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The potential energy functions between ions and atoms in collision are determined from experimental data.
The ion-atom combinations studied include Ar+ on Ar, Ne+ on Ar, Ne+ on Ne, He+ on Ar, He+ on Ne, and
He+ on He, using differential cross-section measurements by Fuls et eL. and Jones et ul. made at 25, 50, and
100 kev. These data are analyzed using equations developed by Firsov. The potential energies are positive,
are in the range of one to sixty thousand electron volts, and correspond to ion-atom separations of a small
fraction of an angstrom.

The resultant potential energy curves are compared with a function derived by Firsov from a statistical
model and they are found to fit fairly well. The Gt to an exponentially screened Coulomb potential energy
curve is not quite as good, but both these theoretical curves fall within the accuracy of the experimental data.

1. INTRODUCTION

'HE potential energy function between ions and
atoms in kilovolt energy collisions is of interest

because it determines their scattering. The repulsive
Coulomb force between the nuclei is modified by a
factor which is due to the electron screening. Several
functions have been proposed for this potential energy,
including an exponentially screened Coulomb function'
and a function derived by Firsov' from a statistical
model based on the Thomas-Fermi calculation.

The potential energy function can be determined
from experimental data in several ways:

(1) Measured values of the differential cross section
can be compared directly with values calculated from
arbitrarily assumed potential energy functions. Thus
Fuls et al.' compared their experimental differential
cross section data for noble gas ion-atom collisions with

the calculation of Everhart et al.' who assumed an
exponentially screened Coulomb potential energy
function. The agreement was fairly good, though not
exact.

(2) The impact parameter can be determined at
selected angles and at several energies using methods

developed by Amdur' and Simons. ' A power-law

potential energy is assumed and the corresponding

calculated impact parameter dependence is fitted to
the data. Mason and Vanderslice7 have calculated

improved potential energy functions for use with this
method. The energy range of Amdur and Simons
experimental work is 4 ev to 2000 ev and therefore
corresponds to larger interatomic separations than the
work which is reported below.

(3) In the present paper a new method is used which
is the inverse of method (1). The scattering data is
used to determine the potential energy function
uniquely. The first step is to use differential cross
section data to find the angular dependence of the
impact parameter. The second step is to find, from this,
the potential energy as a, function of separation distance.
This second step is by far the more difFicult. Formulas
developed by Hoyt' required using data taken at several
energies to determine the. desired potential energy
function. Firsov' developed a much improved procedure
which determines the potential energy function uniquely
from data taken at one incident energy. Firsov's
method is here applied for the 6rst time to experimental
data.

The recent experiments by Fuls et ul. ,
' Jones et al. ,

t'

and Kaminker and Fedorenko" have accumulated
absolute data on the differential scattering of ions and
atoms which this method requires. Potential energies
of Ar+ ions incident on Ar atoms, Ne+ on Ar and Ne,
and He+ on Ar, Ne, and He are determined here from
data taken at 25, 50, and 100 kev (laboratory) incident
energies.

*This work was sponsored by the OfBce of Ordnance Research,
U. S. Army, through the Ordnance Material Research Ofhce at
Watertown and the Boston Ordnance District.

t Now at Norwich University, Northfield, Vermont.
'N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

18, 8 (1948).
'O. B. Firsov, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 696

(1957) Ltranslation: Soviet Phys. -JKTP 6, 534 (1958)g.
' E. N. Fuls, P. R. Jones, F. P. Ziemba, and E. Everhart, Phys.

Rev. 107, 704 (1957).
4E. Everhart, G. Stone, and R. J. Carbone, Phys. Rev. 99,

1287 (1955).' I. Amdur and E. A. Mason, J. Chem. Phys. 25, 624 (1956) and
previous papers.

W. H. Cramer and J. H. Simons, J. Chem. Phys. 26, 1272
(1957) and previous papers.

'E. A. Mason and J. T. Vanderslice, J. Chem. Phys. 29, 361
(1958) and previous papers.

2

2. THEORY

The differential cross section o (t7) and scattering angle

0, both in center-of-mass coordinates, are easily obtained

by transforming the experimental values o. (O~) and O~,

which are in the laboratory system. The impact

F. C. Hoyt, Phys. Rev. 55, 664 (1939).
'O. B. Firsov, J. Exptl. Theoret. Phys. (U.S.S.R.) 24, 279

(1953).
P. R. Jones, F. P. Ziemba, H. A. Moses, and F.. Everhart,

Phys. Rev. 113, 182 (1959)."D. M. Kaminker and N. V. Fedorenko, J. Tech. Phys.
(U.S.S.R.) 25, 2239 (1955). See also N. V. Fedorenko, L. G.
Filippenko and I. P. Flaks, J. Tech. Phys. (U.S.S.R.) 30, 49
(1960) Ptransiation: Soviet Phys. -Tech. Phys. 5, 45 (1960)g.
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parameter p is related to o.(8) and 8 by

2s.o.(8) sin8d8= 27—cpdp,

and this is integrated to give

paper is not available in translation. I,et

g =
l 1—V(r)/Zjrs,

a.nd Eq. (3) becomes

(4)

p'=2 o.(8) sin8d8. (2) 8=~— I 2p (d

1nr/dt's)

(P p') —*'dt's,

From classical scattering theory, " which is valid''
for the present problem, the angle 0 is related to the
impact parameter p and the interaction potential energy
function V(r) through the equation

where p' is the value of tp at r= re. Since

P(d ink/@) (0 P') '—@=~,j
e=x— (p/ ) L (1 V ( )/E) s ps) —d (3)

it is possible to rearrange Eq. (S) in the form
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where E is the incident kinet, ic energy in the center-of-
mass system and ro is the distance of closest approach.
The integrand is infinite at r=ro. This integration
cannot be carried out directly since the unknown
quantity V(r) is in the integrand.

The next steps, leading to Eq. (10) below, follow
Firsov, ' and are reproduced briefly here because his

8(p) = t PLd In(li t/rs)/df tj(ft —p') ~did t. (7)
gj +2

The symbol

hatt

is used here instead of p in order to
distinguish it from P which appears in a limit of inte-
gration in the next equation. Equation (7) is multiplied
by dp/(p' —P)& and integrated over p from gP to ao:

t
" 8(P)dP t." 1'" Ld ln(4tlr')/@tlat

pdp . (g)" ~ (p' 0)' j ~
—"" (P' —lI)'(4 —p')'

The integral on the right is transformed" and written as

t
" 8(P)dP

Ld»(0 tlr')I@t j@t
"~p (p' —P): 2~p

d(P')
X

(P'-—4') '(lI t—P') '*

= (~/2) ln(r'/P).

When this is solved for r, Firsov's result
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"See, for example, H. S. W. Massey and E. H. S. Burhop,
E~lectronic and Ionic Impact I'lzenomena (Oxford University Press,
New York, 1952), p. 373.

Fto. 1. (a) Differential cross-section data in laboratory co-
ordinates for 25 kev Ar+ on Ar collisions; (b) The above data is
plotted in center-of-mass coordinates, weighting each cross
section by the sine of the angle. The shaded area to the right of
any particular angle 81 equals half the square of the corresponding
impact parameter.

is obtained. Knowing' r(P) and using Eq. (4) it is
possible to determine V(r). Firsov checked this method
showing that it leads analytically to the Coulomb
potential energy function when the well-known Ruther-
ford differential cross section was used for ~(8). Using
our procedure, as outlined below, we also checked
Firsov's equations by inserting numerical values of
differential cross section from reference (4) showing that
it leads back to the corresponding screened Coulomb
potential energy function.

3. PROCEDURE

As an example of the procedure, let us consider the
case of Ar+ on Ar at 25 kev. Figure 1(a) shows the

"E.T. Whittaker and G. N. Watson, M'odern Analysis (Carn-
bridge University Press, Cambridge, 1927), 4th ed. See corollary
in Sec. 4.51, p. 77.
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differential cross section vs scattering angle in labora-
tory coordinates taken from Fig. 15 of reference (3)
and Fig. 7(d) of reference (10). The solid lines in
Fig. 1(b) show this same data transferred to center-of-
mass coordinates'4 and weighted by the factor sino.
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a. Determination of Impact Parameter

Numerical integration of the curve in Fig. 1(b) must
be carried out as indicated in Eq. (2). This integral has
an upper limit of 180' and thus it is necessary to make
a reasonable extension of the data to 180' as indicated
in the dotted line. The shaded area to the right of any
particular angle 8i, equals p'/2. A portion of this area
lies under the dotted line beyond the solid curve
obtained from the data. When 0& is a small angle, this
uncertain area is very small as seen in the X1 and &&10

curves, and the determination of p is correspondingly
accurate. However, when 0& is a moderately large angle,
as in the case shown, the uncertain area can become an
important fraction of the total. The effects of drawing

the d.otted extrapolation of Fig. 1(b) in various ways
are considered in the appendix, Sec. 6(b), below.

The result of this integration is shown as the solid
line of Fig. 2(a) which plots 8 vs p. Although this is an
intermediate result, it is interesting to compare now
with a calculation by Firsov" (dotted line) and also
with a calculation by Everhart et al.' (dashed line).
These calculations use, respectively, the functions
Vi(r) and Vs(r) to be described in Sec. 4 below.

where
rl/b= (1/s) expLI(s)/~j

b. Determination of V(r)

The next integration of the experimental curves is
essentially that of Eq. (10). However, the infinities in
the limit of integration and in the integrand of that
equation require that its form be changed and adapted
to numerical integration.

New dimensionless quantities

u= b/p and s= b/QP

are introduced, where the length b equals ZtZ&e'/E.
Here Z~e and Z2e are the nuclear charges of the colliding
ion and atom. These are incorporated into Eq. (10)
which now becomes
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Fzo. 2. (a) Scattering angle vs impact parameter is plotted from
25-kev Ar+ on Ar data (solid line), from a calculation by Firsov
(dotted line), and from a calculation by Everhart. et al. (dashed
line); (b) Scattering angle 0 is plotted vs u which is a dimensionless
reciprocal of the impact parameter (solid line). The dashed
straight line is drawn to 8(s) where s is a particular value of u;
(c) The integrand of I1(s) in Eq. (13) is plotted vs u.

'4 See for example, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1949), p. 99.

=8(s)ir/2 —Ii(s) . (13)

Carrying through with the 25-kev Ar+ on Ar example,
the next step is to plot 0 vs I as in the heavy solid line
of Fig. 2(b). This is easily done from the curve of
Fig. 2(a), since u is a dimensionless reciprocal of p. It is
necessary to extend this line arbitrarily to @=0 as
indicated by the dotted line in Fig. 2(b). This gap
corresponds to the absence of experimental differential
cross section data between 0' and 1' (lab). This is
discussed in the appendix, Sec. 6(b), and it turns out.
that the final rV(r) curves to be obtained are not very
sensitive to the particular way this dotted line is
drawn. A particular value of I, such as s, is chosen and
the straight line 8(s)(u/s) is drawn as shown by the
dashed line in Fig. 2(b). The difference between this
line and the curve is the numerator of the integrand
of Ii(s).

The entire integrand of Ii(s) (for the particular value
of s chosen) is shown in Fig. 2(c). Near u=0 the

' O. B. Firsov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 447
(1958) Ltranslation: Soviet Phys. -JETP 7, 308 (1958)g.

The infinities in the integrand of I(s) in Eq. (12) are
avoided by rewriting it in the form,

t" 8(s) (u/s) du I" 58(s) (u/s) 8(u) jdu-
()= "

& s u(1 —u'/s') *
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quantity 8(n) approaches zero and is much less than

8(s)(u/s) which also approaches zero. The integrand
of Ii(s) in Eq. (13) equals 8(s)/s at u=0. At the upper
limit the integrand is zero. A curve similar to that of
Fig. 2(c) is integrated numerically for each of several
values of s. The resulting values of Ii(s) are substituted
into Eqs. (13) and (12) to find r/b for each value of s.

Corresponding values of r/b and s are then sub-
stituted into

V( ) =&51—(1/ )'(b/ )'1 (14)

which is derived by combining Eqs. (4) and (11).As a
result V is obtained as a function of r.
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FIG. 3. The potential energy V (r) is plotted as a function of the
separation between an Ar+ ion and an Ar atom. The three solid
lines are calculated from experimental data taken at 100, 50, and
25-kev incident kinetic energies. The dotted line is a potential
energy function derived by Firsov based on the Thomas-Fermi
statistical model, and the dashed line is an exponentially screened
Coulomb potential energy function.

"V.Bush and S. H. Caldwell, Phys. Rev. 38, 1898 (1931).

4. RESULTS

Analyzing the data of Fuls ef al.' and Jones ef al."as
described above yields the potential energy curves
shown in Fig. 3 for the Ar+ on Ar case. The three solid
lines, from left to right, correspond, respectively, to
data taken at 100, 50, and 25 kev (lab). The dotted line
corresponds to the function V~(r) obtained by Firsov. '
He found that, to an accuracy of 10%%u~, the interaction
potential energy for ion-atom collisions calculated on the
basis of the statistical model for the electrons can be
represented as

Vf (r) (Z use'/r) g (x),

where g(x) is the screening function in the Thomas-
Fermi potential, " with x=lZi'+Zs'j*(r/ai) and ai
=4.7)&10 ' cm. The dashed line in Fig. 3 is the screened

FIG. 4. Scattering data for (a) Ar+ on Ar, (b) Ne+ on Ar, and
(c) Ne+ on Ne taken at 100, 50, and 25 kev (lab). The product of
the potential energy V(r) and the separation r is plotted vs r.
This product, rV (r), which is proportional to the electron screening
factor, is shown (solid lines) as determined from experimental
data For com.parison rV (r) is also shown for the Firsov potential
energy function (dotted) and for the exponentially screened
Coulomb potential energy function (dashed).

Coulomb potential function, Vs(r), given by

Vs(r) = (ZiZse'/r) exp( —r/a), (16)

where a=as/$Zi*'+Zs**jl as suggested by Bohr, ' and
as ——5.3)&10 ' cm. Both functions V~(r) and Vs(r) fit
the Ar+ on Ar data curves fairly well, but in this
representation all curves are so steep that it is difficult
to analyze the differences.

The leading factor in both these potential energy
functions is the same 1/r Coulomb term, but each has a
different factor representing electron screening. Thus
if one plots rV(r) vs r there is a dual advantage:
Firstly rV(r) is proportional to the screening factor,
which is of primary interest, and secondly, the curves
are less precipitous and can be plotted on a better
vertical scale.

Figure 4 shows plots of rV(r) vs r obtained from the
data for collisions of Ar+ on Ar, Ne+ on Ar, and Ne+
on Ne. Figure 5 shows similar plots for He+ on Ar,
He+ on Ne, and He+ on He. Note that the horizontal
scales are different in the several cases. On each figure
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FIG. 5, Scattering data for (a) He+ on Ar, (b) He+ on Ne, and
(c) He+ on He talren at 100, 50, and 25 1&ev (lab). The product
of the potential energy V(r) and the separation r is plotted vs r.
This product, r V (r), which is proportional to the electron screening
factor, is shown (solid lines) as determined from experimental
data. For comparison rV (r) is also shown for the Firsov potential
energy function (dotted) and for the exponentially screened
Coulomb potential energy function (dashed).

there is a separate solid line for data taken at each
energy.

For some ion-atom combinations the three solid
curves line up fairly well with each other, and for other
combinations there are discontinuities. Two possible
theoretical reasons for discontinuities in the curves are
discussed:

(1) The potential energy may be velocity dependent
to some extent. In this energy range the velocity of the
incident ion is comparable to the velocity of the outer
electrons of either atom. The electrons have more time
to adjust themselves quasi-adiabatically in the 25-kev
collisions than they do, for example, in the 50-kev
collisions. The potential energy may be di6'erent in
these two cases at the same interatomic distance.

(2) The classical theory used here in obtaining
V(r) from o.(8) assumes elastic collisions, and is valid
to the extent that the inelastic energy transferred in the
collision process is very small compared to the incident
kinetic energy. Such inelastic effects might cause
discontinuities between curves taken at diferent
energies.

However, it is probable that experimental error in
the original data, is sufhcient in itself to cause dis-
continuities which mask either of the above considera-
tions. The effects of systematic experimental errors and
also the effects of extrapolations in the calculation
procedure used here are discussed more fully in the
appendix.

If there were no electron screening r V(r) would equal
Z&Z2e' as required by Coulomb's law. The data would
then follow a horizontal line at this level, which is
indicated by a small arrow on the ordinate for each
combination. Thus, at each separation r, the measured
value of the electron screening factor is found by
taking the ratio of the corresponding value of rV(r)
to ZzZ2e'.

For each case in Figs. 4 and 5 t.he screening factor x
of Eq. (15) is shown dotted and the screening fa,ctor
exp( —r/a) of Eq. (16) is shown as a dashed straight
line. These factors are weighted, of course, by Z&Z2e'
for each combination in order to compare them with the
data.

The screening factor g has the same general curvature
as the data curves of Figs. 4(a) and 4(b) and generally
fits the data somewha. t better then the exponential
screening factor.

However, the potential energy functions of Eqs.
(15) and (16) are both considered to fit the data well
enough so that either may be used to calculate the
forces between ions and atoms in the energy range
studied here.
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APPENDIX

Here the effects of experimental error and the effects
of various extrapolation procedures of Sec. 3 are
considered.

a. Experimental Errors

Reference to the experiments of Fuls el al. ' and Jones
e1 cl." shows that there are two important kinds of
errors. The first of these is a "scale factor" error in
determining absolute differential cross sections. Thus
errors in measuring target gas pressure, incident ion
beam energy, detector sensitivity, and solid angle
dimensions will a6ect all data points taken during a
given data run by the same factor. The importance of
this scale factor can be seen in the following particular
example: An arbitrary 14% increase in the differential
cross-section data for Ne+ on Ne taken at 25 kev was
found to be sufficient to raise the corresponding rV(r)
curve in Fig. 4(c) until it was in line with the 50-kev
curve. Such a scale factor error is well within possible
experimental error. The fact that all curves seem to
approach Z~Z~e' as r approaches zero shows that there
is no gross error of this sort.
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A second experimental difficulty is that scattered
particle currents are extremely small and dificult to
measure at large angles, especially in the light ion-atom
combinations. There is much scatter in the data and
this might possibly explain the diverse slopes and
discontinuities of all the combinations of Fig. 5.

b. Extrapolation Errors

In Sec. 3(a) above an extrapolation was necessary
because of the lack of differential cross section data
beyond the largest angle measured. Besides the reason-
able and smooth extrapolation used to extend the curve
of Fig. 1(b), two extreme and less reasonable extra-
polations were investigated.

(1) It was assumed that the differential cross section
did not decrease below the last measured value and was
constant out to 180'. Since o (8) is a decreasing function
of angle, this grossly overestimates its value. When this

assumption is followed through it causes the left end
of the rU(r) curves to turn up as shown for the 25-kev
Ar+ on Ar case in the curve labeled A in Fig. 4(a).

(2) The second assumption is that o (8) drops
exponentially with angle as shown by the straight line
labeled 8 on Fig. 1(a) joining smoothly to the data.
Since the measured data have an upward curvature
on this semi-log plot this assumption is somewhat
of an underestimation of o.(8) and the effect is to slightly
lower the left end of the rU(r) curves. This is shown for
the 25-kev Ar+ on Ar case by the curve labeled 8 in
Fig. 4(a).

The other extrapolation, made necessary as discussed
in Sec. 3(b) by the lack of data between 0' and 1', was

investigated in a similar manner, taking extreme
assumptions and determining their effect on the final

rU(r) curves. These assumptions had only very small

eGects on the right end of these curves.
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Using harmonic oscillator wave functions, the Slater integrals have been evaluated and expressed in the
form of summation formulas. The Coulomb energies of seven closed-shell nuclei are estimated using these
integrals. These estimates are compared with those based on a statistical model and a trapezoidal model. The
influence of exchange energy on the Coulomb radius of a nucleus is shown to be sensitive to the model used.
Although the Z' variation of exchange energy appears to be a suitable characterization, present estimates
require a larger multiplying constant in the usually accepted expression for the exchange energy. The direct
and "net" energies, computed from the three models, show very good agreement.

STUDY has been made by Swamy and Green' of
the Coulomb exchange energies of light nuclei,

wherein it was noticed that estimates with shell-model
wave functions do not agree with those of Bethe and
Bacher' based on the statistical model of the nucleus.
This study of Coulomb energies is now extended to
heavier nuclei up to Z= 70. In order, however, to facili-
tate a close comparison of the direct energies with the
results of a uniform spherical distribution of charge, the
present calculations are restricted to closed-shell nuclei.
The Slater integrals' have been evaluated using har-

*This work was supported by the Department of Atomic
Energy, Government of India.' N. V. V. J. Swamy and A. E. S. Green, Phys. Rev. 112, 1719
(1958).

~ H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 162
(&936).' E. U. Condon and G. H. Shortley, The Theory of Atonic Spectra
(Cambridge University Press, Cambridge, 1951), p. 176.

monic oscillator wave functions and the results are given
in the Appendix. The direct and exchange energies are
linear functions of the oscillator parameter e. These,
inclusive of self-energies, have been calculated for seven
nuclei and are shown in Table I.

If a phase-shift analysis were made with the oscillator
model to fit electron scattering, an exact experimental
oscillator constant could have been available which
would uniquely determine the nuclear radius. In our
qualitative study we have, however, chosen the oscil-
lator parameter to satisfy the "equivalent uniform
radius" criterion

t 3/3 (rs) j-:-=r~&=Z,

where (r') is the rms radius of the charge distribution
computed with harmonic oscillator wave functions, and
ro is the familiar radius constant. In the case of 20Ca"
we have assumed ro to be equal to 1.22 in order to secure


