
ZEEMAN EFFECT IN Mgo: Cr'+ CRYSTALS

related to each other, so that we can expect elliptically
polarized radiations for the side components. QThe
predicted elliptical polarization mode of the longer
wavelength side component is illustrated in Fig. 8.
1'he central component is linearly polarized along the
[110) axis (H

~~
L110)) when the magnetic field is

applied along the t 110)axis.
The longitudinal Zeeman effect with Hs~~(111) is

obtained from the results given in Table IV. The
Zeeman patterns are visualized in Fig. 6. The char-
acteristic feature of this result is such that the central
component is linearly polarized in the (111) plane
while the side components are circularly polarized in
the opposite sense to each other in the same plane.

The agreement of these calculated longitudinal
Zeeman patterns with the experimental ones is very
good in all cases as expected.
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A technique has been developed for the calculation of excited state, one-electron wave functions based
on the Thomas-Fermi statistical theory of the atom. This technique is applied to heavy alkali atoms for
which Hartree-type solutions are complex and diKcult to obtain. The Thomas-Fermi differential system
for the alkali positive ions is accurately solved utilizing Milne s method, and the results are summarized.
This Thomas-Fermi core potential is then used as a central 6eld in the Schrodinger equation together with
the Heisenberg type of polarization energy correction. Angular dependence is assumed to be capable of
separation, and two basic techniques for solving the radial Schrodinger equation are discussed, one due to
Ridley, the other to Biermann and Lubeck. The general approach permits correction for penetration of the
excited electron s orbital. The Biermann and Lubeck type solution also allows for the inclusion of a quali-
tative correction for exchange. The techniques are applied to the potassium atom with an excited valence
electron in the 6s state. The results are encouraging when compared with a Biermann and Lubeck type
calculation using a Hartree central potential done by Villars. The 7s state of the cesium atom which has not
been obtained by Hartree central potential is also computed.

I. INTRODUCTION

HE only systematic approach to the calculation
of atomic structure and properties is via the

Hartree' or Hartree-Fock' approximation. However,
there are limitations to these calculations. Their nu-
merical complexity makes it diKcult to obtain an over-
all physical picture of the atom. Only isolated solutions
are possible in these approximations and for heavier
atoms the numerical complexity of the self-consistent
iterations makes the calculations for atomic structure
all but impossible.

*This research has been supported by the Geophysics Research
Directorate of the Air Force Cambridge Research Center, Air
Research and Development Command, the Once of Ordnance
Research, and the Once of Naval Research.

t Present address: College of Physicians and Surgeons,
Columbia University, 630 West 168 Street, New York 32, New
York.

' D. R. Hartree, Proc. Cambridge Phil. Soc. 23, 542 (1926).
2 V. Fock, Z. Physik 61, 126 (1930).

There are additional complications which arise when

attempting to calculate the structure of excited states
since one requires that the wave functions used be
orthogonal to all lower states, and it is sometimes
impossible to obtain solutions with this requirement.

For those states for which Hartree or Hartree-Fock
one-electron wave functions cannot be obtained, one
can use a somewhat cruder approximation which has
the advantage of simplicity, namely the Thomas-Fermi
model. ' 4 The basic assumptions in this model, however,
require that we investigate only the ground-state
configurations. Some attempts have been made by
Latter' to investigate the excited states of an electron
in the Thomas-Fermi central potential. This is of course
an approximation to the description of excited states

s L. H. Thomas, Proc. Cambridge Phil. Soc. 25, 542 (1926).
4 E. Fermi, Rend. accad. nasl. Lincei 6, 602 (1927); Z. Physiir

48, 73 (i928).' R. Latter, Phys. Rev. 90, 510 (1955).
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of atoms since, for example, some self-force on the
electron is included and there is no correction for
interaction sects. The procedure described in this
paper is a combination of the Thomas-Fermi technique
and a self-consistent procedure. It is easiest to apply to
cases where there are several closed shells and the
excitations being discussed are those of electrons outside
of these closed shells. We consider the excited electron
to move in the Thomas-Fermi Geld of the remaining
electrons, and we use a self-consistent procedure to
account for the distortion of the Thomas-Fermi Geld
due to the penetration of the charge cloud by the
excited electron.

In this paper, we first treat the 6s state of the
potassium ion. Potassium was chosen since it represents
the heaviest alkali which has been treated by a Hartree
method, so that our method can be compared with the
Hartree result. An s state was chosen because we felt
that the effects of the penetration of the ion core would
be most prominent. Since the results with potassium
were practically identical to those previously obtained
by the Hartree central field method, we were em-
boldened to attempt the calculation of the 7s state of
cesium, an element too heavy to be treated by the
Hartree method.

The proposed technique is mainly outlined in Sec. II.
Section III discusses the accurate solution of the
Thomas-Fermi equation for pure ions, and Sec. IV
discusses the solution of the Schrodinger equation with
the efFective central potential. The self-consistency
features are in Sec. V, results are presented in Sec. VII,
and conclusions in Sec. VIII. It should be noted that
our object is to find reasonable and relatively simple
wave functions to describe an atomic system, and much
of the analysis we make is to be regarded as heuristic
rather than rigorous.

IL THE GENERAL TECHNIQUE

For an alkali atom, we Grst neglect the interaction
of the excited electron with the remaining ion core. The
ion core can then be treated by the Thomas-Fermi
technique since the remaining core electrons are all in
the ground state, and for a heavy ion, well approxi-
mated by a continuous distribution. Such an ionic
system obeys the following diGerential system':

F(r)= 2or~e'/r', (2.7)

since a dipole of strength p yields a field 2'/rs along its
axis. The potential energy contribution due to polari-
zation of the ion core is then

F(r)dr = rr„e-'/2r'= Up—„i. (2.8)

The value of the polarizability of the ion core can be
determined by a number of theoretical and experimental
methods. It can be obtained from the index of refraction
of the ion in solutions, ' ' or in crystals, ' or by theo-
retical techniques of Mayer and Mayer, " Pauling, "
and Sternheimer. "The polarizability values which were
chosen for the present calculation are those obtained
from the second-order Stark eGect. In general the
energy of interaction between an atom and an applied
field may be represented by the series

with V(r), the radially symmetric potential; as, the
first Bohr radius; Z, the nuclear charge; S, the number
of electrons in the ion core; and ro, the e6ective radius of
the ion, being defined such that for r) rs, V(r)
= (Z—$)e/r. Solving this set of equations yields a
potential distribution for the core which will be called
V;,„„.The solution of the Thomas-Fermi ion will be
considered in the next section.

This potential will not be exactly the one that the
excited electron moves in. We Grst include polarization
effects. Even for a completely nonpenetrating outer
electron, which might be expected to move in a com-
pletely hydrogen-like Coulomb Geld, there is produced
a resultant asymmetry or polarization which leads to a
slightly greater binding energy for the nonpenetrating
electron than for the hydrogenic electron. For our
analysis, the effect of polarization by the outer electron
can be treated by a technique suggested by Born and
Heisenberg. ' The argument is as follows: in those
regions where the eQ'ective radius r of the electron's
orbit exceeds the dimensions of the core, the electron
exerts a sensibly homogeneous field, —e/r', on the core,
and so induces a dipole moment n„e/rs in th—e core,
where n~ is the latter s specific polarizability. The dipole
will always be oriented so that the excited electron lies
along the dipole axis; thus the dipole will react on the
excited electron with an attractive force

with
(2.1)

AT= AF+BF +CFs+ ~ ~ ~ cm i (2 9)

where

y( )= LV( )—V j/Z,
g = r/go (9s. /128Z) &= rZ&/0. 885341 op,

(2.2)

(2.3)

(2 4)

(2.5)

(2.6)

P. Gombas, Handbuch der Physi k, edited by S. Flugge
(Springer-Verlag, Berlin, Germany, 1956), Vol. 36, Part II, p. 125.

where AT is the correction to the term value of the
atom, F is the applied field strength (volts/cm) and
A, 8, and C are constants referred to as the first-order,

M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).
A. Heydweiller, Z. Physik 26, 526 (1925).' K. Fajans and G. Joos, Z. Physik 23, 1 (1924)."I.Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890

(1953)."J.E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 (1933).
~ L. Pauling, Proc. Royal Soc. (London} A114, 181 (1927).' R. Sternheimer, Phys. Rev. 96, 951 (1954).
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second-order, and third-order coeKcients. The hydrogen
atom alone has a nonzero value for A. The second order
Stark effect is essentially the energy contribution due to
the induced electric moment. This amounts to —sr &re',"
thus n„=—28hc. The polarizabilities of the alkali ions
as obtained in this way are presented in Table I."

It is seen from the above discussion that the polari-
zation energy is one that should be included mainly in
the region outside the ion core; however, it is intuitively
obvious that there is no discontinuity in the polarization
potential at the core boundary and some polarization
effect can be expected in the outer regions of the core
itself. How the transition can be made is discussed
further in Sec. IV.

TABLE I. Polarizabilities of alkali ions.

Ion

Li+
Na+
K+
Rb+
Cs+

o.„(10 24 unit)

0.0292
0.180
0.835
1.41
2.42

it can easily be seen that xp becomes smaller as the
degree of ionization increases. This result is explained
by the fact that for greater positive charge excess, the
electron cloud is more tightly pulled together.

It is not trivial to obtain accurate solutions for
particular Thomas-Fermi positive ions since the
equation is nonlinear and has nonstandard boundary
conditions. The technique most commonly used to
solve nonlinear equations is a cut and try process where
one integrates in from the erst point and back from the
second, checking the solution for continuity in value
and slope at some matching point. In the case of the
Thomas-Fermi ions, we know the starting point (0,1),
but we only know the termination point (xp,0) through
a condition on the value of the slope that the desired
solution is to have at xp LEq. (2.4)). Accurate solutions
for positive alkali ions have been given by Kobayashi"
by the Thomas-Fermi-Amaldi'~ method, and by one of

"D.Bohm, Qaarptlra Theory (Prentice-Hall, New York, 1951),
p. 461."J.Rand McNally, Jr., in Handbook of Physics, edited by K. U.
Condon and H. Odishaw (McGraw-Hill Book Company, Inc. ,
New York, 1957),pp. 7-34."S. Kobayashi, J. Phys. Soc. (Japan) 14, 1039 (1959)."E.Fermi and E. Amaldi, Mem. accad. Italia 6, 117 (1934).

III. THE THOMAS-FERMI IONS

For free positive ions, the Thomas-Fermi system is
given by Eqs. (2.1) through (2.5). Solutions for positive
ions are in the form indicated in Fig. 1. From the
boundary relation given as Eq. (2.4), it is to be noted
that (Z—S)/Z signifies the segment of the ordinate
axis which the tangent to the p curve at the crossing
point (xp,0), cuts off from the ordinate axis when
extended backwards. From this geometrical observation,

!.0-

0 2 4 6 8 lo l2

FIG. 1. The form of the Thomas-Fermi solutions for positive ions.

TABLE II. Values of x0 for the Thomas-Fermi and
Thomas-Fermi Amaldi equations.

Ion

Li+
Na+
K+
Rb+
Cs+

xp (TF Eq.)
(Brudner)

4.589060
11.60870
15.68552
21.87429
26.31931

xp (TFA Eq.)
(Kobayashi)

11.604
15.678
21.857

' H. J. Brudner, New York University Research Division
Technical Report No. 3, Electron Scattering Project, June 15,
1959 (unpublished).

the authors" in a report. These calculations will not be
presented in detail, but some indication will be given
as to how the results are obtained and what the diK-
culties are. The technique used in this study involved
graphically interpolating approximate values of xp
obtained by Fermi" for various hypothetical degree of
ionization values to provide an approximate xp( ~ start-
ing value for the particular (Z E)/Z v—alue under con-
sideration. Then using the xp&"&t'(xp&'&)= —(Z N)/Z—
relation, the slope at the assumed termination point
is determined. From the Thomas-Fermi equation, the
second derivative of p is seen to vanish at this point;
differentiation of the equation provides higher deriva-
tives. Using a Taylor expansion it is thus possible to
determine an initial set of values for a backwards
numerical integration. If this is carried out, the solution
will be found to cross the ordinate axis at some value
which can be represented as 1+P&i& where 8"' would
be zero if the Fermi values were exact. A small assumed
correction is then made to give another starting value,
xp&'&, and the procedure is repea, ted yielding a P&'& value.
By interpolating for a p= 0 value, a new improved value
of xp, xp&", is obtained. By repeating the process
accurate solutions to the Thomas-Fermi equation were
obtained for the alkali ions. The details of the solutions
can be found in reference 18. In Table II we list the
values of xp obtained in this study, together with the
corresponding values obtained by Kobayashi' in the
Thomas-Fermi-Amaldi approximation. Converting back
to ordinary dimensions, it is found that the effective
radii of the alkali ions, according to Thomas-Fermi
theory are given by the values indicated in Table III.
Graphs of the Thomas-Fermi g(x) distributions for the
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IO11

Li+
Na+
K+
Rb+
Cs+

ro (A)

1.49070
2.44545
2.75394
3.07544
3.24235

1p (atomic units)

2.81705
4.62129
5.20425
5.81180
6.12723

TABLE III. Effective radii of the alkali ions
according to Thomas-Fermi theory.

where Vt (8,$) are the spherical harmonic functions,
VTp(r) the core potential, / the angular momentum
quantum number, and e; the corresponding eigenvalue.
In accordance with normalization we further require
that

f

r'E(r)R" (r) d'r = y(r) x*(r)dr = 1. (4.3)
0 ~o

In spherical coordinates with radial symmetry

1 d'(r V)
= 4m p (r).

r dr'
(3.2)

But r(V Vp) =Zep(x)—from Eq. (2.5), and r=ttx from
Eq. (2.6); thus the radial charge distribution is given by

Accurate values of the parameters determining the
charge distribution are presented in reference 18.

alkali ions are given in Fig. 2. Reference 18 has tabulated
values of p(x) and p"(x) accurate to six significant
figures.

The charge distribution p(r) of the alkali ions can be
determined as follows: From Poisson's equation

It is seen from the above that after angular
dependence is separated out, the remaining second-order
equation can be put into a form that does not contain
the first derivative by introducing the x(r) function. It
is then amenable to numerical integration by the
Milne" method which was also used in the solution of
the pure Thomas-Fermi ion. The equation can also be
integrated by standard numerical techniques due to
Hartree, " Gauss-Jackson-Numerov, ""and Blanch. "
The trouble with these methods of solving a differential
equation with two point boundary conditions is that
there is no systematic way of improving one's guesses.
A method due to Ridley'4 does allow for improvement
especially in cases such as these where excellent pre-
liminary knowledge of the eigenvalues exists. The
technique considers a general, homogeneous, second
order equation with homogeneous boundary conditions,

l.0

IV. SOLUTION OF THE SCHRODINGER EQUATION

The charge distribution a,nd consequently the
potential of the ion can now be used as a central field
in which the valence electron moves. The calculated
excited and/or ground state one-electron wave functions
will give the charge distribution of the valence electron
for the states considered. This statement is only
approximately true for several reasons, the most
important of which is that v e have calculated a charge
distribution for the core which is good only in the
Thomas-Fermi, approximation. Other approximations
which will have to be made concern the partial shielding
of the core due to the penetration of the valence
electron's charge distribution, the exchange effects, and
the dynamical aspects of the problem which include the
deformation of the core due to the presence of the
penetrating electron. It will be seen that these last three
effects can be included approximately in our calculation.

If we consider a separable, product-type wave
function, and make the further assumption that
angular dependence can be separa, ted out, the one-
electron wave function of the ith electron is given by

and the wave equation for the valence electron moving
in the field of the Thomas-Fermi potential of the ion is

x;"(r) —t (2stte, /5') —(2stte VTF (r)/A')

+ (i) (i+1)/r'7X'(r) =o (4 2)

0.8

t 0.6
(x)

0.2

2 0 6 lot lat 18 f22
go+ K+ Rb+

267 30
Cs+x~

FxG. 2. Thomas-E'ermi p distributions for the alkali ions,

"W. E. Milne, Am. Math. Monthly 40, 322 (1933).
"D.R. Hartree, Mem. Proc. Manchester Lit. & Phil. Soc. 77,

130 (1932)."H. JeA'reys and B.S.Jeffreys, 3Eethods of Mathematicat Physics
(Cambridge University Press, Cambridge, 1950), pp. 276, 665.

~ B. Numerov, Publ. l'Obser. Astrophys. Russie 2, 637 (1933).
~ G. Blanch, Mathematical Tables and Other Aids to Compu-

tation 6, 219 (1952).
s4 E. C. Ridley, Proc. Cambridge Phil. Soc. 51, 702 (1955).
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of the form

x"+L~+f(~)lx=o, (4 4)

gouPd&
J gin d&

+. X-~'(X)» '(X) .
y'(X)y'(X)

(4 6)
-X(X) --~ -y(X) -*-

If we consider the x(r) solution at the nucleus, it
would be expected that the potential can be represented
by the Coulomb form and the wave function would
start oB as a hydrogenlike solution with charge Ze. This
information is not accura, te enough for obtaining
starting values for numerical integration. The potential
is Coulomb-like if the Thomas-Fermi potential, p, were
equal to one near the nucleus. Checking the potassium
solution determined in Sec. III indica, tes that at.
r=0.004 A, p has already fallen off to 0.969, and at
r= 0.014 A, &=0.903. The departure from the Coulomb
potential is seen to begin immediately, and with a high
rate as we move away from the nucleus. To obtain
accurate starting values, the solution in the region near
the nucleus must be numerically evaluated by deter-
mining a power series solution to the general equation,
treating @(r) as a parameter. The details of this calcu-
lation can be found in a report by one of us."

In order to start the backward integration, it is
convenient to go out so far that the wave function has
an exponential decay (to one part in 10'), and compute
the back starting points using the asymptotic form of
the solution, x(r) =k exp( —L(2m', )&/A]r}.

The Polarization Contribution

As indicated in Sec. II, the Heisenberg form for the
polarization potential energy is —n~e'/2r4, where the

H. J. Brudner, New York University Research Division
Technical Report No. 4, Electron Scattering Project, July 1,
1959, (unpublished), Appendix K.

with X a,n adjustable parameter, and with boundary
conditions

X(o)=3 (f) =o (4 ~)

The determination of the characteristic values and
functions utilizes a process similar to the one used for
normal two-point boundary condition problems, namely,
by carrying out an outward integration from x= u and
an inward integration from x=b, and matching them
at an intermediate point, say @=X.The results of these
two integrations are written as y„& and y;„. Ridley's
technique uses the degree of mismatch between the
results of inward and outward integration, as measured
by the difference between the values of y'(x)/y(x) for
the two integrations, to estimate an improved trial
value. It is shown'4 to first order in 6),

argument for its determination holds only in the region
outside the core. If this term were added only in the
outer region, there would be a discontinuity at the core
boundary. Following Biermann and Harting" we will add
a polarization term of the form

(u~e'/2r4) (1—exp[ —(r/ fr 0)']}
for the inner region as well. Here f is a fraction which
was taken as 0.4 for most of the calculations. Although
the exponent can be raised to any power greater than
four, eight was found to give the best fit with optical
term values. "The addition of this term has the eGect
of eliminating the polarization term in the core until
r= fro. It then goes smoothly into the 1/r' behavior at
the core boundary. Although strictly speaking this
is an empirical correction, it will be seen to be a small
one, and too much concern need not be given to the
exact form of the correction.

There are various computational difhculties as-
sociated with the Ridley scheme outlined above, and
although these can be and were overcome, it is desirable
to also discuss another scheme for solving Eq. (4.2).

The Biermann-Liibeck Method

A useful method for computing wave functions is
that developed by Biermann and Liibeck. 2' In addition
to including the polarization contribution, and being
a,daptable to the Thomas-Fermi potential, the method
also allows for the inclusion of a semiempirical exchange
correction. Introduction of the latter correction has the
eGect of introducing a nonexperimentally determined
parameter into a system which is already determined
without redundancy. In order to compensate for this
while calculating the best possible wave function for
the assumed potential (originally taken as a Hartree
central potential), Hiermann and I.iibeck solve the
wave equation utilizing the experimentally determined
term value. Accurate listings of these values can
presently be found in a circular of the National Bureau
of Standards. " Starting with the experimental term
values is not necessarily an unfair approach since both
Hartree and Thomas-Fermi central potentials do lead
to term values which are very close to the experi-
rnentally determined ones.

The exchange correction made by Bierrnann and
Liibeck can be applied here by multiplying the Thomas-
Fermi central potential distribution by the function

B(r)= (1+Pr expL —(r/fro)']}

for the computation it is convenient to express the r
and P coefficients of the exponential in A and 1/A units,
respectively. In their work, Biermann and t.iibeck take
the fro value as the radial distance of the last inflection

L. Biermann and H. Harting, Z. Astrophys. 22, 87 (1942)."L. Biermann and K. Lubeck, Z. Astrophys. 22, 157 (1943).
2'Atomic Energy Levels, edited by C. E. Moore, National

Bureau of Standards Circular No. 467 (U, S. Government Printing
OfBce, Washington, D. C. 1947).
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where

o.„e'
(1—exl L

—(r/fro)']} x=0 (4 &)
2r'

V(r) = $Zeg(r)/r+e/rp]
&& (1+Pr exp) —(r/frp)']}; 0&~r &~rp (4.8)

aIl d

U(r)= (e/r)(1+Pr expL —(r/frp)']}; r)rp. (4.9)

The solution of the equation for large values of r is once
again given as x(r) =k expL&(2mp, )&r/5]. Varying P
for a particular eigenvalue and angular momentum state
leads to solutions such that all diverge as ~e+ " except
the one associated with the desired value of P; in this
case we have the physically required exponential decay.

Since this procedure takes advantage of the experi-
mentally determined term value, and makes at least
partial correction for almost all other eGects, it can
be expected to yield fairly accurate wave functions,
even for excited states. Indeed this is the case, and
Biermann and Lubeck find that oscillator strengths for
the states in the principal series agree well with those
obtained from experimental measurements. A more
detailed description and evaluation of the Biermann
and Liibeck procedure, as used with Hartree potentials,
has been given by Villars. "The Biermann and Lubeck
procedure neglects, however, the effect of the pene-
tration of the excited electron into the core, and the
modification of the core potential due to this pene-
tration. While this is a small correction in the case of
the more highly excited levels, it can be significant for
the first few excited states. It is possible to include the
eGect of this penetration by utilizing a self-consistent
iterative process which we now describe.

V. A SELF-CONSISTENT TECHNIQUE

The e6ect of the penetration of the valence electron
into the core is partially to shield the nuclear charge
and consequently to increase the size of the ion core.
The form of the core charge distribution also changes,
and with it, the effective potential in which the valence
electron moves changes. Since the effective potential
depends on the charge distribution, and this in turn
depends on the effective potential, we have in principle
the ingredients of a self-consisteiit procedure.

"D.S. Villars, J. Opt. Soc. Am. 42, 522 (1952).

point of the outermost one-electron wave function of
the core as given by the Hartree potential. This is felt
to be a somewhat sophisticated definition for an
intuitively determined distance, and in the present
calculation f was simply taken as 0.4 and the rp value
as that of the Thomas-Fermi ion. With this approach
the radial wave equation to be solved is now

2mp... 2meV(r) (t) (3+1)

r2

We first solve the problem neglecting penetration
of the core. If the portion of the computed excited
electron's charge distribution penetrating the core is a,
the core size increases somewhat, and the potential at
the edge of the core becomes (Z N —a)%—p', where rp'

is the new core radius. This new core potential com-
bined with the po/arization contribution is used to solve
the Schrodinger equation for the new charge distri-
bution until the solution is self-consistent.

There are complicatioils in carrying out this pro-
cedure. The penetration not only leads to a modified

set of boundary conditions, but strictly speaking, to a
modified Thomas-Fermi equation as well.

The Thomas-Fermi potential distribution for the
pure ion represents a zeroth order approximation to
the ion core. We use this potential with a polarization
correction in the Schrodinger equation to calculate an

energy eigenvalue and a wave function for the excited
electron e* which is in some state characterized by
specific principal and azimuthal quantum numbers.
From the one-electron wave function, P,*, so determined,
we can calculate a number density for the excited
electron:

V'V,+=4xm, +e:

y,'= rV,~(r)/Ze.

(5 2)

(5.3)

An ion core and excited electron potential are illustrated
in Fig. 3 with ~P ~

as the ordinate since g,* is actually
negative.

It is important to note that even though we are
dealing with a VT p(r) potential for the ion core, and a
V,*(r) potential for the excited electron, since the
distribution has some temporary equilibrium form, there
must be some maximum value of the total energy of the
electrons at each point, —eVO, where Uo is a positive
constant. This follows from the argument that if this

quantity were not constant, the electrons would move

from points with smaller Vo to those of greater Vo value.

If we assume that within the imaginary sphere defined

by ro, the fraction n of the excited electron's charge

1''io. 3. Thomas-Fermi ion core and excited electron
dimensionless potential distributions.

(5.1)

We can. also define a dimensionless potential, that is
calculated from the potential V,+ as determined by
Poisson's equation,
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distribution penetrates, since Vp ——V(ro) we must have

Vo ——
1
Z—cV—n (rp) je/ro. (5.4) l.O

The Vo value determines the total energy of the core
electrons at any distance r since

(1/2rri)Poo eV«—i,= —eVp. (5 5)

where since

we must have

V'V~o&= 4' to~e,

B«i,—B pT+Rg p

V«e= VTF+ V.*.

(5.7)

(5.9)

Substituting (5.8) into (5.7) and using the expressions
given in Eqs. (5.6) and (5.2), we obtain a generalized
Thomas-Fermi equation:

PV...=4pre((87r/3ho) L2nze(V«, (r) —V,)3-:

+ (PV,*/4m-e) },
oi

V'(V«& —V.*—Vo) =4~o oe(V«i, —Vo)'*. (5.10)

In order to convert this equation to the dimensionless
form, and still to retain as much of the original Thomas-
Fermi formalism as is possible, we define

@Tp
——r(V...—Vp)/Ze, (5.11)

and using (5.3) we obtain a generalized dimensionless
equation

PTr" (x) —y,*"(x)=yTi'*(x)/x&. (5.12)

As in the case of the pure ion, the boundary conditions
at the nucleus and limiting radius are

yTF(0) = 1; pTF(xp) =0. (5.13)

It will now be shown that in defining the potentials as
above, we have also preserved the content of the
relationship between xp and &Ti. (xp). This relation is
determined by application of Gauss's theorem. Since
spherical symmetry exists, the total charge inside a
sphere of radius r is given by

r'BV «g/Br =—r'(8/Br) (VT p+ V,*), —

and using Eq. (5.11),

r'(Bx//Br) (8/Bx) (Zep»/r+ Vp)—
= —Ze1 yTp(x) —xyTF'(x) j. (5.14)

I

The detail of this third boundary relation alters at this
point since the total charge enclosed by the sphere of
radius xp is now (Z—Ã—n)e. It thus becomes

—(Z E n)/Z=x@T i'(xp—). — (5.15)

Since the Thomas-Fermi core electrons are still assumed
to be in the lowest permissible energy states,

riTF= (8'/3h')L2nw(V«t(r) —Vp) jl (5.6)

in accordance with the usual Thomas-Fermi density-
potential relation. The Poisson equation for the total
charge requires

(z -x)
/

z

zNal
Z

«X

Fra, 4. Modi6cation of the pure ion core Thomas-Fermi
distribution by the excited electron.

It mill be seen that the small penetration charge,
n(xp), serves to extend the pure ion xp value via shielding
effect since it lowers the intercept on the pTF(x)
ordinate axis by an amount n/Z; it does this partly by
decreasing the positive curvature of the potential
fallo6 (which is about equal to p" in the outer region
of the core) as indicated in Eq. (5.12). However,
pTi;(xo) can still be defined as zero, and identified as the
boundary of the disturbed pure ion core, if we solve the
generalized differential system instead of the ordinary
Thomas-Fermi equation. In order to solve Eq. (5.12),
we must know the original distribution of p,~"(x) for
all x(xo, since the excited electron's orbital slightly
modifies the pure ion core Thomas-Fermi distribution.
The effect is indicated in Fig. 4.

It is seen that for rigor the solution of the diGerential
system, Eqs. (5.12), (5.13), and (5.14), for a given
g*"(x) distribution requires an iterative approach in
itself, within the more general self-consistent approach.
This comes about since solution of the modified Thomas-
Fermi ion leads to a second xo"' value which is slightly
larger than the original xp value, and will therefore
include more of the excited electron's charge distri-
bution. This contribution will be seen to be a second
order one, however, as the ion radius occurs in the
region of a node in the excited electron s charge distri-
bution. In this respect the present approach partly
implies the atomic shells which ordinary Thomas-Fermi
theory lacks. If a very accurate calculation were
desired, the Thomas-Fermi modified ion equation could
be resolved with s, new value n&" (xp&"), and the process
repeated to yield a final xo&&' value accurate to a high

degree. This iteration on xo, however, would not be
worthwhile except in the final potential determining

step in the more complete self consistent approach. The
latter can be summarized as:

(1) Solve for the potential distribution of the ion
core, VTp(r), and rp via the ordinary Thomas-Fermi
equation and the pure ion boundary conditions.

(2) Use this potential with a polarization a.nd if
desired, an exchange correction as the effective field
to determine an excited state (N, l) wave function and

energy eigenvalue via the Schrodinger equation.
(3) Determine the excited state's charge distribution.
(4) Determine P,*"(x) for all values of x. It will be

seen that this can be done without utilizing Poisson's
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equation each time since a general relation exists
between the dimensionless potential and the radial wave
function.

(5) Use the generalized Thomas-Fermi equation, and
the iterative xo process if desired, to redetermine

yrp(x) and cx(xo).
(6) Use the new ct TF(x) function with a polarization,

and if desired an exchange correction as the effective
potential to redetermine an improved excited state wave
function and energy eigenvalue via the Schrodinger
equation.

(7) Repeat the process starting with step (3). The
process is stopped when the energy eigenvalue of the
excited electron is regenerated within a stated accuracy,
if exchange is neglected, or when the wave functions
converge to some limiting form if exchange is included
and the experimental term value used. In the former
case the Ridley approach can be used to solve the wave
equation; in the latter the Biermann-Lubeck technique
can be used.

It should be pointed out that while the introduction
of the dimensionless variable x is useful in demonstrating
the characteristic length property of neutral atoms, this
change in scale from the ordinary r variable is not
necessary for ions. One can still introduce a function

where V,*(r) is determined from Poisson's equation.
Thus

or

Therefore

PV,*(r)= —4orp, *,

(1/r) (d'(r V,*/dr') = 4—~p, (r')

(Ze/r) (d'co */dr') = 4~p;~(—r).

(5.22)

(5.23)

q = p,&do = 47r r' p,~ (r)dr -= —e x' (r)dr.
J,

Since this is so for any value of r,

p,"(r) —e=q'/4~r'. (5.24)

3000

F000
h

X(r)
l3

lkl

If we consider the total amount of the excited electron's
charge enclosed by a sphere of radius r, this quantity
is given by

a&(r) = r(V Vo)/Ze, — (5.16)
-3000

where

'd/cord'= b (co%i), (5.17)

which satisfies the Thomas-Fermi equation, now in the
form -500C

I

I

6 IO 18
I

22 26 30

b =32m'(2m) 'e'Z'*/3h', (5.18) FIG. 5. Ridley type solution for the 6s state of potassium.

and for free positive ions Substituting (5.24) into (5.23), it is seen that

and
co (0)= 1, co (ro) =0,

to(dco/dro) ro= (Z cV)/Z.

(5.19)
(5.25)d'co,*/dr'= +x'(r)/Zr

relating the second derivative of the excited electron's
co,*(r) distribution to the radial wave function x(r).

coTF"(r) —co,+"(r) =b(col(r)/r~)& (5.20)

with the same boundary conditions as in Eq. (5.19)
except for replacing (Z—1V) by (Z—X—n). Instead of
resolving the pure ion for the co(r) function, it is simple
to convert a p(x) table into an co(r) table by inter-
polation on a computer.

Then, as mentioned, the co,~"(r) distribution can be
directly determined from the excited electron's wave
function. We have defined

Ordinarily, this is not convenient since the b value is

large and irrational. For instance, for potassium
bz ——1.35934X10".However, it is convenient to partly
work in the co(r) system for the above type of procedure
since this facilitates both the solution of the Schrodinger
equation and any later conversion to atomic units.
The generalized Thomas-Fermi equation is then

where

and

y" (r) —
t cT+s&/r' —s&ct (r)/rjx(r) =0,

o = (2m/Ao) (o eVo), s—i= (t) (t+ 1),

s = 2me'Z/A'.

(6.1)

(6.2)

Expressing the wave function in power series form

VI. STARTING VALUES

As indicated the inner region starting values can be
obtained by expanding y(r) as a power series in r,
substituting into the differential equation and setting
the collected coefFicients of the r powers to zero. If
exchange effect near the origin is neglected, we can
write the Schrodinger equation as

(5.21)
x(~)= 2 ~-~",

n=o
(6.3)
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and the collected coefficient of the general term r is

(m+1)(m+2)a 2
—oa +s2$(r)a~ i —sia, 2

——0. (6.4)

The i'(r) function varies between zero and unity
through the entire inner region and is treated as a
parameter in the expansion. The series must be evalu-
ated from ms= —2 since there is an inverse square term.
Combining the above results for the various angular
momenta yields the following expansion for the s state:

X(r)

I4 X IO

IO—

18

I

6-—
/

p /
' I

li
,
Pu' 4' t KJ
0 2 6 Io 14 22

r(A)
26

x,—.4.4.(r)
=ai[r (s2&(r)/—2)r'+ (1/6)f(o+s2'qP(r)/2)r'

—(1/12) (s2It (r)/2)Lo+ (1/3) (o.+s 'qP (r)/2)]p4

+ (1/2o)((~/6) (~+s '4'(p)/2) —s '4'(p)/(24)
&I~—( / )(+ '0'()/ )3) '—."1 ( )
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FIG. 6. Biermann-Lubeck type solution for the 6s
state of potassium.
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FiG. 7. Biermann-Lubeck type solution for the 6s state of
potassium-inner region expanded.

Even negl, ecting the exchange correction term, the
coefhcients are seen to become complex as higher powers
are needed. Unfortunately it will be seen that heavy
atom wave functions are rapidly changing in the
strong Coulomb field near the nucleus, and even if a
fairly small interval is taken for the x(r) tabulation,
using the Milne method of integration the starting value
calculation becomes tedious. Although the present
calculation was carried out in this manner, the authors
recommend the Gauss-Jackson-Numerov24 " method
for future work. In this case the initial interval can be
made extremely small and changed as needed further
out. This being the case, only two or three terms of the
expansion in (6.5) are needed. This approach requires
that the Thomas-Fermi potential be determined at

FIG. 8. Charge density distribution for the 6s potassium state.

VII. RESULTS

For the evaluation of the procedures described above,
the potassium atom with valence electron in the 6s
excited state was first chosen. According to reference 28,
this atom is characterized by a ground state, 4s'Sg at
35 009.78 cm '. Its 6s configuration, 3p'('S)6s is at a
level 27 450.65 cm '. Thus the energy above the ground
state of the 6s level corresponds to 7559.13 cm ' or an

en«gy) ~') of —&.50&385X &0 "erg.
The 6s state as determined by the above Thomas-

Fermi technique using Ridley's method, on 6rst
iteration was found to have the proper x'(ro)/x(rp)
continuity for an eigenvalue of ~= —8'= 1.55389)&10 "
erg. This is about 3.5% in error compared with the
experimental term value. It was found that a second
iteration, providing for penetration, improved the

3000

~r HOMAS-FERMI
/ &CENTRAL

iPOTENTIAL
I

X(r) /

-IOOO
K/

HARTREE
CENTRAL5000 POTENTIAL

-5000
2 Io

r(A)
22 26

FIG. 9. Comparison of Bierman-Lubeck type solutions
with Thomas-Fermi and Hartree potentials.

irregular intervals near the origin, but that is less

cumbersome than determining starting values using a
Q.fth or sixth degree polynomial.

It can also now be pointed out that the P parameter
involved in the Biermann and Liibeck scheme must be
known with ever greater accuracy as heavier atoms are
studied. In their original work, Biermann and Liibeck
required only three significant figures for convergence.
Villars" noted that five significant 6gures were required
for his work with potassium. Unfortunately, for the 55
electron cesium atom, eight significant figures were
found to be necessary. This begins to exhaust the
capabilities of even advanced computers, and the
authors suggest that for heavier atoms, the Ridley
scheme be used since the exchange correction is smaller.
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FIG. 10.The 7s state of cesium.
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eigenvalue to 1.54442&10 "erg, still leaving a residual
error of some 2.8%. It will be seen that ro is in the region
of one of the wave function nodes and so further
iteration would not produce any significant change
since there is virtually no change in the o. value.

In order to produce a more accurate wave function
for the 6s state, the experimental term value was used
in the Biermann and Liibeck procedure. It is interesting
to note that the wave function took on the proper
asymptotic exponential decay value for a /=0. 17020
value in (1/A) units; converting to atomic units
indicates a smaller exchange parameter than that
required in the Biermann and LQbeck calculation using
a Hartree potential as a central Geld."

The solution obtained using the Ridley type inte-
gration procedure is presented in Fig. 5. Figure 6
presents the more accurate Biermann and Liibeck type
solution utilizing the experimental term value and
allowing for some exchange energy correction. Since the
wave function is changing very rapidly in the region
of the nucleus, the inner region of the solution is
presented on an expanded scale in Fig. 7. The radial
possibility density is presented in Fig. 8.

The nodes for the Ridley-type solution come at
0.064, 0.283, 1.0234, 2.80, and 6.95 A. The nodes for the
Siermann and Liibeck type procedure occur at 0.058,
0.275, 0.944, 2.92, and 7.24 A. Similarly, the maxima
and minima for the Ridley type solution come at
0.0239, 0.144, 0.564, 2.08, 4.654, and 11.2 A, whereas
those for the Biermann and Liibeck scheme occur at

0.239, 0.144, 0.544, 1.80, 4.85, and 11.6 A. It is seen that
the two solutions compare fairly well with each other
indicating that the form of the wave function is not
too sensitive to the small error in the theoretically
determined Ridley-type solution eigenvalue.

From the wave functions and probability distribu-
tion, it is seen that almost exactly four full shells of elec-
trons are in the ion core; while this may seem surprising
at first, it simply confirms the fact that the atom would
be in the ground state if the 6s electron were in the 4s
state.

The above Biermann-Liibeck type solution is com-
pared in Fig. 9 with a similar solution using a Hartree
ion core potential that has been determined by
Villars. ""The latter wave function was presented in
atomic units; it has been converted for comparison in
Fig. 9. The outer regions agree nearly exactly as should
be the case since the boundary conditions and po-
tentials in the outer region correspond. In the inner
region, some di6erences are to be expected since the
Thomas-Fermi potential corresponds to something
approaching a mean Hartree potential distribution. It
is seen in Fig. 9 that the diGerences between the two
solutions are small. It is not worthwhile to evaluate
these diGerences critically since the main point in
calculating the present Thomas-Fermi central field
wave functions is for use in cases where regular Hartree
or even Hartree central field solutions are not practical
to calculate.

To further evaluate this situation, the 7s state of the

4 x'IO-

3 x IO

2 rlO

I x IO

-I x IO

-2 xlO

-3 IO-

3.0
4

FIG. 11. The 7s state of
cesium, inner region expanded.

"D. S. pillars, NavOrd Report 1923; Library of Congress ADI Document No. 3655, 1951.
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