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The peak energies Eg of electric dipole giant resonances in
photonuclear reactions considerably exceed the shell-model
spacings E, in the same nuclei: The discrepancy S= (Eg E,)/E—,
is of order unity, although the giant resonances are supposed to
arise mainly from transitions of nucleons between successive
shells. The present note attempts to understand 8 by noting that
~E, Es~&&E,—and considering sum rule expressions for the
harmonic energy Ef,. These sum rule expressions are well known
to yield Ep, =E&+E, where E, is special to the E1 operator and
the charge exchange component of nuclear forces. Theoretical
and empirical arguments are adduced that (E~ E,) comp—rises
mainly E„plus two secondary corrections which happen practi-
cally to cancel. Comparison with experiment gives a constant

E,=8 Mev and thence a satisfactory account of b. Previous dis-
cussions of 8 appear to have neglected E, and hence have failed
to obtain even the right order of magnitude of 5 for real nuclei.
The use of a constant E also allows an improved 6t to the curve
of J'o-dE as a function of A. It is pointed out that the value of
E., is comparable in significance with the average nuclear potential
V: Sy virtue of the Ej excitation mode, E represents the dif-

ference of even-parity and odd-parity two-nucleon interactions,
while U represents a sum of even and odd interactions. The
effective mass for the model ground-state wave function is treated
as a derived quantity and turns out to be M*/3f &1; this large
value is attributed to a Thomas shift associated with finite nuclear
boundaries.

I. INTRODUCTION AND SUMMARY

LECTRIC dipole "giant resonances" in photo-
~ nuclear reactions have been interpreted on an

independent-particle nuclear shell model as rejecting
promotion of single nucleons between successive major
shells. ' A difhculty with this interpretation has always
been the large relative discrepancy,

S= (E, E,)/E, -1, —

between the giant resonance peak energy E, and the
single-particle shell spacing E, in the same nucleus —as
measured, for example, by (d,p) reactions. ' ' At least
three suggestions have been made regarding this dis-
crepancy; they are not necessarily consistent, and each
appears to have some deficiencies. %e summarize them
as follows: (i) Insertion of an effective mass M*=~sM
in the single-particle shell model yields E, in fair
accord with observation, except for the 2 dependence;
but E, is correspondingly increased, so that one still
has 6 0. The only solution at this level is to assert
that M*= ~M for photonuclear excitation, %*=M for
other means of measuring E„ this does not solve the
problem of 8 1 but merely recasts it in terms of M*,
which may not be the most perspicuous approach.
(ii) The basic single-particle picture is maintained, but
the Ei excited state is recognized as a coherent sum
over many single-particle excitations or particle-hole
pairs, where the hole is left in the Fermi sea of the
ground state by removal of the excited particle. ' These
particle-hole pairs will, of course, interact with each
other; but such interaction energies will sum inco-
herently to a relatively small total for most states of

' D. H. Wilkinson, Physics 22, 1039 (1936).' J. P. Schiffer, L. L. Lee, Jr. , and 8. Zeidman, Phys. Rev. 115,
427 (1959).

3 B. L. Cohen and R. E. Price, Nuclear Phys. 17, 129 (1960).
4 D, H. %'ilkinson, Annual, Aevi' of nuclear Science {Annual

Reviews, Inc. , Palo Alto, California, 1959), Vol. 9, p. i.
~ G. E. Brown and M. Bolster1i, Phys. P~ev. Letters 3, 472

(1959).
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the nucleus. Just the coherence of the E1 excited state,
however, gives rise to a coherent sum over these inter-
actions, which may amount to a substantial shift of
E,. Arguments are given to show that this shift will
have the observed sign (increase), but quantitative
estimates are neither attempted nor shown to be
feasible. Moreover, consideration of large scale oscil-
lations in extended nuclear matter seems to suggest
that this shift is negligibly small. ' (iii) Classical, plasma-
type oscillations of indnite nuclear matter are discussed
in which neutrons and protons execute opposite
motions. ' The plasma frequency is as usual determined
by kinetic factors relating to the nucleon mass and the
density of particles in the Fermi sea. Use of an effective
mass iV* for the nucleons takes account of the average
effect of internucleon forces. Because, in this case,
neutrons and protons move oppositely, there should be
added a special, nonaverage contribution related to
the nuclear symmetry energy, which raises the plasma
frequency to co„. This shift is implicitly related to 8

for infinite nuclear matter and evaluated' as
8 = (ce„'—co„)/~~= 15%%u~. No reason is given to anticipate
that application to finite nuclei will increase this esti-
mate by almost one order of magnitude, as required by
experiment.

The present note attempts to shed some light on this
situation by exploiting a relation suggested by the giant
resonance experimental data themselves; namely,

(2)

where the harmonic mean energy is EI, I/II„——
I=frrdE, Is fadE/E. Relation (2).——implies that to
first approximation 8 can be discussed in terms of Eg,
rather than E,. This is desirable because E, depends
strongly on the nuclear model invoked, while E& can
be expressed in terms of sum rules and is considerably
less model-dependent. Starting with assumption (2),

6 K. A. Brueckner and R. Thieberger, Phys. Rev. Letters 4,
466 (1960).
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the outline of the argument is as follows, with details
to be supplied in the next section: It has long been
known that the sum rule expression for I is of the form
I=Iq+I„where I, is related to nuclear exchange
forces and depends on the specific form of the electric
dipole operator. The corresponding Es (Iq/—I—I,)
+(I,/I&) =Ez+E, thus contains a term E, entirely
peculiar to the E1 mode of excitation; if this term is
large, it can be the dominant contribution to 8. Evalu-
ation in the next section indicates, in contrast. to
previous calculation, that E~ and E, differ in de-
pendence on nuclear mass number 3; they can hence
be distinguished by comparison with experiment, and
E indeed turns out to be large, E 8 Mev. If one also
subtracts the 15jz correction' from Eq and makes a
very crude estimate of (E,—Ez), a fair account of 8

can be given over the range of real nuclei, in which
E, is much the largest component contributing to 8.
This provides some a posteriori justification of assump-
tion (2). The final discussion concludes that none of the
previous discussions of 6 have accounted for the ex-
change contribution E, and have thus been inadequate.

The anal formulas obtained by fitting to the data
have generous uncertainties, which do not obscure the
qualitative significance of the various terms:

present considerations and will be dropped. Equation
(3) is valid only in case the model functions 4 are
exact eigenfunctions of the Hamiltonian H that is
employed, H+„=—E„%„; otherwise, there is an un-
certainty in Eq. (3) of orderr

(5)

where the sum is over all excited model function states.
Since we shall choose both H and +0 for their simplicity
and conventionality, e will not vanish identically; it
will be necessary to give an explicit argument below
that e is small.

For the Hamiltonian we take

where P, P' are real and isotopic spin exchange
operators and 'N, S, K, 5R are functions of r;;. Explicit
momentum dependence is not included in these func-
tions, for it should be possible to make their dependence
on r;; sufficiently complicated to give a good repre-
sentation of nuclear forces in the limited momentum
range involved. The present calculation goes only as

whence

E,=P(40&6)A '+(7.5%1.5)] Mev, (26)

E,= (38+8)A:Mev, (29)

8=0.2fA~+0. 25](&20jo). (30)

far as taking simple averages over these radial functions,
however. The use of the effective central potentials in
place of tensor or spin-orbit forces is sufficient for E1
interactions, which are not primarily connected with
nucleon spins. The choice of the free nucleon mass in

An improved fit to the curve of I= j'rrdE versus A is
obtained, corresponding to a nuclear radius parameter
of res= (1.1&0.2) f'. A relatively sensitive exchange
parameter is obtained that can be compared with
various nuclear force prescriptions from nuclear spec-
troscopy: The quite uncertain numerical value seems
to favor eGective two-body potentials with substantial
attraction in the odd-parity states. A simple estimate is
derived for the eGective nuclear mass in the ground-
state trial function:

M*/M =1.2+0.2. (37)

This large value is interpreted as rejecting a Thomas
shift characteristic of Rnite nuclei.

Eq. (6) is essentially a matter of convention; a diBerent
choice &*~M would entail a corresponding redefini-
tion of the potential terms in such a way that the net
e8ect of H remains unchanged. ' The convention of Eq.
(6) is still mainly used for calculations of nuclear
spectroscopy, with which we wish to compare the
exchange parameters indicated by the present analysis.

For the model function%'0 we take the ideal harmonic
oscillator without spin-orbit coupling (i.h.o.). This
appears to provide a quite good approximation for the
Ei giant resonance, 4 and has the virtue of reducing the
complicated sums in Eqs. (3)—(5) to simple forms.
3»Ioreover, it seems plausible that in this case e provides
a first estimate of (E,—Es),

II. FORMULATION c~Eg—Eg) (7)

The sum-rule formula for EI, is

Es= —,'( [D,/II, Dj])os/(D') oo, (3)

where the subscripts indicate evaluation in the ground
state 4'0 of the nucleus, H is the nuclear Hamiltonian,
and D the dipole operator,

The quantity 'U is an insignificant correction to the

since both quantities vanish identically if the i.h.o.
model is correct and the giant resonance becomes a
single sharp line. '

The i.h.o. functions are completely specified in
terms of a single parameter a with the dimensions of a

'I F. C. Barker, Phil. Mag. 2, 780 (1957). The authors thank
Dr. Barker for constructive suggestions about the present
«liscussion.' J. S. I;evinger, N. Austern, and P. Morrison, Nuclear Phys, 3,
4Su (&vS7~.' The relative signs of e and (I', I!&) in Eq. (7) follow from the-
discussion of reference 7.
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leu, gth: If t,he axial quantum numbers are the non-
negative integers $, ii, f, a shell of total quantuni number
m contains a total number of nucleons

= 2 (no+ 1)(m+ 2),

with mean square radius and momentum

(r'& = (m+3/2)a',

(p') = (m+3/2) (A/a)'.

Here P„,=Pt~ „+r „„.the P are i.h.o. orbitals with only
the quantum number ~" given explicitly as a subscript,
but $ and rt are to be understood as well. Because of
exclusion the P collapses as in Eq. (12) to P, the
last filled shell only. In this last shell approximate f by
f„=e/3 throughout; then

(~+3i Pt+i(1) Jr+i*(2)
Q(»)= I- -I r. (15)

6 ) P (1) P„*(2)
For the entire nucleus,

A= Q A„=-', (v+1)(v+2)(v+3),
(10)

Converting to momentum space and recalling that,
i.h.o. functions are self-conjugate under this trans-
formation (except for a factor s"), we write the exchange
term in Eq. (13) as

(r'&=4( +I2)a'=0 86A1.a'

One can get an order-of-magnitude of u' by comparing
the mean squared radius of the outer shell (r'&„with
(rpA')', or the mean squared radius over the nucleus
with ss(rpA')', where rp ——(1.1+0.1) f (1 f=10 " cm).
The result is

t'm+3 )—a'l
l

~d'~ v(~)J(~')
6 )~

V(g) = (2ir) ' d'r exp(iver)'JJ(r), (16)

a'= (0.8+0.1)rpsA1= (1.0+0.2) f'A1= ap'Ai.

The i.h.o. estimate of (D )pp is"

(D'&oo=-'2((')')oo+-: & ( ' ' '
'&o

.=A a'/8 =A 'ap'/8.

~(")=4 2 ~'&d'&'Br+ (k+ )A(it')3
n, n'

&&LA+.(k)A (k --)+0'- 1 +1)].
The cutoff function. J(s') has the properties that
g(0) =A J(,s) ~ 0 as, s&&(Ps/PP) =1.4&o

—2

this limit is independent of A, we take

In the i.h.o., si can induce only transitions 1
~ ~ )~&1;

in conjunction with the exclusion principle this implies
that the second term in Eq. (12) vanishes entirely,
while the first extends only over the last shell. Even
for the last shell only the transition sequence f& —+1&'

+1—+ p contributes, and t ~ —+1~ 1 —+ i ~ i—s forbidden;
hence, an extra factor of —,

' in the result. Allowance for
exclusion is equivalent to antisymmetrization of 0'p,
which thus need not be explicit.

Similarly,

—,'( [D,LH, Dj]&pp ——AA'/8M

—:(Z.,.( "- ")'e( -,)P.,&oo, (»)
y=m+-', x, P.„= P„„P„,. —

Here g,„ indicates summation over neutron and
proton states separately, and I'„„is the space exchange
operator. As a preliminary to evaluating the exchange
term in Eq. (13), consider

(Q (s"—s") P~ )oo=4 d'rid'rplQ(12)
nrP

I

Q( )=2 0-( )0-*( )(s' —s')
m=o

=—2 L(0+1)'&+i(1)A*(2)
~2 m=o - (f)Vt(1)A-i*(2)—(1 ~ 2)j

"J.S. Levinger, Phys. Rev. 97, 122 (1955).

J(s') =A „expL
—(zrp)'j,

2 )g~y'
l
A„I'(0).

3&rp)

(17)

Because of the relatively short cutoff in J(~') we take
I'(~)= V(0) and allow for a slight reduction in V(~)
over the range of nonvanishing J(~') by introducing a
factor b. The value b=-', comes from the specific example

~Jp
(1+to)—' exp( —P)t'dt

oa

exp( —t')t'dt .

where V is the average value over the equilibrium
volume. Correspondingly one can define an average
total potential V for nuclear matter,

d're+-,'e ——,'X—-', Or()= (4~/3)rp'V. (19)
al

In the optical approximation of infinite nuclear
matter with an equilibrium volume of (4s/3)rp' per
nucleon,

f
(2s.)' V(0) = d'r 'JJ (r) = d'rLSK+ —'BC1

= (47r/3)r p'V, (18)
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":I'he ratio,

y =- (I'/V), (20)

is thus a measure of the exchange character of nuclear
forces in nuclei.

Collecting Kqs. (13)—(20), we have

-,'([D,P~,D]])„=(A/8)P /m —(4/9 —:)g(yV)&.

Insertion of Kqs. (21) and (12) in Eq. (3) yields

20—

Eg ft'/~g——s —0.25 (y V) . (22) fQ I I I I I I I I I I I I I I I I I I I I I I I I

0 50 IOO l5O ZOO 2SO

Comparison with Eq. (11) shows that the direct term
in Eq. (22) should be of order Ee (40~8)——A ' Mev,
while the exchange term E,= —0.25(yU) is to first
order independent of A. This suggests analysis of the
experimental E, with a similar form, (cA '+c ), which
appears in the next section to provide an excellent fit.

This section concludes with a discussion of the
quantity e in Eq. (5). For the i.h.o. it is

t'8i
ll E

EAgs) 0'& Tg f+tf+r m$i+=g +r =m'

Xp p p (—1) -"(z') (p'/2M+V) .„
m=n, n—1 m'=m+2

FiG. 1. Nuclear A"1 peak energies, A'„ for closed shell nuclei.
The experimental data" have been averaged over a range of A
values, shown by the horizontal bars, having the same magic
numbers of neutrons or protons. The smooth line is the curve
E,=(7.5+40A i) Mev. The ordinate should read E, instead
of Li'. .

which will be a relatively small uncertainty in the
treatment of the experimental data.

III. COMPARISON WITH EXPERIMENT

A least-squares fit of the measured E, " to the form
(cA—:+c')yields

7 z 7z ~V m17n2ifn1 m2
E,=L(40+6)A *+(7.5+1.5)) Mev. (26)

ml+77t2=n ml'+Ning'=72+1

&&(V(12))mi'ms', mims], (23)

tn'=7rt+2

——'(A'/3fg') = ,'Ee —20A '* —M—ev. —— (24)

according to the discussion following Kq. (22). The
arguments immediately above then suggest that

(25)

where exclusion has been taken into account. In the
erst term the quantity V is the average potential seen

by a single nucleon, due to all other nucleons. Now the
optimum i.h.o. model is dined by some criterion that
makes V as close as possible to a quadratic potential:
if the equivalence were perfect, then (p'/2m+ V) =0
for mmmm . Of course, this condition fails in practice but
the corresponding term in Eq. (23) should still be small.
The last sum in Eq. (23) is convertible to an expression
in momentum space like Eq. (16), except that terms
with (P,rt, f) = (P',rt', t') are excluded. The corresponding
function E(x') therefore has E (0)=0; since also
E(x') ~ 0 for large x' in much the same way as J(x'),
it is plausible that K(x') is always small. To see what
these quantities are small with respect to, consider the
kinetic term, which can be evaluated directly

p2i
iAg ) t+vt-r=m s'+g +r'=m' m=n, n—1

The optimum fit is shown in Fig. 1, where the data are
chosen from groups of nuclei averaged around closed
shells of neutrons or protons at average A=16, 40, 54,
89, 119, 141, 208. These are the nuclei in which the
observed giant resonances are sharpest, and for which
the i.h.o. might be expected to apply best. Actual trial
indicates, however, that Eq. (26) would be essentially
unchanged by including data from all nuclei.

An effort was made to obtain an estimate of (E,—E~,)
for the groups of nuclei shown in Fig. 1, except that
2=12 was substituted for 8=16, 40. The results are
extremely crude but suggest an average (E, E&)—
= —1.5 Mev, which would justify the assumption of
Eq. (2). If one pursues the details further and tries to
obtain a fit of the form (cA &+c'),

(E, Es) (4A—1+0.5) —Mev. — (27)

The uncertainties are so large as to render this detailed
form almost meaningless; but since the magnitude is
small, no great error should ensue from using it—in

"R.Montalbetti et at. , Phys. Rev. 91, 659 (1953);J. Goldem-
burg and L. Katz, Can. J. Phys. 32, 49 (1954); R. Nathans and
J. Halpern, Phys. Rev. 93, 437 (1954); R. Nathans and P. F.
Yergin, Phys. Rev. 98, 1296 (1955); P. F. Yergin and B. P.
Fabricand, Phys. Rev. 104, 1334 (1956); G. A. Ferguson et at. ,
Phys. Rev. 95, 776 (1954);E. G. Fuller et al. , Phys. Rev. 112, 554
(1958); J. H. Carver and K. H. Lokan, Australian J. Phys. 10,
312 (1957); J. H. Carver and W. Turchinetz, Proc. Phys. Soc.
(London) A73, 69, 110 and 589 (1959); P. Axel and J. D Fox, .
Phys. Rev. 102, 400 (1956); M. B. Scott et at. , Phys. Rev. 100,
209 (1955). The first of these references gives a fit to the data
of E,=37A~'8~ Mev; over the limited range 12&A&210 the
function E,= (40A &+7.5) Mev is very well approximated by
Eg =40A~'95 Mev.
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lieu of anything better —as an explicit connection
between E, and Eh,. Accordingly,

)0

Ei —E~+E
L~'s= (44+8)A—

& Mev, E~.',= (8%2) Mev,
(28)

with an extra allowance for uncertainty contributed by
Eq. (27).

An effort to estimate L~, in accordance with Eq. (28)
is as follows: The term E, is entirely associated with
the peculiarities of E1 excitation and should be dropped.
For an i.h.o., I'~ would equal E„except for the possi-
bility of special corrections to E& because of the opposite
motion of neutrons and protons. The next section argues
that corrections are exactly those computed in reference
6; accepting the value of 15/o found there, one has the
prescription for E„
E,=E, DE, —E.)+0—.1SE',+E.]

=(38~8)A ' Mev. (29)

Comparison with Eqs. (27), (28) shows that the first
two of the bracketed terms practically cancel; because
of this apparent accident, the discrepancy 6 arises
almost entirely from E,. Equa, tions (1), (26)—(29)
indicate

8=0.2LA'+0. 257(&20%). (30)

The observed values" "at A =90, 208 are, respectively,
E,= 17.0~0.7, 13.5~0.5 Mev, E,=8.3, 5.4 Mev
(assumed error +1 Mev), or hence 8= 1.0+0.2,
1.5&0.2. The values calculated from Eq. (30) for these
cases are 6=0.9&0.2, 1.2&0.2.

Although Eq. (30) and its interpretation were the
primary goals of the present calculation, certain other
features appear to merit discussion. The fact that the
exchange terms computed here do not vary as A ', as
does E~, allows an improved fit to the A dependence of
J'odE. Using the sum rule expression

I I I I I I I II

FrG. 2. Integrated cross sections J"crdZ& for closed shell nuclei.
The lower limits of the cross sections are based on data obtained
in the giant resonance region» (E&~20—30 Mev); the upper limits
include the additional contributions from high-energy (A~&150
Mev) gamma rays [L. W. Jones and K. M. Terwilliger, Phys.
Rev. 91, 699 (1953)j. Photoproton emission [J. Halpern and
A. K. Mann, Phys. Rev. 83, 370 (1951); E. V. Weinstock and
J. Halpern, Phys. Rev. 94, 1209 (1954); L. Cohen et al. , Phys.
Rev. 104, 108 (1956)7 has been included and makes a substantial
contribution to the cross sections for the two points of lowest A.
The value for middle-weight nuclei relies on Ni" (y,N)+(y, p)+ (y, 2n)+ (y,np) measurements [J.H. Carver and W. Turchinetz,
Proc. Phys. Soc. (London) A73, 585 (1959)g. Total cross sections
for the light nuclei are very dificult to estimate though somewhat
more certain for the "near-magic" nucleus C" than for 0".We
have used the results of W. C. Barber e» nI. [Phys. Rev. 98, 73
(1955)g for the C"(y,a) cross sections since these extend to 260
Mev, The C'~(y, p) cross section is predominant in the giant
resonance region, and it has been assumed that the ratio of (y,p)
to (y,a) cross sections is the same at high energies as in the giant
resonance region. The full line corresponds to 1.3A (1+0.18A&) io

Mev; the dotted line corresponds to the Levinger-Bethe expression
[J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950)g
J'odE=15A (1+0.8x) Mev-mb, with x=-,'.

which corresponds by Eq. (11) to ro'=(1.1&0.2) f'.
The harmonic integral evaluated by Eq. (34) is

f
odE/E = (2w)'n. (D') oo, (31)

~ odE/E= rwona oA3= (() 31~0 ()5)A~ mb, (35)

where n= e'/Ae = 1/137, one has by Eqs. (12) and (28)

odE, =E'x ' adE/E'= 1.6aosAL1+0. 18Aij. (32)

aoo= (0.85&0.15) fo, (34)
'~ B.L. Cohen, J. B. Mead, R. E. Price, K. S. Quisenberry, and

C. Martz, Phys. Rev. 118, 499 (1960).

Figure 2 compares Eq. (32) with those nuclei used to
obtain Eq. (26), with the solid line corresponding to
ao'=0, 8f'. Another measure of go comes from Eqs.
(22) and (28).

Es= (Ii'/Mao')A —*= (44&8)A—
& Mev, (33)

whence ao'= (0.9&0.2) fs. Allowing a similar un-
certainty in the fit of Fig. 2, one has as an average

and is displayed in Fig. 3.
Comparison of Eqs. (22) and (28) indicates that

y= —(32/V) 0.4, (36)

if we take the average nuclear potential near the top of
the Fermi sea to be V= —90 Mev, as suggested with
fair uncertainty by elementary considerations of nuclear
saturation, " The values of y predicted by various
choices of nuclear exchange parameters used in nuclear
spectroscopy are shown in Table I. lt is seen that a
small value of y or hence of E, corresponds to relative
equality of even-parity and odd-parity terms in the
two-body potential. This is quite simply understood
from E, (Q~ U~Q) and Eq. (15) for Q, where because
of the E1 mode of excitation the orbitals P», f»+i have
opposite parity. Therefore, in the matrix element

"R.Karplus and K. M. Watson, Am. J. Phys. 25, 641 (1957).
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Fio. 3. Harmonic cross sections J'odE/Z for the same cases as
Fig. 2. The solid line corresponds to j'~dE/8=0. 31A'~' mb.

(Q~ V
~ Q) the direct terms involve only the even-parity

parts of U, the exchange terms only the odd-parity
parts, and the total matrix element is the difference of
these. One may thus compare E in significance with
the average (optical) potential in a nucleus, which is a
sum over even-parity and odd-parity terms. Unfor-
tunately, the numerical work leading to the value

y 0.4 is not very reliable; one can safely say only that
Eq. (36) indicates effective forces between nucleons
that are attractive in odd- as well as even-parity states.
Since the "eGective forces" are supposed to represent
by central interactions all of the true interaction eGects,
this is perhaps not unreasonable.

The i.h.o. parameter a' can be expressed in terms
of the oscillator frequency and eGective mass'4
a'= (5/M*o&). The i.h.o. relation E,=hco then implies,
by Eqs. (29) and (34)

M*/M = Ii'/Ma'8, =1.2&0.2, (37)

which exceeds by about a factor 2 the estimate" for
infinite nuclear matter. Although the Ej. giant resonance
involves mainly nucleons in the last shell, this circum-

'43ecause the notion of effective mass has occasioned some
confusion in connection with Ej nuclear excitation, it may be
worth while to repeat in outline the argument used here. The
insensitivity of Eq. (3) to inconsistency between H and @0 is an
important feature of all sum-rule calculations, since one would
otherwise require a self-consistent solution of the nuclear A-body
problem, as yet unavailable. This inconsistency can extend to the
choice of 3f*, which must therefore be considered separately for
H and +0. For II the choice M=M* is equivalent to adoption of
a certain, still widespread convention for describing effective
two-body nuclear potentials. For +0 we originally specify only a
length parameter u; when subsequent analysis and comparison
with experiment indicate that E,=38A & Mev, we can attempt
to make our i.h.o. model 4'0 6t not only a but also Puo=E, . This
then implies M*/3f =1.2 for the model%'0, a value that seems not
unreasonable on consideration of the Thomas shift.

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1938).

stance can be estimated to increase the effective M*/M
only slightly, say by about 10%. On the other hand,
(d,p) measurements of the type emphasizing the large
size of 8 have also given rise to direct estimates" of
M*/M exceeding even Eq. (3/). It seems possible to
imagine that Eq. (37) may reflect the boundary-
dependent ("Thomas" ) shift of levels in finite nuclei. "
For a square well there is a difference of ~/2 between
the boundary conditions at r =E for an infinitely bound
state (lf =0) and a completely free one (lf'=0). In a
finite well the transition from one boundary condition
to the other occurs mainly in the region of zero binding:
If the "transition region" has an eGective width of iV
level spacings, the change in radial momentum across
the region will be Dp= (S——,')rrk/R; while for a po-
tential of infinite depth the corresponding momentum
change across the region would be Dp„= /t'/rrti/R

because of the constant boundary condition. The
relative increments in kinetic energy are then

Thus to represent by an infinite well (as the i.h.o.) the
succession of levels in a finite well in the region near
zero binding requires the substitution

in the corresponding infinite well. This condition makes
Eq. (37) compatible with M*/M for infinite nuclear
matter if the eGective S 1 to 2. This is corroborated
by explicit calculations with a truncated oscillator
potential, "which show hT/hT„-

Iv. DISCUSSION

The considerations above provide a basis for ex-
amining previous discussions of the discrepancy b.
Association4 of 8 with M*=-,'M is completely contra-
dicted by Eq. (37), which latter is compatible with an
empirically satisfactory treatment of B. Although Eq.
(37) is a crude, secondary relation and possibly more
model-dependent than some of our other estimates, it
seems clear that 6 is quite unrelated to any assumption
like M*/M = -'

The qualitative ascription of 8 to coherent inter-
actions between particle-hole pairs excited by Ei
radiation' might appear at first to find support in a
suitable verbal interpretation of Eq. (15) in which one
regards the nucleon orbital lt as destroying a particle
or creating a hole in a filled shell, and conversely for
P*. Then Q(12) represents the creation (destruction) of
a coherent set of hole-particle pairs; but closer in-
spection of its derivation shows that in Q(12) a neutron
combines with a proton hole or vice versa. The inter-
action energy (Q~ V~Q)pp can thus depend only on the
charge exchange part of the nuclear potential as is of

''1 E.g. , A. M. Lane and R. G. Thomas, Revs. Modern Phys.
30, 257 (j958)."F. C. 13arker (private communication).
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TAaLK I. Exchan, ge factor y.

Potential

Rosenfeld'
Elliott and Flowers
Serber
Barker'

Ao]. A10

0.6
0.7

1
(0.6&0.2)

App

—1.8
0.5
0

(0.9&0.2)

All

—0.33—0.26
0

{0.6a0.4)

2.4
1.3

0.3~0.3

0.9
0,5
0.5

1

a L. Rosenfeld, Nuclear Fof ces (North-Holland Publishing Company, Amsterdam, 1948).
b J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London) 242, $7 (1957).' See reference 17.
The potentials here are speci6ed in terms of average values Apq for the isotopic and real spin states of two nucleons, in these terms.

2 (3A oi+A to —3A» —A oo)

9A11+3A1013A P1+A PP

Note that since y is normalized to the effective nuclear potential in the nucleus, it can differ substantially from the conventional
fraction x of exchange forces D. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950)g. For a pure Wigner plus Majorana potential,
y= x(1—5/4x) '; in a more general case we de6ne

' x '= (Sit+oR)/(%+oS+5K+o3C) = o(1—(3A»+Aoo)/(3Aoa+Aio) j
to give a simple basis of comparison with the conventional x. The values of "x"are also given in the table: It is seen that y is a more
sensitive measure of the forces' exchange character.

course true of E,. The hole-particle pairs of reference 5
are entirely charge-conservative (n —n and p —p); the
corresponding (Q'~ U~Q') cannot contribute to E„and
arguments have been presented' that its contribution
to E& is very small. Our empirical treatment does not
yield any estimate of (Q'

~

V
~

Q') but indicates that it is
of minor significance relative to (Q ~

V
~
Q).

Unfortunately, even the collective treatment of I 1

oscillations does not at present' account for the ex-
change term E,. This arises from what has been called
an inherent difficulty in definining classical, collective
coordinates in the presence of exchange potentials. "
Such a difhculty can be foreseen on the most elementary
picture of neutron and proton Quids, undergoing oppo-
site oscillations: The tacit assumption is always made
that each Quid preserves its identity throughout; but if
elements from the two Quids can exchange roles during
the oscillation, this simple picture breaks down. In
classical terms such exchange of Quid elements should

have the qualitative eGect of continuously advancing

(or retarding, if the sign of the exchange effect is re-

"J.Fujita, Progr. Theoret. Phys. (Kyoto) 16, 112 (1956).

versed) the phase of the oscillation: i.e., of increasing
or decreasing its frequency. Quantum mechanically, be-
cause of exchange the occupation number e; in Eq. (4)
of reference 6 does not commute with the potential
element (E,;;, E,;;;), nor is—the resulting V, diagonal
in the occupation number e;. In taking averages over
the ground state of nuclear matter, all such questions
are resolved by calculating only terms diagonal in occu-
pation numbers; but the E1 oscillations consist just of
the Quctuations in occupation numbers, and nondi-
agonal terms may be important —and are, in fact, ac-
cording to the previous sections. The corrections corn-
puted by the collective approach with neglect of ex-
change eGects must be attributed to Ed in the present
treatment.

One is thus in the position of concluding that all
previous discussions of 5 have omitted the main con-
tribution, which is that of E . This conclusion is sup-
ported by definitely improved fits to the giant resonance
data over the range of real nuclei. It is interesting to
note that the gross effect of E, has been known in prin-
ciple for as many years as the sum rule, and that modern
refinements seem to change the picture very little.


