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Equation of State and Phase Transition of the Spherical Lattice Gas*
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The spherical lattice gas is a modification of the ordinary lattice gas in which the occupation number of
each cell is permitted to be any real number rather than &1.However, the sum of squares of the occupation
numbers is required to equal the number of cells. This permits one to evaluate the partition function by
integrating over the surface of a certain sphere rather than by summing over lattice points on that surface.
The partition function and the equation of state of the gas are evaluated in this way. It is found that in three
dimensions the gas condenses, but not in one or two dimensions. Graphs of the phase transition curve and
of the isotherms in three, two, and one dimension are presented.

The analytical work is simplified by taking advantage of the relationship between the properties of the
lattice gas and of the Ising model of a ferromagnet. This relationship, demonstrated by C. N. Yang and T. D.
Lee for the ordinary lattice gas and Ising model, also applies to the spherical lattice gas and the spherical
model of a ferromagnet. The properties of the latter have been evaluated by T. H. Berlin and M. Kac.
Graphs of the isotherms of the spherical model of the magnet, which were found in the course of the work,
are also presented.

l. INTRODUCTION'
~ 'HE spherical lattice gas is a simplified model of a

gas. We introduce it because we can deduce its
equation of state statistical-mechanically. We find that
it undergoes phase transition in three dimensions,
although not in one or two dimensions. We also find
that its isotherms and transition curve, shown in Fig. 9,
are in qualitative agreement with experimental curves.
However, they exhibit a physically unreasonable-nega-
tive pressure at very large and very small specific
volumes. This can be traced to an inadequacy of the
model for such specific volumes.

The ordinary lattice gas is defined by first dividing
the volume V, which the gas occupies, into V identical
cells (e.g. , cubes), each of unit volume. The potential
energy of interaction between two molecules of the gas
is defined to be infinite if they occupy the same cell,
to be —4J(0 if they occupy cells which are nearest
neighbors, and to be zero otherwise. Thus at most one
particle can occupy each cell. Therefore the distribution
of particles can be described by the V coordinates
rrr, 0.s, , a.v where 0.;=+I if cell i is occupied and
o-,= —1 if it is not. By analogy, we define the spherical
lattice gas by permitting each o; to have any real value,
but requiring that the o; lie on the sphere

o-,'= V.

Then the grand partition function Qsg of the spherical
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lattice gas is obtained from that for the ordinary
lattice gas by replacing sums over lattice points which
lie on the sphere (1) by integrals over that sphere.

We were led to introduce the spherical lattice gas by
the work of Yang and Lee' and that of Berlin and Kac.'
Yang and Lee showed that Qg, the grand partition
function of the ordinary lattice gas, could be expressed
in terms of Qr, the partition function of the Ising model
of ferromagnetism in a magnetic field H. But Qr has
not been evaluated for a three-dimensional magnet nor
for a two-dimensional one with IIWO, although the
spontaneous magnetization is known as a function of
temperature in the two-dimensional case. Therefore
the phase transition curve of the two-dimensional
lattice gas could be determined, but not the isotherms,
while nothing could be found for the three-dimensional
case.

Berlin and Kac introduced the spherical Ising model,
which is related to the ordinary Ising model as the
spherical lattice gas is to the ordinary lattice gas. They
were able to evaluate its partition function Qsr for any
value of H in one, two and three dimensions. It exhibits
spontaneous magnetization in three dimensions but not
in one or two dimensions.

We noticed that the method of Berlin and Kac could
be used to evaluate the grand partition function of the
spherical lattice gas. We also noticed that Qsg is related
to Qsr in the same way that Qg is related to Qr. There-

fore we could actually use their results to obtain the
value of Q8g.

In the course of our analysis of the isotherms and

transition curve of the spherical lattice gas, we were

led to examine the magnetization curves and spon-

' C. N. Yang and T. D. Lee, Phys. Rev. 87, 410 (1952).
~ T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
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taneous magnetization of the spherical Ising model.
Therefore these curves are also included.

Berlin, Witten, and Gersch' have studied a cellular
model of the imperfect gas. In it the numbers of
particles in the cells are taken as the statistical variables.
Their partition function, like ours, involves an integral
of the exponential of a quadratic form. However, whereas
our integration extends over a hypersphere, theirs
extends over a hyperplane. Their integrand includes a
weighting factor which damps their integrand when it
deviates from the average configuration of one particle
per cell. In three dimensions their model exhibits con-
densation-like behavior below a critical temperature.
There the p-o isotherms are nonanalytic functions of o

consisting of three pieces. However, the condensation
region is not characterized by constant pressure, and for
temperatures suSciently low the isotherms show thermo-
dynamic instability. Thus their condensation phe-
nomena are rather different from ours.

2. BASIC FORMULAS

The grand partition function of the lattice gas is4

V

Qg(V, ),y) = P . P exp —Q a;,o.,o.;
0 i=+I ~2 i j=l

The partition function for the Ising model of ferro-
magnetism is'

O'I= +1 aN= kl

N

Xexp —Q a,,o.,o.,+X Q o.;. (6)
2 '. ~'=~

zz

Xexp —P a,,o,o,+BC P ~, . (g)
2 i, j=l j=l

In (2) let us replace V by X and set

lny =2[3-—cg.
Then by comparing (2) with (6) we obtain the following
relationship, first obtained by Yang:

In (6) Az is the total nuznber of lattice sites and

K=zz pII/kT.

Here po is the magnetic moment per particle. The parti-
tion function for the spherical model of ferromagnetism
is

Xexp[(cg+-,'lny) P o,]exp[-,'(cg+Iny) V]. (2) Qo(X,g, exp[2(K—cg)])
=exp[X——',cg]gzy, gee). (9)

Here o.; equals +1 if cell z' is occupied by a particle
and —1 if it is not. We note that the o.; satisfy (1) and

The constant g is defined in terms of Boltzmann's con-
stant k and the absolute temperature 1' by

g= J/kT. (4)

The quantity a;; equals +1 if cells i and j are nearest
neighbors and is zero otherwise, while c is the number
of nearest neighbors of a cell. For cubic cells in one,
two, and three dimensions c equals two, four, and six,
respectively. The fugacity is denoted by y.

From the definition of the spherical lattice gas, its
grand partition function is

Q

V

doz . doz exp —Q a;og
J

i 2i, j=l

v(g, X)=2/(1+m).

(11)

(12)

Here p*=p/J where p is the pressure of the gas, e is its
specific volume, and 9K=M/pp where M is the. mag-
netization of the magnet. Ii, the limiting free energy
per particle of the magnet, is defined by

F(R,g) =Lim —lnQ.
Pf-+oo /

Upon comparing (5) and (g) we obtain the correspond-
ing relation for the spherical models,

gso(w, g, exp[2(se —cg)])
=exp[K—pic/)gsz(Ã, $,3'.) (10)

From either (9) or (10) it follows that7 the thermo-
dynamic properties of the lattice gas are related to
those of the magnet. These relations are the same for
the spherical and the original models. They are

Xexp[(cg+ —lny) P &,]exp[i (cg+lny) V] ($) Here Q denotes either Qz or Qsz. 5R is given by

where Z represents the spherical surface go P= V.

' T. H. Berlin, I,. Witten, and H. A. Gersch, Phys. Rev. 92, 189
(1953}.

4 G. F. Newell and K. W. Montroll, Revs. Modern Phys. 25,
353 (i953).

m(3.,g) =
83C

5 See reference 4, p. 353.
~ See reference 2, p. 827.
7 See reference 4, p. 384.

(14)
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In (15) we have omitted an additive constant which
occurs in reference 2 due to multiplication of QBr by a
normalization factor. Here z is a real positive solution
of the equation

3." df„(s)
+

2g(s—e)' ds
(16)

.25 The function f„(s) is defined by

0
0
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l.5
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2.0
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f-(s) =

(2z.)"~ s

I
2

dwt ' dwg
0

n
FIG. 1. Isotherms of the one-dimensional Ising model of a ferro-

magnet. The curves, based on Eq. (20), give the normalized
magnetization SK =3f/po as a function of the normalized external
6eld X=V/kT for constant values of s =J/kT. Since 5K is an odd
function of X, only the non-negative values of X are shown.

Equations (11) and (12) are the parametric form of the
equation of state of either the lattice gas or the spherical
lattice gas. The parameter is X., which ranges from
minus ininity to plus in6nity.

To obtain the equation of state of the spherical
lattice gas we must insert F(3'., rr), the limiting free
energy per particle of the spherical Ising model, into
(11) and (14) and then use (14) in (12). For a simple
cubic lattice in edimensions (e=1,2, 3),Berlin and Kac'
have evaluated this free energy which we denote by
F„(3'., ri). They obtain

3'.2
F (K,g) =-', lnj —

~ ,'f„(»)+r—ls—+ . (15)
4g(» —I)

)&In s—P cosw; . (1'7)

It will prove convenient later to note that (16) implies
dF„(s)/ds= 0 and that s is an even function of K. Then
(15) shows that F„is also an even function of 3'..

The equation of state of the spherical Ising model of
a magnet is obtained by inserting (15) into (14).It is

m(sc, g) =ac/2y(» —I). (18)

From (18) we see that GR is an odd function of X.In the
following sections we shall examine the equation of
state of the spherical lattice gas and of the spherical
Ising model in detail on the basis of the above equations.

In order to compare the properties of the spherical
lattice gas with those of the lattice gas, we must
determine the properties of the latter. We can do this in
the one-dimensional case. The limiting free energy per

Fro. 2. Isotherms of
the one-dimensional lat-
tice gas based on Eqs.
(22) and (23). The
curves show the norma-
lized pressure p*=p/J
as a function of speci6c
volume e for various
values of 8=J/kT.

0
I
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significance. In particular, does it yield metastable
states?

We erst consider the spherical Ising model and write
(16) and (18) in the form

1 df„
5K —1———

2g ds

X= 2g (s—e)OR.

(55)

(56)

In one, two, and three dimensions the following remarks
apply. If n&s&s, it follows that (1/2$)df (s)/ds)1.
Then (55) shows that OR is imaginary. If ~z~ &I then
from (17) we find that df„/ds is infinite. Hence we need
consider only s& —e.

From (17) we note that df„(z)/dz is an odd function
of s. Therefore we replace z by —s in (55) and (56) and
obtain

successively from (55), (56), (12), (15),and (11) using a
Burroughs 220 electronic computer'. The only difhculty
was that of evaluating f„(z) and df„(s)/ds for n=2
and 3. The second term on the right side of (31), which
gives dfs/dz, involves the complete elliptic integral of
the first kind. This integral also occurs in (39) which
gives dfs/dz. It was approximated by a formula of
Hastings. ' Then dfs/ds was computed by numerical
integration using Simpson s one-third rule, which was
also used to compute fs(z) from (36).

The function fs(s) was computed from the series

3 45 155 22 365
fs(s) =lns ——— (A.1)

4s2 32'' 32'' 1024''

This series can be derived by first writing (47) in the
form

1 df (s)
OR'= 1+—

2g ds

K= —2&OR(s+e), s)e.

(57)

(58)

fs(s) = Ins —Q

The coeKcients in (A.2) are found to be

(A.2)

Since df /ds is finite and positive for z)N, (57) and
(58) yield two real continuations for OR and K since
two values of the square root can be used in (57).
According to (58), OR and X have opposite signs for
each solution, and from (57) ~OR~)1. Thus both of
these continuations seem to be physically unrealistic.

We shall now consider the possibility of continuing
the isotherms of the spherical lattice gas. First we
consider the range n(s(s . Since 5K is imaginary in
this range, we see from (12) that v will be complex.
On the other hand, if s&ti, (17) shows that f„(s) is
complex. Then (15) and (11) show that p* is not real.
Thus if s and K are real, there is no real continuation
of the isotherms.

Next we shall show that when v, p*, and g are all
real then s and BC must be real. To show this we first
note that from (12), OR is real if v is real. Then from
(55) it follows that s is real. For if s were not real, by
(17) df„/dz would not be real and then (55) would
show that OR would not be real. Finally from (18), the
reality of s and 5R imply that 3C is real. This result and
that of the preceding paragraph show that, on the
basis of our equations, there is no real continuation of
the isotherms of the spherical lattice gas into the two-
phase region. Thus the boundary of the two-phase
region is the natural boundary of the function pe (v,g).

APPENDIX A

Method of Computation

Each isotherm of the spherical model of ferromag-
netism and of the spherical lattice gas was computed
by assigning a value to ri and selecting a set of values
for s. For these values OR, BC, v, F, and P* were computed

I Z cos~j I
doiidoi2d~& (A 3)

)

The integral in (A.3) is expressible in terms of Is, the
modified Bessel function of the erst kind of order zero.
This yields

A „=lim (LIs(a) js).
c~p dgn

(A.4)

Since Is(a) is an even function of a, it follows from
(A.4) that A =0 when e is odd. Upon substitution of
the power series for Is into (A.4) we obtain, for even
6= 2s,

As, (2s—I)! Ic

—Z L(s—&) 3 ' 2 Ei (&—i) j '. (A 5)
2$ 22s I p j=p

If As, is computed for s=1, 2, 3, 4 from (A.5) and the
results are inserted into (A.2), the result is (A.1).

APPENDIX B

Limit Proyerties of the Three-Dimensional
Spherical Magnet and the Syherical

Lattice Gas

We shall now prove various statements made in the
text about the behavior of the equations of state of the
three-dimensional spherical models of the magnet and
the lattice gas. Let us begin with (41). From (38) it
follows that s —+ ~ when g —+ 0. Then from (38)—(40)

C. Hastings, Jr., A pproximatiorls for Digital Computers
(Princeton University Press, Princeton, New Jersey, 1955},p. 171.
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we find that as g ~ 0,

2g X'/2$»'+ 1/»,

5K~X/2g».

smallest non-negative value of 5R' the, t can be realized
from (55). For I=1, 2 and all rl and for 1=3, g(g,
this is 5R2=0. Hence under these conditions, s is a
solution of

We now solve (B.1) for res and substitute the result
into (B.2), which yields (41a).

To prove (41b) we 6rst note from (38) that s —+ 3
when g —+ oo. We also note that df3(3)/d»=2/„which
was proved by Watson. "Then for g large, (38) can be
written as

(B 3)

Thus

lim =1
2g(s —3)

df-(s-)—=2/.

s =(1+1/4g)i m=1

z = (1/a.g)E(2/z„), I=2;

From Appendix 8 we also have

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)s =3, x=3, rl)g, .which completes the proof. To prove (41d) we see
from (17) that df3/ds decreases monotonically from
2g. at s=3 to zero at s= ao and that it behaves like
s ' for large s. If g(rI, and X~O, it follows from
(38) that s ~s„)3, where»„satisfies (C.4), and (41d)
follows. If g)g, then »~3 in (38) when X—&0 and
(38) becomes (B.3), proving (41c). To prove (41e) we
observe from (38) that when X-+ Do, s —+ ao

consequently df&/ds ~ 0. Then

APPENDIX D

Shapes of the Isotherms of the Spherical
Lattice Gas

lim =1.
»c-" 2g(s —3)

This is (41e) and completes the proof of (41).
We shall now derive the values of p* in Table IV.

When K —+ &~ it follows that 5R —+ &1, since 5K is
odd. Then from (B.4), s lXl/2rl-+ ao. For large s,
f~(s) In»=in(lXl/2g). Substitution of these limiting
values for s and fs(z) into (46) as

l
X

l
~ ~ yields

dp* (1+5R)'

dz 2g(d5R/dX)
(D 1)

This relationship also relates the ordinary lattice gas
and the Ising model.

Let us now evaluate d5R/dX for the spherical model.
To do so we differentiate (18) and (16) with respect to
K and combine the two results. We then obtain for
the spherical magnet

~ ——l »(lxl/28)+ lxl (B 5)

Substitution of (B.5) into (45) yields, when X—+ + ao,
the entry on line 1, column 4 of Table IV. When
3C ~ — this substitution yields the entry on line 4,
column 4 of Table IV. When X—& +0 and g(g„s~ s )3 and H/2'(s —3) —+0. Substitution of these
values into (45) yields the entry on line 2, column 4 of
Table IV. Finally when X—+ &0 and rI&g„s-+ s
=3, X/2$(z —3) —+ &5R(0+,g). Again, substituting
these values into (45) yields line 3 of Table IV.

dalt 1
[

d'f„( 4g5R' d'f„~

dX 2y(s —e) l ds' & (s—e) ds' )
Since d'f„/dz'(0 it follows from (D.2) that d5R/dX& 0
and from (D.1) that dp~/ds&0.

Let us now deduce (42)—(44), (53), and (54). If /=0,
(42) follows directly from (41a). For g)0 we have,
for s 3,"APPENDIX C

Determination of z d'f, (s)
(D.3)—L24. (s—3)'$ '

We know from (17) that df (s)/dz is a positive
monotonic decreasing function of s behaving like 1/s
for large s. We also know from (24) that 8fr(1)/ds= ~,
from (31) that df2(2)/ds= ~, and from Appendix B
that dfa(3)/d»=2/, . Therefore s corresponds to the

ds2

From this equation and (17) it follows that d'f&(s)/dz'
increases monotonically from —~ at 2=3 to zero at

and
The slope of the isotherms of the spherical lattice gas

can be expressed simply in terms of the properties of
the spherical model of a ferromagnet. To show this we

(B.4) differentiate (11) with respect to v and (12) with
respect to 3'.. Upon combining these two equations we
obtain, after use of (14),

I G. N. Watson, Quart. J. Math. 10, 266 (1939). "See reference 2, p. 385.
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If 0($&g, then, as is shown in Appendix C, when
SC~O it follows that s —+s &3 and 5K~0. Hence
d'fs(s)/ds'~ d2fs(s~)/ds'NO. Upon substitution into
(D.2) of the limits attained by s, OR, and d'fz(s)/dz' as
K —+ 0 we obtain (43). If g) zi, then from Appendix C
we find that as R —+ 0, s ~ 3 and OR' —+ (1—zi,/cl) )0.

Hence from (D.3), d'fz/ds'~ —$24.(s—3)&j '. Sub-
stitution of these limiting values of s, OR, and d'fs (s)/ds'
into (D.2) yields (44).

Equation (53) then follows upon substitution of

(41d) and (43) into (D.1), and (54) follows upon
substitution of (41c) and (44) into (D.1).
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Approximate Analytic Approach to the Classical Scattering Problem*
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An approximate analytic approach to the problem of deter-

mining diGerential scattering cross sections for classical central-

Geld repulsive forces is described. It is shown that the impact
parameter, b, can be approximated by b=R cos(8/2), where R
is approximately the distance of closest approach and 8 is the

scattering. angle in the center-of-mass system. A simple approxi-

mation gives the potential energy of interaction between two

atoms as V(R) =2E sin (8/2), where E is the energy in the center-

of-mass system. Simple analytic expressions for the differential

scattering cross section, 0-, are derived from the above two re-

lationships for three special cases of a two-parameter screened

Coulomb potential energy,

V(R)=ZzZzo'A exp( —pAR)L1 —exp( —AR)g ',

where Z;e is the charge on the ith atom, A is a screening radius,
and p is an adjustable parameter which is restricted to „1,and
2 in this paper.

A new and improved method for calculating 0 exactly is also
discussed and is used to compute the exact behavior of 0 for p=1.
A table is presented which allows one to compare the exact and
approximate n's for p=1 over a wide range of energy and scat-
tering angles. The agreement is particularly good for large energy
transfer.

I. INTRODUCTION

HE purpose of this paper is to present a method
for obtaining approximate analytic represen-

tations for classical differential scattering cross sections
suitable for studying slowing down processes in radi-

ation damage theory. Briefly, this approximation will

be shown to interpolate remarkably well between the

impulse and hard-sphere approximations valid, re-

spectively, for small and large angle scattering.
In Sec. II, the problem of determining an approximate

relationship between the impact parameter, b, and the

angle, 8, associated with an arbitrary central repulsive

force scattering of an incident atom by a target atom
will be discussed.

Approximate analytic expressions for the impact
parameter and differential scattering cross section will

be derived in Sec. III for three types of screened

Coulomb potential energy functions suggested by
Brinkman and Meechan. ' Exact solutions for the impact
parameter and diGerential scattering cross section have
been worked out for a special case of the aforemen-

tioned potential energy and a comparison between

*This work was supported by the U. S. Atomic Energy
Commission.

t Present address is Physics Department, University of
California, Los Angeles, California.

'For a recent review article concerning the status of slowing
down processes in radiation damage theory, see G. J. Dienes and
G. H. Vineyard, Radzatzorz Egects izz Solids (Interscience Pub-
lishers, New York, 1957),

s J. A. Brinkman and C. J. Meechan (to be published).

these results and those derived from the analytic
approximations will be given in Sec. IV.

II. DERIVATION OF APPROXIMATE
SCATTERING EQUATIONS

Figure 1 shows the path described by an incident
atom being scattered by a repulsive central force
through an angle, 0, by a fixed target atom. In this

figure, the impact parameter is denoted by 6 and the
coordinates (r,ztz) define the path of the incident atom
relative to the target atom as the origin. The diGerential

equation for the (r,@) trajectory is given by the well-

known expression'

(zt')'+st'= b '(1—E-'V),

where I= 1/r, V is the potential energy of interaction,
and E is the energy of the incident atom measured in

the center-of-mass system. The prime on I denotes
differentiation with respect to p. The exact relationship
between e and b is easily derived from Eq. (1) and is

well known to be'

(2)

where Np is the zero of the integrand and physically

' H. Goldstein, Classicu/ Mechanics (Addison-Wesley Pub-
lishing Company, Inc. , Reading, Massachusetts, 1950).


