) in Appendix C. We see from
the third line of the table that for large v the behavior
of the two-dimensional spherical lattice gas is un-
physical, just as in the one-dimensional case.

5. THE THREE-DIMENSIONAL SPHERICAL
LATTICE GAS

In three dimensions, (16) and (18) for the spherical

Ising model become
32 dfs(2)

N 29(z—3)? dz
M (3C,9) =3¢/29 (z—3).
In (38), dfs/dz is given by

dfs(z) 1 fz" fﬂ fzf dwidw.dws
dz (@23 Jdy Yy Jo  3—coswi—coswy— cosws
1

29 ) (38)

(39)

4 2 2
() w
w2 Jy 2— COSwW %— COSW
In Appendix B we show that
M (3e,0) =25c[ 1+ (14-43c2)F1; (41a)
m@e,»)=1, 3>0; ' (41b)

F16. 6. Isotherms of
the two-dimensional
spherical lattice gas
based on Egs. (34)-
(37). The curves show
the normalized pressure
p*=p/J as a function of
specific volume v for
various  values  of
9=J/kT.Eachisotherm
crosses the axis p*=0
for a sufficiently large
value of v indicating the
inadequacy of the model
for such large values of v.

L
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Fic. 5. Isotherms of the two-dimensional spherical model of a
ferromagnet based on Egs. (31) and (32). The normalized mag-
netization M =M /uo is shown as a function of the normalized
external field 3¢=H/kT for various constant values of 9=J/kT.

H
m(0+,5)=(1—%—) for 9>9.=0.2527---; (41¢)

(41d)
(41e)
Equations (41c) and (41d) show that spontaneous

magnetization occurs for g> g..
In Appendix D it is proved that

m(0,9)=0
M (,g)=1.

for g<9g;

am

d3C |5 =0

am 1 3)
— =, 0<9g<Y; 43
dsc|ie=0 29(zm—3)

am

N =0, 5>(ﬂc (44)
d3C |3 =0
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F16. 7. Isotherms of the three-dimensional spherical model of
a ferromagnet based on Egs. (38)-(40). The normalized mag-
netization M =23 /u, is shown as a function of the normalized
external field 3¢=H/kT for various constant values of §=J/kT.
Spontaneous magnetization occurs for 9> 9.=0.2527. This is
shown by the fact that for such values of 9, the magnetization is
different from zero for 3¢=0.

Here 2., is the solution of Eq. (4) of Appendix C. Mag-
netization curves based on (38)-(41) are shown in
Fig. 7. The spontaneous magnetization curve based on
(41c) is shown in Fig. 8.

The equation of state of the three-dimensional
spherical lattice gas is now obtained by setting #=3 in
(11) and (15) which become

7*(9,3¢) = (Fs+3¢)/9—3, (45)
Fy0,9) =3 I Lfo(e) 9ot — . (46)
5,9)=4 In——} —
3(3¢,9 ng 3f3(2)+ 9z 19(6—3)
Here f3(2) is given by
1 27 2 2
fs(z)= (2m)? j; j; j; dwidwydw;
XIn (z— cosw;—coswa—cosws). (47)

Fic. 8. Spontaneous magnetization of the three-dimensional
spherical model of a ferromagnet based on Eq. (41c). The ordinate
is the limiting value of the magnetization 917 (3C,9) as JC tends to
zero through positive values. It is just the intercept of the iso-
therms with the axis 3¢=0 in Fig. 7. The abscissa is 9./9.

KELLER

Equations (12) and (39) yield
v(g,30) =2[1+43¢/29(z—3) . (48)

From (41), (45), and (48) we derive, in Appendix C,
the entries of Table IV. In this table 2z, is the solution
of Eq. (4) of Appendix C, while vz and vq are deter-
mined by the equations

v,=2[14+M (0+,9) T (49)
1/1)1,+1/0G= 1. (50)

For very small and very large v, the isotherms behave
as they do in the one- and two-dimensional cases. How-
ever for > 4., a discontinuity occurs in the p*, v curves
at the parameter value 3¢=0. At this value we obtain
two different specific volumes for each p*. We designate
the smaller vy, to indicate the value at which the liquid
begins to vaporize. The larger we call vq, which is the

TABLE III. Three pairs of values of 3¢ and 9 for the two-
dimensional spherical model of a ferromagnet and the correspond-
ing pairs of values of » and p* for two-dimensional spherical
lattice gas.

3c M ] p*
23C
+ 1 1 —— 4w
g
1 T
0 0 2 —In—— fo(zm)+ 92m p —2
29 g
In|3c|
— -1 + —_—— -
29

specific volume at which the gas begins to liquefy. The
jump in specific volume is

V¢—UL= 4M(0+;g)/|:1— M2 (0+ ;og)]

We now eliminate J between (45) and (49), obtaining

2 fv—1 vr—1 4
() )
ge\ oLl v? Je

1S'ULS2-

(51)

(52)

Equation (52) defines that half of the phase transition
curve, or boundary of the two-phase region, in the p*»
plane at which the liquid begins to vaporize. The other
half of this curve is obtained by eliminating vz from
(52) by means of (50), which yields a relation between
p* and ve. This is the half of the phase transition curve
at which the gas begins to liquify. The maximum of p*
on this curve occurs at v,=v¢=2, where 9p*/dvL
=0p*/dve=0. It is interesting to note that at the
maximum 3%p/0v.2=82p/dve?#0. Thus the phase
transition curve is not as flat at its maximum as is that
of the two-dimensional ordinary lattice gas. The phase
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transition curve or two-phase boundary is shown as a
dashed line in Fig. 9.

In order to examine the isotherms of the three-
dimensional spherical lattice gas, we prove in Appendix
D that

dp*
— =—(n=3), 9<gs; (53)
dv v=2

ap*

dv ?=0[,0G

From (54) we see that the isotherms meet the two-phase
boundary with zero slope and that the compressibility
Is infinite at this boundary. The isotherms are shown in
Fig. 9. The horizontal line within the two-phase region
in that figure represents the discontinuity (51).

Although Fig. 9 bears a marked qualitative resem-
blance to the p, v diagram of a real gas-liquid system,
it is unrealistic for large g at small v and for all g at
large ». This is shown by the small negative trough of
the condensation curve for 1<9<2 and by a corre-
sponding one of the same depth but of infinite extent
for large values of .

6. FINAL REMARKS

Our method of computation of the isotherms from
(45)-(48) is described in Appendix A. In this compu-
tation for each g, values were assigned to the two

8 —

TaBLE 1IV. Five pairs of values of 3¢ and 9 for the three-
dimensional spherical model of a ferromagnet and the corre-
sponding pairs of values of » and p* for the three-dimensional
spherical lattice gas. Since spontaneous magnetization occurs
below the critical temperature (9> d.), the value of JC depends
upon whether JC tends to zero through positive or negative values.
For the spherical lattice gas below the critical temperature on the
condensation curve, the pressure is the same for v=1y, as for v=vg.

% M v *
25C
+oo +1 1 ~— s
g
1 T
0+ (9<49,) 0 2 —[ln—+2§zm—-f;(zm)]—3
249L 4
04- (9>9¢) +m(0+,§) L 1 ™
] —| In-— f3(3)
0— (9>9.) —MO0+,9) 2¢ 29 9
In|3¢C|
— 0 -1 -+ ~— — —®
29

parameters z and 3¢, and corresponding values of p*
and v were computed. The values of 3C ranged from
—o to +o and those of z ranged from 2. to 4.
The minimum value 2,, is determined in Appendix C as
a root of Eq. (1) of that Appendix. We now wish to
determine whether the isotherms can be continued
beyond the two-phase boundary by choosing 2<gn. If
so, we wish to see if such a continuation has physical

F16. 9. Isotherms of the three-dimensional spherical lattice gas based on Egs. (45)-(48). The curves show the normalized pressure

p*=1p/J as a function of specific volume v for various values of 9=

J/kT. Each isotherm crosses the axis p*=0 for a sufficiently large

value of v indicating the inadequacy of the model for such large values of ». The dashed curve is the boundary of the two-phase region.
Half of it is given by (52) and the other half by (50) and (52). The horizontal part of each isotherm in the two-phase region has been
drawn to connect the end points of the two other portions of the isotherm. This horizontal part is not described by our equations,

which do not yield any isotherms in this region.
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significance. In particular, does it yield metastable
states?

We first consider the spherical Ising model and write
(16) and (18) in the form

1 df,

M=1—— —, (55)
29 ds

3=29(z—n)M. (56)

In one, two, and three dimensions the following remarks
apply. If #<z<z, it follows that (1/29)df.(3)/dz>1.
Then (55) shows that 9 is imaginary. If |z| <% then
from (17) we find that df,/dz is infinite. Hence we need
consider only 2< —n.

From (17) we note that df.(z)/dz is an odd function
of z. Therefore we replace z by —z in (55) and (56) and
obtain

1 df,
=14 (Z), (57)
29 dz
= —29M(a+n), z>n. (58)

Since df,/dz is finite and positive for z>n, (57) and
(58) yield two real continuations for 91T and 3C since
two values of the square root can be used in (57).
According to (58), 9N and 3C have opposite signs for
each solution, and from (57) |91|>1. Thus both of
these continuations seem to be physically unrealistic.

We shall now consider the possibility of continuing
the isotherms of the spherical lattice gas. First we
consider the range #<z<z,. Since 9 is imaginary in
this range, we see from (12) that v will be complex.
On the other hand, if 3<un, (17) shows that f.(z) is
complex. Then (15) and (11) show that p* is not real.
Thus if z and JC are real, there is no real continuation
of the isotherms. .

Next we shall show that when v, p* and g are all
real then z and 3C must be real. To show this we first
note that from (12), 9 is real if v is real. Then from
(55) it follows that z is real. For if z were not real, by
(17) dfa/dz would not be real and then (55) would
show that 9 would not be real. Finally from (18), the
reality of z and 91 imply that 3C is real. This result and
that of the preceding paragraph show that, on the
basis of our equations, there is no real continuation of
the isotherms of the spherical lattice gas into the two-
phase region. Thus the boundary of the two-phase
region is the natural boundary of the function p*(v,).

APPENDIX A
Method of Computation

Each isotherm of the spherical model of ferromag-
netism and of the spherical lattice gas was computed
by assigning a value to § and selecting a set of values
for z. For these values 91, 3C, v, F, and p* were computed

B. KELLER

successively from (55), (56), (12), (15),and (11) using a
Burroughs 220 electronic computer. The only difficulty
was that of evaluating f.(2) and df.(z)/dz for n=2
and 3. The second term on the right side of (31), which
gives dfs/dz, involves the complete elliptic integral of
the first kind. This integral also occurs in (39) which
gives dfs/dz. It was approximated by a formula of
Hastings.® Then df;/dz was computed by numerical
integration using Simpson’s one-third rule, which was
also used to compute f2(z) from (36). :
The function f3(3) was computed from the series

345 155 22365
452 32z% 3235 102428

fs(2)=Inz— (A.1)

This series can be derived by first writing (47) in the
form

w A,
f3(2)=Inz— 3> —.

n=1 pg"

(A.2)

The coefficients in (A.2) are found to be

1 T T T 3 n
A,=— f f f > cosw) dwidwsdws.  (A.3)
mJy Jo Jy =

The integral in (A.3) is expressible in terms of I, the
modified Bessel function of the first kind of order zero.
This yields

dn
A,=lim —(1o(a) P). (A4)
a—0 dd"

Since I¢(a) is an even function of e, it follows from
(A.4) that A,=0 when # is odd. Upon substitution of
the power series for 7o into (A.4) we obtain, for even
n=2s,

Aoy (25—1)! s ;
X [6=AI X k=T (A9

2s 2% k=0

If As, is computed for s=1, 2, 3, 4 from (A.5) and the
results are inserted into (A.2), the result is (A.1).

APPENDIX B

Limit Properties of the Three-Dimensional
Spherical Magnet and the Spherical
Lattice Gas

We shall now prove various statements made in the
text about the behavior of the equations of state of the
three-dimensional spherical models of the magnet and
the lattice gas. Let us begin with (41). From (38) it
follows that z— « when §— 0. Then from (38)-(40)

9 C. Hastings, Jr., Approximations for Digital Computers
(Princeton University Press, Princeton, New Jersey, 1955), p. 171.
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we find that as §— 0,
29~302/295241/3,
M~3C/2g2.

(B.1)
(B.2)

We now solve (B.1) for gz and substitute the result
into (B.2), which yields (41a).

To prove (41b) we first note from (38) that z— 3
when g — «. We also note that df3(3)/dz=29., which
was proved by Watson.!? Then for g large, (38) can be
written as

[3¢/29(z—3) P~1—9g./ 9. (B.3)
Thus
3C
lim [———] =1,
9= L29(z—3)

which completes the proof. To prove (41d) we see
from (17) that df;/dz decreases monotonically from
29. at 2=3 to zero at 3= and that it behaves like
z7! for large z. If g<g. and 3¢ — 0, it follows from
(38) that 3 — 2,>3, where z,, satisfies (C.4), and (41d)
follows. If §> 9. then z— 3 in (38) when 3¢ — 0 and
(38) becomes (B.3), proving (41c). To prove (41e) we
observe from (38) that when 3¢C— «, z— o and
consequently df;/dz — 0. Then

3¢
lim [———]— 1.
= 2g(5—3)

This is (41€) and completes the proof of (41).

We shall now derive the values of p* in Table IV.
When 3¢ — 4= it follows that 9 — =1, since I is
odd. Then from (B.4), z~|3|/29 — «. For large z,
f3(z)~Inz=In(|3¢|/2g). Substitution of these limiting
values for z and f3(z) into (46) as |3C| — oo yields

Fy~—%In(|3|/29)+|3C]. (B.5)

Substitution of (B.S) into (45) yields, when 3¢ — + oo,
the entry on line 1, column 4 of Table IV. When
3¢ — — oo this substitution yields the entry on line 4,
column 4 of Table IV. When 3¢ — =40 and g<J.,
72— 2,>3 and H/2g(z—3) — 0. Substitution of these
values into (45) yields the entry on line 2, column 4 of
Table IV. Finally when 3¢ — =40 and §> 9., 2— 2m
=3, 3¢/29(z—3) — M (0+,9). Again, substituting
these values into (45) yields line 3 of Table IV.

(B.4)

APPENDIX C
Determination of z,,

We know from (17) that df.(z)/dz is a positive
monotonic decreasing function of z behaving like 1/z
for large z. We also know from (24) that df1(1)/dz= «
from (31) that dfs(2)/dz= =, and from Appendix B
that df;(3)/dz=29.. Therefore z, corresponds to the

10 G. N. Watson, Quart. J. Math. 10, 266 (1939).
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smallest non-negative value of 91? that can be realized
from (55). For =1, 2 and all g and for =3, §<y.
this is 9M2=0. Hence under these conditions, 2z, is a

solution of

Afn(2m)
/ —= (C.1)
dz
More specifically
zn=(1+1/48)}, n=1; (C.2)
= (/79K (2/2m), n=2; (C.3)
dfs(2m)
29, n=3, §<go. (C.4)
dz
From Appendix B we also have
2n=3, n=3, g>Jo. (C.5)
In all cases z,> .
APPENDIX D

Shapes of the Isotherms of the Spherical
Lattice Gas

The slope of the isotherms of the spherical lattice gas
can be expressed simply in terms of the properties of
the spherical model of a ferromagnet. To show this we
differentiate (11) with respect to » and (12) with
respect to 3. Upon combining these two equations we
obtain, after use of (14),

dp*

dv

(1+9m)3

—_— (D.1)
29(dm/dse)

This relationship also relates the ordinary lattice gas
and the Ising model.

Let us now evaluate d91/d3C for the spherical model.
To do so we differentiate (18) and (16) with respect to
3¢ and combine the two results. We then obtain for
the spherical magnet

asm { dzfn/( 45%2 den
die B 294(e—n)l  dg? (8—m) dz*
Since d2f,/dz*<0 it follows from (D.2) that dn/d3c>0
and from (D.1) that dp*/dv<0.
Let us now deduce (42)-(44), (53), and (54). If g=0,

(42) follows directly from (41a). For g>0 we have,
for z~3,4

}. (D.2)

d*f(2)
dz?

~ —[2br (z—3)1T (D.3)

From this equation and (17) it follows that d?f;(3)/dz?
increases monotonically from — e at z=3 to zero at
Z= 0

11 See reference 2, p. 385.
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If 0<g< Y. then, as is shown in Appendix C, when
Jc— 0 it follows that z— 2,>3 and 91T — 0. Hence
&f3(2)/dz2 — @2 f3(2m)/dz*5%0. Upon substitution into
(D.2) of the limits attained by 2, 9, and d*f;(z)/ds* as
3¢ — 0 we obtain (43). If g> 9. then from Appendix C
we find that as 3¢ — 0, z— 3 and 912 — (1— g./9)>0.

KELLER

Hence from (D.3), dfs/ds*— —[2%r(z—3)¥] % Sub-
stitution of these limiting values of 2, MM, and d?f3(2)/dz?
into (D.2) yields (44).

Equation (53) then follows upon substitution of
(41d) and (43) into (D.1), and (54) follows upon
substitution of (41c) and (44) into (D.1).
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Approximate Analytic Approach to the Classical Scattering Problem*

Guy W. LEamaN AND KENNETH A. SHAPIROT
Atomics International, Canoga Park, California

(Received May 25, 1960)

An approximate analytic approach to the problem of deter-
mining differential scattering cross sections for classical central-
field repulsive forces is described. It is shown that the impact
parameter, b, can be approximated by b=R cos(6/2), where R
is approximately the distance of closest approach and ¢ is the
scattering angle in the center-of-mass system. A simple approxi-
mation gives the potential energy of interaction between two
atoms as V (R)=2E sin(6/2), where E is the energy in the center-
of-mass system. Simple analytic expressions for the differential
scattering cross section, o, are derived from the above two re-
lationships for three special cases of a two-parameter screened

I. INTRODUCTION

THE purpose of this paper is to present a method
for obtaining approximate analytic represen-
tations for classical differential scattering cross sections
suitable for studying slowing down processes in radi-
ation damage theory.! Briefly, this approximation will
be shown to interpolate remarkably well between the
impulse and hard-sphere approximations valid, re-
spectively, for small and large angle scattering.

In Sec. IT, the problem of determining an approximate
relationship between the impact parameter, b, and the
angle, 6, associated with an arbitrary central repulsive
force scattering of an incident atom by a target atom
will be discussed.

Approximate analytic expressions for the impact
parameter and differential scattering cross section will
be derived in Sec. IIT for three types of screened
Coulomb potential energy functions suggested by
Brinkman and Meechan.? Exact solutions for the impact
parameter and differential scattering cross section have
been worked out for a special case of the aforemen-
tioned potential energy and a comparison between

* This work was supported by the U. S. Atomic Energy
Commission.

t Present address is Physics Department, University of
California, Los Angeles, California.

1For a recent review article concerning the status of slowing
down processes in radiation damage theory, see G. J. Dienes and
G. H. Vineyard, Radiation Effects in Solids (Interscience Pub-

lishers, New York, 1957).
2J. A. Brinkman and C. J. Meechan (to be published).

Coulomb potential energy,
V(R)=2Z1Zx?4 exp(—pAR)[1—exp(—AR)T™,

where Z;e is the charge on the ;th atom, 471 is a screening radius,
and p is an adjustable parameter which is restricted to %, 1, and
2 in this paper. .

A new and improved method for calculating o exactly is also
discussed and is used to compute the exact behavior of o for p=1.
A table is presented which allows one to compare the exact and
approximate o’s for p=1 over a wide range of energy and scat-
tering angles. The agreement is particularly good for large energy
transfer.

these results and those derived from the analytic
approximations will be given in Sec. IV.

II. DERIVATION OF APPROXIMATE
SCATTERING EQUATIONS

Figure 1 shows the path described by an incident
atom being scattered by a repulsive central force
through an angle, 6, by a fixed target atom. In this
figure, the impact parameter is denoted by b and the
coordinates (r,¢) define the path of the incident atom
relative to the target atom as the origin. The differential
equation for the (r,¢) trajectory is given by the well-
known expression®

(' y+w=b>(1-E7V), n
where #=1/r, V is the potential energy of interaction,
and E is the energy of the incident atom measured in
the center-of-mass system. The prime on # denotes
differentiation with respect to ¢. The exact relationship
between 6 and b is easily derived from Eq. (1) and is
well known to be?

f=mr—2 f “ du[2(1— EV)—u?] ™, 2

where o is the zero of the integrand and physically

3H. Goldstein, Classical Meckanics (Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1950).



